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observed by Enderling and colleagues [65, 167], we note here a very large di↵erence in

population growth rate, which we further quantify in Appendix B, Figure B.1. While the

observations of growth kinetics are not novel, we will further quantitatively explore the

utility of the tumour clonal shape/architecture observations later in this chapter.

Figure 3.6: Temporal evolution of the spatial model reveals observable morpho-
logic di↵erences between TIC-driven and non-TIC-driven tumours, as observed by
others. We plot representative results of a single example simulation for two tumours, each
simulated on a square lattice of size 400⇥400. Top: a tumour simulated with symmetric division
probability 0.2 and � = 4. We notice, as have others, a ‘patchy’ clonal architecture, and non-
uniform edge. Bottom: a tumor simulated with symmetric division probability of 1.0, which
has no proliferative hierarchy. We note smooth edges, radial patterns of clonal architecture and
relatively faster population growth, reaching ⇡ 70, 000 cells in less than 200 time steps. To
reach a similar size, the tumour with symmetric division probability of 0.2 took 35, 000 time
steps.

In order to make these qualitative observations quantitative and enable us to ob-

jectively determine di↵erences in the symmetric division probability, we introduce the

Shannon index, a commonly utilized metric of overall diversity within a population.

Originating from information theory, it was originally created to understand how di↵er-

ent one string of text was from another [214]. It has been widely utilized in many other

fields of biology, as it is a convenient metric to describe diversity [148]. For a population

of size N comprising ni individuals of type i, for i = 1 . . . R, the Shannon diversity index

is defined as:

Shannon index = �

RX

i=1

ni

N
log

ni

N
. (3.2)
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The results of simple co-culture yielded intuition about 
competition in more complex mixtures in diverse bacteria



We assumed that the OB –OC equilibrium does not change
qualitatively from patient to patient, as opposed to what one
may expect concerning the OC– MM final equilibrium. The actual
values of payoff matrix (1) affect both the location of the fixed
points and the time associated with disease progression. These are
expected to be patient specific, reflecting tumour –host inter-
actions and variability of disease due to differences in the host
rather than the malignant cell genotype.

DISCUSSION

Besides giving a broad view of the overall features of the disease
(captured by b41 and dX0), our approach provides important
insights on therapeutic priorities to ameliorate the patient’s
condition. Therapies that kill MM cells can slow the speed of
disease evolution and prolong patient survival, while simulta-
neously improving bone structure. Unfortunately, this will not
alter the final outcome. Indeed high-dose chemotherapy and stem
cell transplantation, the current ‘standard of care’ for eligible
patients, lead to significant reductions in tumour burden with an
improvement in survival but the disease invariably relapses and
many patients ultimately die of relapsed or refractory disease
(Attal et al, 1996, 2003). In contrast, agents such as bisphos-
phonates can change disease dynamics by altering the ‘game’
(reducing b) and consequently reduce the number of lytic bone
lesions or myeloma-induced osteoporosis. Whenever therapies
succeed in reversing the sign of (b!1), they may inhibit disease
progression. For example, antisense therapy against MIP-1a
blocked bone destruction in a mouse model of myeloma
(Choi et al, 2001). Similarly, therapies that reduce the effective
value of d may significantly attenuate morbidity by slowing
the speed of bone loss. In this respect, an antibody directed
against Dkk-1 reduced both bone loss and the myeloma tumour
burden in a preclinical model (Yaccoby et al, 2007). This
general behaviour is also supported by data from a human clinical
trial. A recent study by Lust et al (2009) showed that neutralization
of IL-1b (an osteoclast activating factor that also stimulates
IL-6 production) with an IL-1 receptor antagonist (IL-1Ra,
known as anakinra), slows the progression of smouldering to
active multiple myeloma. This finding can be easily understood
in light of the present model: anakinra effectively reduces b, which
has precisely the same implications regarding disease progression
as shown in Figure 2. Patients treated with this agent had a
reduction in the rate of proliferation of plasma cells and

accumulation of lytic bone lesions (Lust et al, 2009; Dinarello,
2009b).

It is worth stressing the fact that whenever bo1 and bþ d41
(Figure 2B), the appearance of an interior fixed point may be of
particular relevance in what concerns the development of new
therapies. Indeed, our model predicts that by altering the relative
fitness of one cell type with respect to the others, one may
effectively change the overall disease evolution, in this case to the
appearance of such an internal saddle point. Thus, our model
suggests that therapies directed against Dkk-1 may be useful in
reducing bone loss and in slowing down the accumulation of
tumour burden in patients with smouldering myeloma. It is
therefore important to determine at which stage of disease
evolution such a therapeutic procedure is implemented. Therapies
that bring the disease into this regime may be effective in patients,
that at the time of diagnosis are in a disease state that is
metaphorically located ‘to the left’ of the saddle point, in which
case evolutionary dynamics will naturally lead to the decline of the
MM cell population. The location of this saddle point is
determined in part by the detailed interactions of the cell
populations with each other. In our model we do not consider
the possible existence of various subpopulations of MM cells that
are dependent on the marrow microenvironment to variable
extents and for which this model may or may not apply. If
experimental data describing the interaction of such MM
subpopulations (e.g., myeloma stem cells) become available, this
can be incorporated into the model at the expense of increased
mathematical complexity.

Finally, there is variability in the precise location of the
fixed points and the different possible paths that join them. One
should not overlook the message from Figures 2D and 3 – the
variability in tumour genotype/phenotype determines a corres-
ponding variability of the time scales and life histories
associated with disease progression. Our model illustrates how
interactions between the genotype of normal and neoplastic cell
populations, combined with the individual host specificities,
determine both the phenotype and the dynamics of the disease,
including disease progression times. As shown in Figure 2D,
the nature of the interaction between MM and OB cells, controlled
by d, plays a very crucial role in both disease progression
and expression. Patients with a disease characterised by a large
d will experience insidious disease with a small population of MM
cells leading to significant and rapid bone loss, a feature that
could lead to a misdiagnosis of osteoporosis rather than myeloma.
In this era of individualised medicine, every patient is a special
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Figure 3 Host-specific tumour progression. The values b and c in matrix (1) alter the position of the equilibrium on the osteoclasts (OC) to multiple
myeloma (MM) line (A, B, C), whereas a and e change the equilibrium between OC and osteoblasts (OB) cells, producing deviations both in the disease
path and on the characteristic evolutionary time scale. Each panel (A, B and C) shows a different path with the associated matrix, all leading to the same
payoff matrix (2) with d¼ 10 and b¼ 2. We start with a small perturbation of the OC–OB equilibrium and t0 stands for the progression time of the
configuration d¼ 10 and b¼ 2 in payoff matrix (2) (Figure 2D).
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Fig 1. Prevalence and significance of micrometastases are poorly 
understood. Most micrometastases never progress to macroscopic 
size. In this case, small colonies of breast endothelial cells are 
found in the lung of a non-metastatic breast cancer patient

Background:
�Metastasis is a highly lethal and poorly understood process that 
accounts for the majority cancer deaths
�Patterns of metastatic spread are not explained by deterministic 
	������������������
������������������
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������������������������
explain these patterns
�We develop a stochastic model at the genomic level and use 
population genetics techniques to explore this phenomenon

Modeling Metastasis:

�A tumor was grown in silico by creating a population of single 
cells that stochastically undergo mitosis and cell death.  Cells 
can gain passenger and driver mutations during division which 
are passed to their offspring

Results:  Effect of primary tumor on Pmet

Success of metastases increases with primary tumor size

Exploring the observed Heterogeneity in genotypes:

�We found that Pmet varied considerably between cells from all 100 
primary tumors (Left), but less so between cells within the same 
primary tumor (Right)

�Tumors that took longer than the average time to reach 106 cells 
�����������	��������������������������
�Late primary tumors of equivalent size were less likely to metastasize

Clinical Applications:

�Modification of the stromal factor could be useful in the mitigation of 
metastasis
�This concept has been shown to be efficacious in the prevention of 
Skeletal Related Events (SREs) for prostate and breast cancer 
metastasis and is the driving concept behind RTOG 0622, a trial of 
injectable 153Sm for the prevention of bony metastases
�This concept could be applied to other organs for the prevention of 
metastases

Conclusions/Future Directions:

�Using a genotype scale population genetics model of tumor 
evolution we have elucidated several factors necessary for 
successful metastasis
�Future directions include testing these predictions against extant 
genotype data from primary tumors and metastatic tumors as well as 
further defining the stromal interaction for different primary tumor 
types and for different stromas.
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�An aliquot of 103 cells was taken from a primary tumor when it reached 
5x105 and 106 cells and were then allowed to deposit into a foreign stroma 
and observed

�A stromal penalty s was applied only to driver mutations acquired in the 
primary tumor because their effects will not be as strong in the new 
stroma, passenger mutations are not affected by the change in 
microenvironment
�We then measured the number of secondary tumors that grew into 
successful metastases from each aliquot and calculate a probability of 
metastasis (Pmet)

Fig 3.
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Results:  Effect of stromal factor on Pmet

�Cells derived from the larger primary tumor succeeded in harsher microenvironments
�Metastatic success is highly dependent upon stromal background
�Three regimes were observed in the parameter space as s varied, one in which 
metastasis was impossible (green), one in which it was certain (yellow) and one in 
which only cells from certain primary tumor succeed (white)
�We further define a value, scritical, above which Pmet>50%

Fig 4.

Feature  of Model Observed Phenomenon

Population size determined 
by fitness of cells

Larger Tumors more likely to 
metastasize

Cells can acquire passenger 
mutations that are slightly 

deleterious

Many micrometastases never 
grown to macroscopic size

Cells with more mutations are 
less likely to metastasize

Stromal environment reduces 
efficacy of driver mutations

Certain stromal conditions 
prohibit metastasis

Metastasis continues to 
mutate and evolve

Metastases with same 
founding cell can have 

different fates

Cells divide and acquire 
mutations on individual basis

Large heterogeneity in 
probability of metastasis 

within primary tumor

No pre-defined growth rate

Late primary tumors less 
likely to metastasize than 
early tumors of equivalent 

size

�100 primary tumors were 
grown and scritical was 
calculated for each cell as 
the tumor grew
�Median scritical (blue) 
increases with primary 
tumor size
�There is significant 
heterogeneity of metastatic 
potential between the 
individual cells within the 
tumors as shown by the 5th 
and 95th percentiles (red) of 
scritical

Pmet decreases with total number of mutations

�We derived a way to calculate Pmet

for every cell in the 100 primary 
tumors at equivalent sizes when 
inoculated into a foreign stroma of  
s = ¾ (not show)
�Pmet decreased with number of 
mutations
�The vast majority of total mutations 
are passenger mutations

Fig 6.

What about a GAME ASSAY to directly measure the effective 
game cancer cells are playing?
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Tumours are heterogeneous, evolving ecosystems1,2, comprising 
subpopulations of neoplastic cells that follow distinct strate-
gies for survival and propagation3. The success of a strategy 

employed by any single neoplastic subpopulation is dependent on 
the distribution of other strategies, and on various components of 
the tumour microenvironment, such as cancer-associated fibro-
blasts (CAFs)4. The echinoderm microtubule-associated pro-
tein-like 4–anaplastic lymphoma kinase (ALK) fusion—found in 
approximately 5% of non-small cell lung cancer (NSCLC) patients—
leads to constitutive activation of oncogenic tyrosine kinase activity 
of ALK, thereby ‘driving’ the disease. Inhibitors of tyrosine kinase 
activity of ALK (ALK TKIs) have proven to be highly clinically  
efficacious, inducing tumour regression and prolonging patient 
survival5,6. Unfortunately, virtually all of the tumours that respond 
to ALK TKIs eventually relapse7—an outcome typical of inhibitors 
of other oncogenic tyrosine kinases8. Resistance to ALK TKI, as 
with most targeted therapies, remains a major unresolved clinical 
challenge. Despite significant advances in deciphering the resultant 
molecular mechanisms of resistance9, the evolutionary dynamics 
of ALK TKI resistance remains poorly understood. The inability 
of TKI therapies to completely eliminate tumour cells has been 
shown to be at least partially attributable to protection by aspects 
of the tumour microenvironment10. CAFs are one of the main non-
malignant components of the tumour microenvironment, and the 
interplay between them and tumour cells is a major contributor  
to microenvironmental resistance, including cytokine-mediated 
protection against ALK inhibitors11.

To study the eco-evolutionary dynamics of these various factors, 
we interrogated the competition between treatment-naïve cells of 
the ALK mutant NSCLC cell line H3122 (a ‘workhorse’ for stud-
ies of ALK-positive lung cancer) and a derivative cell line in which 
we developed resistance to alectinib (a highly effective clinical ALK 
TKI12) by selection in progressively increasing concentrations of the 
drug13. We aimed to come to a quantitative understanding of how 

these dynamics were affected by clinically relevant concentrations 
of alectinib (0.5 μM; see ref. 14) in the presence or absence of CAFs 
isolated from a lung cancer. To achieve this, we developed an assay 
for quantifying effective games15,16 that is of independent interest to 
the general study of microscopic systems.

Results
Monotypic versus mixed cultures. To establish baseline character-
istics, we performed assays in monotypic cultures of parental (alec-
tinib-sensitive) and resistant cell lines with and without alectinib 
and CAFs. To gather temporally resolved data for inferring growth 
rates, we used time-lapse microscopy to follow the expansion of 
therapy-resistant and parental cells, differentially labelled with 
stable expression of selectively neutral green fluorescent protein 
(GFP) and mCherry fluorescent proteins, respectively. From the 
time-series data, we inferred the growth rate with confidence inter-
vals for each of 6 experimental replicates in 4 different experimen-
tal conditions (for a total of 24 data points, each with confidence 
intervals), as seen in Fig. 1. As expected, alectinib inhibited growth 
rates of parental cells (dimethyl sulfoxide (DMSO) versus alec-
tinib: P < 0.005; DMSO + CAF versus alectinib + CAF: P < 0.005), 
whereas the growth rate of the resistant cells was not affected. In 
addition, as previously reported11, CAFs partially rescued growth 
inhibition of parental cells by alectinib (alectinib versus alec-
tinib + CAF: P < 0.005; alectinib + CAF versus DMSO: P < 0.005), 
without impacting growth rates of resistant cells.

However, we did not limit ourselves to monotypic assays. Our 
experience observing non-cell-autonomous biological interac-
tions17 and modelling eco-evolutionary interactions18–20 in cancer 
led us to suspect that the heterotypic growth rates would differ from 
monotypic culture. Cell-autonomous fitness effects are those where 
the benefits and costs to growth rate are inherent to the cell: the 
presence of other cells is an irrelevant feature of the microenviron-
ment, and the growth rates from monotypic cultures provide all of 

Fibroblasts and alectinib switch the evolutionary 
games played by non-small cell lung cancer
Artem Kaznatcheev" "1,2*, Jeffrey Peacock3, David Basanta4, Andriy Marusyk" "5* and Jacob G. Scott" "2,6*

Heterogeneity in strategies for survival and proliferation among the cells that constitute a tumour is a driving force behind 
the evolution of resistance to cancer therapy. The rules mapping the tumour’s strategy distribution to the fitness of individual 
strategies can be represented as an evolutionary game. We develop a game assay to measure effective evolutionary games 
in co-cultures of non-small cell lung cancer cells that are sensitive and resistant to the anaplastic lymphoma kinase inhibitor 
alectinib. The games are not only quantitatively different between different environments, but targeted therapy and cancer-
associated fibroblasts qualitatively switch the type of game being played by the in vitro population from Leader to Deadlock. 
This observation provides empirical confirmation of a central theoretical postulate of evolutionary game theory in oncology: 
we can treat not only the player, but also the game. Although we concentrate on measuring games played by cancer cells, the 
measurement methodology we develop can be used to advance the study of games in other microscopic systems by providing a 
quantitative description of non-cell-autonomous effects.
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Figure 3: Consider two strategies in a cancer cell co-culture: parental (P ) and resistant
(R). When a P encounters a P then each experience a fitness e↵ect A; when a P encounters
an R then the P experience a fitness e↵ect B and the R a fitness e↵ect C; two Rs interaction
experience a fitness e↵ects D. This is summarized in the matrix above, where the focal
agent selects the row and the alter selects the column; the matrix entry is then the fitness
e↵ect for the focal. This can be translated into a simple exponential growth model for the
number of parental NP and number of resistant NR cells. The dynamics of the proportion
of parental cells p = NP

NP+NR
over time is described by the replicator equation (bottom).

Notice that for a matrix game, the gain function can be an arbitrary linear function of p.
In the figure at right are the two player matrices for the four games measured in the
presence or absence of CAFs and drug. The games corresponding to our conditions are
given as matrices by their label. The figure axes are the two parameters that characterize
a gain function corresponding to a matrix game. The x-axis is the relative fitness of a
resistant focal in a parental monoculture: C � A. The y-axis is the relative fitness of a
parental focal in a resistant monoculture: B � D. This game space is divided into four
possible dynamics regimes, one for each quadrant. A qualitative flow diagram between
parental (P ) and resistant (R) strategies is given in the inset of each quadrant. The
exact games that were measured in our experimental system are given as specific points
with error bars. Note that DMSO + CAF is in di↵erent quadrants from the other three
conditions (DMSO, Alectinib + CAF, Alectinib). Thus, the DMSO + CAF condition has
qualitatively di↵erent dynamics from DMSO, Alectinib + CAF, and Alectinib.
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Plotting the fitness functions in a game space reveals a 
qualitative shift in the game

Adding CAFs shifts  
the game up/left

Can we think of drugs in this new way  
to steer evolution rationally?

Adding alectinib shifts  
the game down/right



Key questions:

1. Where will evolution drive a disease? 
(and what are the evolutionary 

consequences  - e.g. CS)

2. How fast will it go?

3. Can we control these things?



1. Where will evolution drive a disease? Dmitri Petrov, PhD 
Stanford 

GP maps in yeast and cancer



Key questions:

2. How fast will it go? and in 
what order?

https://abetterscientist.wordpress.com/2019/02/01/sequential-
evolution-of-hiv-drug-resistance-against-two-drug-treatments/

Pleuni Pennings, PhD 
SFSU

https://abetterscientist.wordpress.com/2019/02/01/sequential-evolution-of-hiv-drug-resistance-against-two-drug-treatments/
https://abetterscientist.wordpress.com/2019/02/01/sequential-evolution-of-hiv-drug-resistance-against-two-drug-treatments/
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f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense — assigning to66

each genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate67

u and population size M of a population satisfy Mu logM << 1, and if we assume that each68

mutation is either beneficial or deleterious, then each beneficial mutation in the population will69

either reach fixation or become extinct before a new mutation occurs. Further, selection will be70

su�ciently strong that any deleterious mutation will become extinct with high probability and hence71

we may assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Iwasa72

et al., 2004] through double mutations can occur and we cannot ignore deleterious mutations.73

Assuming Mu logM << 1, then after each mutation the population will stabilize to consist entirely74

of individuals with the same genotype and this genotype will be eventually replaced by a fitter75
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A Markov Model of Evolution89
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time–homogeneous absorbing Markov Chain by setting, for i 6= j,93

5

equation 3 to ensure our model is a Markov Chain. In this case the step t to t+ 1 can
be chosen to take some fixed arbitrary time.

The distribution of a population at time t is related to its initial distribution, µ(0), by

µ(t) = µ(0)P t. (5)

Since the Markov chain is absorbing we know that there exists some k such that
P kP = P k [73]. Consequently, we know that the matrix

P ⇤ = lim
t!1

P t (6)

exists and in fact this limit is reached after only finitely many matrix multiplications.
To intuitively see that this limit is reached in finitely many steps note that all paths
through the Markov chain are strictly increasing in fitness and there are only finitely
many states (corresponding to the genotypes). Thus a given initial population
distribution µ(0) will converge to a stationary distribution µ⇤ after a finite number of
steps in our model. Furthermore, if P ⇤ is known then we compute the stationary
distribution µ⇤ as

µ⇤ = µ(0)P ⇤. (7)

In particular, provided a drug is applied for sufficiently long to ensure that the disease
population reaches evolutionary equilibrium, we can explore the effects of applying
multiple drugs sequentially by considering the matrices P ⇤ for the associated fitness
landscapes. By encoding the evolutionary dynamics in a Markov chain we can
investigate the evolutionary process from an algebraic perspective. In particular, as the
transition matrix P encodes all of the evolutionary dynamics of the associated fitness
landscape f , we can explore global properties of f by considering the algebraic
properties of P .
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distribution µ(0) will converge to a stationary distribution µ⇤ after a finite number of
steps in our model. Furthermore, if P ⇤ is known then we compute the stationary
distribution µ⇤ as

µ⇤ = µ(0)P ⇤. (7)

In particular, provided a drug is applied for sufficiently long to ensure that the disease
population reaches evolutionary equilibrium, we can explore the effects of applying
multiple drugs sequentially by considering the matrices P ⇤ for the associated fitness
landscapes. By encoding the evolutionary dynamics in a Markov chain we can
investigate the evolutionary process from an algebraic perspective. In particular, as the
transition matrix P encodes all of the evolutionary dynamics of the associated fitness
landscape f , we can explore global properties of f by considering the algebraic
properties of P .
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Predicting Evolution with a Substitution Model

Evolution is Not Repeatable - in vitro Validation

Background: Lung cancer is the leading cause of cancer death in America with an estimated 158,000 deaths 
in 2015. The direct cause of these deaths is the evolution of resistance to our presently most effective 
therapies. While the underlying Darwinian dynamics of cancer evolution are now accepted, this evolutionary 
process is rarely considered in the development of treatment strategies. We propose to extend evolutionary 
mathematical and experimental techniques we have used previously to study the emergence of antibiotic 
resistance with the aim to make similar gains in lung cancer. While our approach is applicable to any cancer 
which is sensitive to targeted therapy, we will focus on a recently identified subgroup of non-small cell lung 
cancers (NSCLC) driven by an oncogenic fusion involving the anaplastic lymphoma kinase (ALK) gene. These 
tumors in particular have been found to be exquisitely sensitive to a family of protein tyrosine kinase inhibitors 
(TKIs)1,2. The first of these TKIs, crizotinib, showed promising results in clinical trials, more than doubling 
progression free survival3. Unfortunately, the effects are rarely durable4 and are soon abrogated by the rapid 
evolution of resistance through a diverse number of molecular escape mechanisms (a pattern conserved 
across many cancers with targetable mutations)5. Since this realization, additional TKIs (e.g. ceritinib6, 
alectinib7 and lorlatinib8), other classes of agents (Heat Shock Protein-90 (HSP-90) inhibitors9 and standard 
cytotoxics have shown promise as potential second line therapies. However, while it is now accepted that drug 
resistance is driven by Darwinian dynamics10, the evolutionary consequences of drug application remain 
absent from the design of treatments following the failure of crizotinib. 
 Historically, new treatment methods have been developed by conducting head to head clinical trials. As 
new drugs are developed at increasing pace, and with greater specificity, these trials are quickly becoming 
both intractably slow and prohibitively expensive - especially when combinations or sequences of drugs are 
considered. In response to the analogous problem in the evolution of antibiotic resistance, the infectious 
disease and theoretical evolutionary biology communities have built mathematical models to analyze evolution 
under the selective pressures of different therapies and highlight potential combinations for further clinical 
study. To model the evolution of resistance, we have previously used a simplified model of the genotype-
phenotype mapping called the fitness 
landscape. This model relates each of the 
possible permutations of genetic mutations 
with the drug response of that mutant (Fig. 
1), forming a high-dimensional ‘landscape' 
of ‘hills’ (fitness optima) and 
‘valleys’ (fitness minima)11 specific to that 
drug. Evolution is then modeled as a 
search through genotype space, with 
trajectories biased by selective pressures, 
and populations constantly moving 
towards higher fitness (‘climbing uphill’). 
Fitness landscapes often differ for different 
drugs and, where they are known, it is 
possible to design drug sequences which 
carefully shift the hill and valleys of the 
landscape to ‘steer’ evolution away from 
resistance (or towards sensitivity) to other 
therapies. 
 This approach has yielded good 
results in the treatment of infectious 
disease12,13, and whilst the mathematical 
techniques can apply to any asexually 
reproducing population, little combined 
theoretical and experimental work has 
been done to extend these models to 
cancer. In previous work, we have shown 
that understanding the fitness landscapes 
of E. coli under different antibiotics allows 
us to predict how different sequences of 
drugs affect the evolutionary trajectory of 
the population - the order in which a 
population accrues mutations14. Using a 
mathematical model, we were able to 
determine optimal sequencing of 
antibiotics to minimize the probability of 

environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu logM << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu logM << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case thatMu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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P(i ! j) =

8
>>>>><

>>>>>:

�
f(j)�f(i)

�r
X

g2{0,1}N , Ham(i,g)=1
f(g)�f(i)>0

�
f(g)�f(i)

�r if f(j) > f(i) and Ham(i, j) = 1

0 otherwise

, (2)

and97

P(i ! i) =

8
<

:
1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t+ 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69
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strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu logM << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case thatMu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu logM << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu logM << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case thatMu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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0 otherwise
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t+ 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115
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there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu logM << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu logM << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case thatMu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98
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probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103
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mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t+ 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu logM << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu logM << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case thatMu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105
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has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111
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could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115
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there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu logM << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu logM << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case thatMu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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0 otherwise
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t+ 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu logM << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu logM << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case thatMu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100
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Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t+ 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122

6

P(i ! j) =

8
>>>>><

>>>>>:

�
f(j)�f(i)

�r
X

g2{0,1}N , Ham(i,g)=1
f(g)�f(i)>0

�
f(g)�f(i)

�r if f(j) > f(i) and Ham(i, j) = 1

0 otherwise

, (2)

and97

P(i ! i) =

8
<

:
1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t+ 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122

6

Biological experiment to mathematical model

Mathematical theory to clinico-biologic hypotheses

G-P Map

010 101 111

011001

100 110

010

Engineered E. coli

Genotype

Fi
tn

es
s

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

Am
p

Sam

Probability of population genotype

0 1

Cpr

Am
p

Am
p

1111

0110

0011

Peaks of the AMP landscape
Middle fitness peak (avg. growth rate: 2.434 * 10-3) 

Low fitness peak (avg. growth rate: 2.033 * 10-3) 

High fitness peak (avg. growth rate: 2.821 * 10-3)

Biological experiment to mathematical model

Mathematical theory to biologic hypotheses

Fitness

010 101 111

011001

100 110

010

Obtain fitness of 
Engineered E. coli

Genotype

M
IC

Build G-P Map Construct Markov 
chain model

environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu logM << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu logM << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case thatMu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t+ 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122

6

P(i ! j) =

8
>>>>><

>>>>>:

�
f(j)�f(i)

�r
X

g2{0,1}N , Ham(i,g)=1
f(g)�f(i)>0

�
f(g)�f(i)

�r if f(j) > f(i) and Ham(i, j) = 1

0 otherwise

, (2)

and97

P(i ! i) =

8
<

:
1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t+ 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122

6

From biological experiments to quantitative measures of fitness

Theoretical construction of mathematical model

Mathematical theory to clinico-biologic hypotheses

Genotype

Fi
tn

es
s

010 101 111

011001

100 110

010

Fitness map

Fitness map

Engineered E. coli Measure MICs

environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu logM << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu logM << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81
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f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu logM << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75
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will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78
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occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81
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genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83
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A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t+ 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu logM << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu logM << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case thatMu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t+ 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122

6

P(i ! j) =

8
>>>>><

>>>>>:

�
f(j)�f(i)

�r
X

g2{0,1}N , Ham(i,g)=1
f(g)�f(i)>0

�
f(g)�f(i)

�r if f(j) > f(i) and Ham(i, j) = 1

0 otherwise

, (2)

and97

P(i ! i) =

8
<

:
1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t+ 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122

6

Biological experiment to mathematical model

Mathematical theory to clinico-biologic hypotheses

G-P Map

010 101 111

011001

100 110

010

Engineered E. coli

Genotype

Fi
tn

es
s

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

Am
p

Sam

Probability of population genotype

0 1

Cpr

Am
p

Am
p

1111

0110

0011

Peaks of the AMP landscape
Middle fitness peak (avg. growth rate: 2.434 * 10-3) 

Low fitness peak (avg. growth rate: 2.033 * 10-3) 

High fitness peak (avg. growth rate: 2.821 * 10-3)

Biological experiment to mathematical model

Mathematical theory to biologic hypotheses

Fitness

010 101 111

011001

100 110

010

Obtain fitness of 
Engineered E. coli

Genotype

M
IC

Build G-P Map Construct Markov 
chain model

environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu logM << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu logM << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case thatMu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106
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is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t+ 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122

6

P(i ! j) =

8
>>>>><

>>>>>:

�
f(j)�f(i)

�r
X

g2{0,1}N , Ham(i,g)=1
f(g)�f(i)>0

�
f(g)�f(i)

�r if f(j) > f(i) and Ham(i, j) = 1

0 otherwise

, (2)

and97

P(i ! i) =

8
<

:
1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t+ 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122

6

From biological experiments to quantitative measures of fitness

Theoretical construction of mathematical model

Mathematical theory to clinico-biologic hypotheses

Genotype

Fi
tn

es
s

010 101 111

011001

100 110

010

Fitness map

Fitness map

Engineered E. coli Measure MICs

environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu logM << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu logM << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case thatMu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91
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function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69
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strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu logM << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case thatMu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96

5

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

Am
p

Sam

Probability of population genotype

0 1

Cpr

Am
p

Am
p

1111

0110

0011

Peaks of the AMP landscape
Middle fitness peak (avg. growth rate: 2.434 * 10-3) 

Low fitness peak (avg. growth rate: 2.033 * 10-3) 

High fitness peak (avg. growth rate: 2.821 * 10-3)

Strong selection 
weak mutation

P(i ! j) =

8
>>>>><

>>>>>:

�
f(j)�f(i)

�r
X

g2{0,1}N , Ham(i,g)=1
f(g)�f(i)>0

�
f(g)�f(i)

�r if f(j) > f(i) and Ham(i, j) = 1

0 otherwise

, (2)

and97

P(i ! i) =

8
<

:
1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t+ 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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The distribution of a population at time t is related to its initial distribution, µ(0), by122
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Fig 2. Steering evolution in E. coli. We constructed a mathematical model using an 
empirically measured G-P map to optimize antibiotic therapy. Here given Amp alone 
or Sam➣Amp allows for the most resistant phenotype, but Sam➣Cpr➣Amp 
prevents it3.

Predicting Effective Drug Sequences Through in vitro 
Experiments

Evolutionary Steering can Guarantee Collateral 
Sensitivity  

than 100mg/ml. Adaptation to doxycycline and ampicillin
was much slower, with populations tolerating less than
3mg/ml after five exposures. Adaptation by four of the five
combination-evolved populations (ciprofloxacin–ampicillin,
fusidic acid–amikacin, doxycycline–erythromycin, and doxy-
cycline–ciprofloxacin) was similar to their slowest evolving
single drug counterparts, whereas lineages evolved to the
fusidic acid–erythromycin combination were approximately
10! less than their slowest evolving single drug counterpart
(fig. 2 and supplementary data S1, Supplementary Material
online).

Resistance Profiles of Adapted Lineages
Following resistance adaptation, four isolates from each of the
adapted populations were profiled for their individual resis-
tances. Results show that all isolates exhibited a substantial
increase in resistance following five exposures (fig. 3 and sup-
plementary data S1, Supplementary Material online). In many
cases, the IC90 values of the isolates were 100! greater than

the WT value and in the case of the fusidic acid isolates more
than a 1,000! larger. Exceptions to this trend were observed
in the ampicillin, ciprofloxacin–ampicillin, and fusidic
acid–erythromycin isolates where IC90 values were only
10–30! the WT value. Increased resistance differed among
isolates evolved to the same drug(s) and in some cases this
difference was considerable (fig. 3). We attributed the differ-
ences observed within a given drug(s) group to be the result
of genotypic changes acquired by the isolates through
adaption.

The fusidic acid–amikacin isolates (antagonistic interac-
tion, supplementary data S1, Supplementary Material online)
had the greatest increase in resistance improvement followed
closely by isolates adapted to doxycycline–ciprofloxacin (syn-
ergistic interaction, supplementary data S1, Supplementary
Material online). Isolates evolved to ciprofloxacin–ampicillin
(additive interaction, supplementary data S1, Supplementary
Material online) had the least resistance improvement, an
average of 11! the WT MIC value. These results contrast
with previous reports based on sub-MIC adaptations, which

X

Exposure 1 Exposure 2 Exposure 3

Wild Type
S. aureus
Newman

Concentra!on

Y

X+Y

FIG. 1. Adaptation of Staphylococcus aureus to individual drugs and drug pairs. An overnight culture of WT S. aureus was used to inoculate microtiter
plates containing different drugs or combinations with increasing concentrations or media only. Three replicate populations were recreated for each
condition. The highest concentration where growth was present was recultured in fresh media and then used to inoculate the next concentration
challenge, referred here to as exposure. A total of five exposures were performed for each condition.

Table 1. Antibiotics Used and Their Modes of Action.

Antibiotic Name Abbreviation Class Target

Amikacin AMI Aminoglycoside 30S ribosome

Ampicillin AMP Beta lactam Cell wall

Ciprofloxacin CPR Quinolone DNA synthesis

Erythromycin ERY Macrolide 50S ribosome

Doxycycline DOX Tetracycline 30S ribosome

Fusidic acid FUS Other Protein synthesis

Combination Abbreviation Interaction

Amikacin and fusidic acid FUS-AMI Antagonistic

Ampicillin and ciprofloxacin CPR-AMP Additive

Ciprofloxacin and doxycycline DOX-CPR Synergistic

Erythromycin and doxycycline DOX-ERY Synergistic

Erythromycin and fusidic acid FUS-ERY Synergistic

3
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AMP AM CEC CTX ZOX CXM CRO AMC CAZ CTT SAM CPR CPD TZP FEP
AMP 1.00 0.24 -0.01 0.01 0.22 -0.02 0.09 0.46 0.50 -0.36 0.31 0.31 0.05 0.26 0.49
AM 0.24 1.00 -0.33 -0.21 -0.31 -0.38 0.09 0.39 -0.07 -0.33 0.63 -0.35 -0.16 -0.18 0.35
CEC -0.01 -0.33 1.00 0.24 0.18 0.03 0.59 -0.17 0.45 -0.11 -0.48 0.54 0.18 0.01 0.16
CTX 0.01 -0.21 0.24 1.00 0.78 0.64 0.64 -0.20 -0.14 -0.09 -0.45 -0.08 0.84 -0.59 0.11
ZOX 0.22 -0.31 0.18 0.78 1.00 0.55 0.33 -0.25 0.04 0.19 -0.51 0.13 0.82 -0.28 0.08
CXM -0.02 -0.38 0.03 0.64 0.55 1.00 0.27 0.04 -0.03 0.03 -0.22 0.07 0.75 -0.24 -0.03
CRO 0.09 0.09 0.59 0.64 0.33 0.27 1.00 0.15 0.22 -0.16 -0.07 0.15 0.57 -0.40 0.52
AMC 0.46 0.39 -0.17 -0.20 -0.25 0.04 0.15 1.00 0.07 -0.19 0.63 -0.02 -0.01 0.29 0.52
CAZ 0.50 -0.07 0.45 -0.14 0.04 -0.03 0.22 0.07 1.00 -0.21 -0.06 0.65 0.09 0.23 0.53
CTT -0.36 -0.33 -0.11 -0.09 0.19 0.03 -0.16 -0.19 -0.21 1.00 -0.15 0.14 0.09 0.30 -0.38
SAM 0.31 0.63 -0.48 -0.45 0.51 -0.22 -0.07 0.63 -0.06 -0.15 1.00 -0.31 -0.34 0.07 0.35
CPR 0.31 -0.35 0.54 -0.08 0.13 0.07 0.15 -0.02 0.65 0.14 -0.31 1.00 0.02 0.48 -0.02
CPD 0.05 -0.16 0.18 0.84 0.82 0.75 0.57 -0.01 0.09 0.09 -0.34 0.02 1.00 -0.50 0.30
TZP 0.26 -0.18 0.01 -0.59 -0.28 -0.24 -0.40 0.29 0.23 0.30 0.07 0.48 -0.50 1.00 -0.17
FEP 0.49 0.35 0.16 0.11 0.08 -0.03 0.52 0.52 0.53 -0.38 0.35 -0.02 0.30 -0.17 1.00

Table 3.2 Spearman Correlation of Fitness Values Between Landscapes. The scatter plots
for the shaded region are shown in Figure 3.4. The remainder of the scatter plots are presented
in Appendix 1.

not well founded although drugs within a class, for example the cephalosporins, show more
correlation that those between groups. An ideal pair of drugs for use in an alternating fashion
would have a high negative correlation such that the evolution of resistance under one drug
would induce sensitivity to a second. Unfortunately, no such drug pair exists and we must
employ more sophisticated methods to identify viable sequential drug strategies.

We next performed an in silico derivation of tables of collateral response, or collateral
sensitivity matrices (CSMs), by simulation of evolution with the model described by Equa-
tion 3.4. These simulations mirror the experimental techniques used to derive empirical
collateral response, for example those used by Imammovic and Sommer [131] to determine
drug cycling protocols. Evolutionary trajectories in each drug fitness landscape, fx, were
stochastically simulated from the wild–type starting genotype (g0 = 0000) by sampling the
associated Markov chain defined by Px (Equation 3.4). The simulation was terminated when
the evolutionary trajectory encountered a local optimum genotype, g⇤

x . The fitness of this final
genotype in the second drug landscape, fy, was then recorded and collateral response was
calculated as

Collateral response of Y to X = log2

 
fy(g⇤

x)

fy(g0)

!

These collateral response measures we collated to form a table.
We can count the total number of CSMs that can be generated through this simulation.

There exist 3 landscapes with only one peak accessible from the genotype g0 = 0000, 6 in
which two peaks are accessible, 4 in which three peaks are accessible and 2 in which four
peaks are accessible. Assuming that for each landscape, fx, evolution is simulated from g0

a single time to determine g⇤
x and then the collateral sensitivity of g⇤

x in each of the other
landscapes, fy is recorded. Then there exist

13 ⇥26 ⇥34 ⇥42 = 82944
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Figure 1: Left: Collateral sensitivity matrix of fold change of EC50 for resistant cell lines
(columns) as treated by the panel of ALK-TKIs (rows). All sequences of therapy resulted in
cross-resistance except Alectinib followed by Lorlatinib, which was neutral. Right: Pop-out
figure shows example of EC50 comparison in case of collateral resistance of Lorlatinib resis-
tant cells treated with Ceritinib, as compared to wild type (WT). Experimental data (markers)
and model fit (solid lines) are shown.

2.2 Drug holidays stochastically induce collateral sensitivity between ALK TKIs

with few conserved motifs

In the clinical setting, drug holidays have been suggested as a strategy to overcome therapeutic

resistance, as resistance may not be preserved throughout time. Furthermore, there is often a

substantial time period in which no drug is given, after the administration of the first drug, and

prior to the administration of the next. This drug holiday may affect the efficacy of the drug

sequencing protocol, but is often neglected in experimental and theoretical studies of resistance

alike. It is therefore of critical importance to assay the stability of possible sequencing regimens

not only among cell lines in which resistance has been derived, but also in which drugs have

been stopped for a period of time, to simulate clinically-relevant situations. To address this,

we assayed the four resistant cell lines for five drug holiday periods: 1 day, 3 days, 7 days, 14

days, and 21 days.

After assaying each of the cell lines for drug response, we construct the temporal collateral

sensitivity matrices (Figures 2A - E, left) and derive the resultant sensitivity networks in Fig-

ures 2A - E, right. For details on graph construction and associated code, see Methods. We

find that there are patterns that change particularly quickly, such as the collateral sensitivity to

Lorlatinib in Ceritinib resitant cells, appearing on the first day of holiday, then disappearing on
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CEC -0.01 -0.33 1.00 0.24 0.18 0.03 0.59 -0.17 0.45 -0.11 -0.48 0.54 0.18 0.01 0.16
CTX 0.01 -0.21 0.24 1.00 0.78 0.64 0.64 -0.20 -0.14 -0.09 -0.45 -0.08 0.84 -0.59 0.11
ZOX 0.22 -0.31 0.18 0.78 1.00 0.55 0.33 -0.25 0.04 0.19 -0.51 0.13 0.82 -0.28 0.08
CXM -0.02 -0.38 0.03 0.64 0.55 1.00 0.27 0.04 -0.03 0.03 -0.22 0.07 0.75 -0.24 -0.03
CRO 0.09 0.09 0.59 0.64 0.33 0.27 1.00 0.15 0.22 -0.16 -0.07 0.15 0.57 -0.40 0.52
AMC 0.46 0.39 -0.17 -0.20 -0.25 0.04 0.15 1.00 0.07 -0.19 0.63 -0.02 -0.01 0.29 0.52
CAZ 0.50 -0.07 0.45 -0.14 0.04 -0.03 0.22 0.07 1.00 -0.21 -0.06 0.65 0.09 0.23 0.53
CTT -0.36 -0.33 -0.11 -0.09 0.19 0.03 -0.16 -0.19 -0.21 1.00 -0.15 0.14 0.09 0.30 -0.38
SAM 0.31 0.63 -0.48 -0.45 0.51 -0.22 -0.07 0.63 -0.06 -0.15 1.00 -0.31 -0.34 0.07 0.35
CPR 0.31 -0.35 0.54 -0.08 0.13 0.07 0.15 -0.02 0.65 0.14 -0.31 1.00 0.02 0.48 -0.02
CPD 0.05 -0.16 0.18 0.84 0.82 0.75 0.57 -0.01 0.09 0.09 -0.34 0.02 1.00 -0.50 0.30
TZP 0.26 -0.18 0.01 -0.59 -0.28 -0.24 -0.40 0.29 0.23 0.30 0.07 0.48 -0.50 1.00 -0.17
FEP 0.49 0.35 0.16 0.11 0.08 -0.03 0.52 0.52 0.53 -0.38 0.35 -0.02 0.30 -0.17 1.00

Table 3.2 Spearman Correlation of Fitness Values Between Landscapes. The scatter plots
for the shaded region are shown in Figure 3.4. The remainder of the scatter plots are presented
in Appendix 1.

not well founded although drugs within a class, for example the cephalosporins, show more
correlation that those between groups. An ideal pair of drugs for use in an alternating fashion
would have a high negative correlation such that the evolution of resistance under one drug
would induce sensitivity to a second. Unfortunately, no such drug pair exists and we must
employ more sophisticated methods to identify viable sequential drug strategies.

We next performed an in silico derivation of tables of collateral response, or collateral
sensitivity matrices (CSMs), by simulation of evolution with the model described by Equa-
tion 3.4. These simulations mirror the experimental techniques used to derive empirical
collateral response, for example those used by Imammovic and Sommer [131] to determine
drug cycling protocols. Evolutionary trajectories in each drug fitness landscape, fx, were
stochastically simulated from the wild–type starting genotype (g0 = 0000) by sampling the
associated Markov chain defined by Px (Equation 3.4). The simulation was terminated when
the evolutionary trajectory encountered a local optimum genotype, g⇤

x . The fitness of this final
genotype in the second drug landscape, fy, was then recorded and collateral response was
calculated as

Collateral response of Y to X = log2

 
fy(g⇤

x)

fy(g0)

!

These collateral response measures we collated to form a table.
We can count the total number of CSMs that can be generated through this simulation.

There exist 3 landscapes with only one peak accessible from the genotype g0 = 0000, 6 in
which two peaks are accessible, 4 in which three peaks are accessible and 2 in which four
peaks are accessible. Assuming that for each landscape, fx, evolution is simulated from g0

a single time to determine g⇤
x and then the collateral sensitivity of g⇤

x in each of the other
landscapes, fy is recorded. Then there exist

13 ⇥26 ⇥34 ⇥42 = 82944

3.3 Implications for Collateral Sensitivity Analysis 59

AMP AM CEC CTX ZOX CXM CRO AMC CAZ CTT SAM CPR CPD TZP FEP
AMP 1.00 0.24 -0.01 0.01 0.22 -0.02 0.09 0.46 0.50 -0.36 0.31 0.31 0.05 0.26 0.49
AM 0.24 1.00 -0.33 -0.21 -0.31 -0.38 0.09 0.39 -0.07 -0.33 0.63 -0.35 -0.16 -0.18 0.35
CEC -0.01 -0.33 1.00 0.24 0.18 0.03 0.59 -0.17 0.45 -0.11 -0.48 0.54 0.18 0.01 0.16
CTX 0.01 -0.21 0.24 1.00 0.78 0.64 0.64 -0.20 -0.14 -0.09 -0.45 -0.08 0.84 -0.59 0.11
ZOX 0.22 -0.31 0.18 0.78 1.00 0.55 0.33 -0.25 0.04 0.19 -0.51 0.13 0.82 -0.28 0.08
CXM -0.02 -0.38 0.03 0.64 0.55 1.00 0.27 0.04 -0.03 0.03 -0.22 0.07 0.75 -0.24 -0.03
CRO 0.09 0.09 0.59 0.64 0.33 0.27 1.00 0.15 0.22 -0.16 -0.07 0.15 0.57 -0.40 0.52
AMC 0.46 0.39 -0.17 -0.20 -0.25 0.04 0.15 1.00 0.07 -0.19 0.63 -0.02 -0.01 0.29 0.52
CAZ 0.50 -0.07 0.45 -0.14 0.04 -0.03 0.22 0.07 1.00 -0.21 -0.06 0.65 0.09 0.23 0.53
CTT -0.36 -0.33 -0.11 -0.09 0.19 0.03 -0.16 -0.19 -0.21 1.00 -0.15 0.14 0.09 0.30 -0.38
SAM 0.31 0.63 -0.48 -0.45 0.51 -0.22 -0.07 0.63 -0.06 -0.15 1.00 -0.31 -0.34 0.07 0.35
CPR 0.31 -0.35 0.54 -0.08 0.13 0.07 0.15 -0.02 0.65 0.14 -0.31 1.00 0.02 0.48 -0.02
CPD 0.05 -0.16 0.18 0.84 0.82 0.75 0.57 -0.01 0.09 0.09 -0.34 0.02 1.00 -0.50 0.30
TZP 0.26 -0.18 0.01 -0.59 -0.28 -0.24 -0.40 0.29 0.23 0.30 0.07 0.48 -0.50 1.00 -0.17
FEP 0.49 0.35 0.16 0.11 0.08 -0.03 0.52 0.52 0.53 -0.38 0.35 -0.02 0.30 -0.17 1.00
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for the shaded region are shown in Figure 3.4. The remainder of the scatter plots are presented
in Appendix 1.

not well founded although drugs within a class, for example the cephalosporins, show more
correlation that those between groups. An ideal pair of drugs for use in an alternating fashion
would have a high negative correlation such that the evolution of resistance under one drug
would induce sensitivity to a second. Unfortunately, no such drug pair exists and we must
employ more sophisticated methods to identify viable sequential drug strategies.

We next performed an in silico derivation of tables of collateral response, or collateral
sensitivity matrices (CSMs), by simulation of evolution with the model described by Equa-
tion 3.4. These simulations mirror the experimental techniques used to derive empirical
collateral response, for example those used by Imammovic and Sommer [131] to determine
drug cycling protocols. Evolutionary trajectories in each drug fitness landscape, fx, were
stochastically simulated from the wild–type starting genotype (g0 = 0000) by sampling the
associated Markov chain defined by Px (Equation 3.4). The simulation was terminated when
the evolutionary trajectory encountered a local optimum genotype, g⇤

x . The fitness of this final
genotype in the second drug landscape, fy, was then recorded and collateral response was
calculated as

Collateral response of Y to X = log2

 
fy(g⇤

x)

fy(g0)

!

These collateral response measures we collated to form a table.
We can count the total number of CSMs that can be generated through this simulation.

There exist 3 landscapes with only one peak accessible from the genotype g0 = 0000, 6 in
which two peaks are accessible, 4 in which three peaks are accessible and 2 in which four
peaks are accessible. Assuming that for each landscape, fx, evolution is simulated from g0

a single time to determine g⇤
x and then the collateral sensitivity of g⇤

x in each of the other
landscapes, fy is recorded. Then there exist

13 ⇥26 ⇥34 ⇥42 = 82944
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associated Markov chain defined by Px (Equation 3.4). The simulation was terminated when
the evolutionary trajectory encountered a local optimum genotype, g⇤

x . The fitness of this final
genotype in the second drug landscape, fy, was then recorded and collateral response was
calculated as

Collateral response of Y to X = log2

 
fy(g⇤

x)

fy(g0)

!

These collateral response measures we collated to form a table.
We can count the total number of CSMs that can be generated through this simulation.

There exist 3 landscapes with only one peak accessible from the genotype g0 = 0000, 6 in
which two peaks are accessible, 4 in which three peaks are accessible and 2 in which four
peaks are accessible. Assuming that for each landscape, fx, evolution is simulated from g0

a single time to determine g⇤
x and then the collateral sensitivity of g⇤

x in each of the other
landscapes, fy is recorded. Then there exist

13 ⇥26 ⇥34 ⇥42 = 82944

2.2MathematicalModelsofEvolutionandtheGP–Map11

2.2.2FitnessLandscapes

Thefitness(oradaptive)landscapemetaphorwasfirstintroducedinthe1930sbyWright
[59,60]asamodeltoaccountforepistasic.Epistasisreferstoanygeneticinteractionin
whichthephenotypic(orfitness)impactofamutationataspecficlociismodulatedbythe
geneticbackgroundonwhichisoccurs.Wrightwasparticularlyinterestedinthepossibility
that,owingtoepistasis,genotypesmayexistinwhichallsinglemutationsaredeleterious
butforwhichafittergenotypeexists.Itispreciselythisphenomenon,theexistanceof
multipeakedlandscapes,thatwewillexploittodesignoptimalsequentialdrugtherapies
(Chapter4).

Forastaticenvironment,allGP-mappingsinduceafitnesslandscapeaccordingto
Equation2.2,however,wecanconsiderthefitnesslandscapeastheGP–mapitselfby
equatingthegenotypespaceG(oftentakenas{0,1}NforsomeN2N)withthephenotype
spacePandtakingRGPastheidentity.Underthisconstructionepistaticinteractionsare
mathematicallyquantifiableandtheireffectsonlandscapetopographycanbemeasured.
Coupledwithempiricallyderivedlandscapes,thismathematicalformulationprovidesinsight
intothestructureoftheGP–map.

Thelandscapemodelisparticularlyusefulinstudyingtheaccessibility,repeatability
andpredictabilityofevolution.Smith[45]introducedtheconceptofadaptivetrajectories
indiscretesequencespaces,notingthatpointmutationsaresufficientlyrarethatwemay
assumenotwooccursimoultaneously.Thus,evolutionarytrajectoriescanbeencodedasa
sequenceofpointsubsitutionsthatincreasefitnesswhichMaynardSmithlikenedtoa“word
ladder"whereinonewordmustbetransformedtoanotherbysubstitutingonecharacterat
atime:"COLD!CORD!CARD!WARD!WARM".Eachintermediatestringof
charactersmustalsoformavalidword.Thisruleistheanalogofafitnessrequirementin
evoltuion;onlyvalidwordsareviable.

Acommonvisualisationofafitnesslandscapeistoviewthex�yplaneasagenotype
spaceGwithasurfaceabovethatindicatesfitnessonthezaxis(Figure??).Evolutionary
trajectoriesarethenviewedas“uphill"walksonthisthissurface.Thismetaphorhas
receivedsomecriticism[17]asinrealitythegenotypespaceisextremelyhighlydimensional,
apropertynotedbyWrighthimself[59].

TheoreticalStudiesofFitnessLandscapes

Epistatisishasasignficantimpactonhowadaptationtoanewenvironmentproceeds.Fit-
nesslandscapes,byassociatingasimplephenotypemeasure(fitness)witheachgenotype,
offeranaturalmodelinwhichtostudytheeffectsofepistasicinteractionsonlandscape

We parameterised our model with 15 landscapes of E. coli under beta-
lactam antibiotics (derived by Mira et. al). 14/15 of these landscapes are 
multi-peaked, allowing for divergence evolution of drug resistance.

Previous studies identify effective drug sequences through in vitro evolution 
experiments with small numbers of replicates. This experimental 
methodology can miss rare evolutionary trajectories.

We exhaustively explored all evolutionary trajectories in the 15 small 
antibiotic landscapes to identify potentially divergent collateral response. We 
found a total of 82944 unique CSMs. The most common CSM occurs with 
probability 0.0023.

Careful drug selection of drug sequences can steer evolution to prevent 
genetic divergence and guarantee collateral sensitivity. Drug 
landscapes must be known to predict sequences in this way.

To verify divergent evolution can result in differential collateral response 
we performed 12 replicates of experimental evolution under 
Cefotaxime. We found 3/4 second line antibiotics exhibited both 
increased or decreased sensitivity in dependent on the  replicate.

Towards a Clinically Viable Metric for Drug 
Sequences - Collateral Sensitivity Likelihood
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In silico Modelling Reveals Divergent Collateral Response

Measuring Empirical Fitness Landscapes

second line drugs

• Experimentally derived collateral sensitivity measures are not 
repeatable and may suggest sensitivity where resistance occurs.  

• In silico modelling reveals the extent of the non-repeatability 
of evolution. 

• In vitro experiments confirm the non-repeatability of evolution. 

• More effective multi-drug therapies can be predicted from 
mathematical modelling or consideration of collateral sensitivity 
likelihoods.    

• These evolutionary principles are equally applicable to cancer.

Distributed data collection allows prediction of effective sequences.

Predicting Collateral Sensitivity 
Through Experimental Evolution
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Hypothesis: Can the evolution of resistance to one drug 
induce sensitivity in a second?
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in vitro: evolution under cefotaxime is not repeatable,  
and collateral sensitivity varies with genetic divergence 
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225 pairs:
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• Random pairs induce collateral resistance with 
probability p=0.58

• Pairs with reported collateral sensitivity induce 
collateral resistance with probability p=0.52

P(i ! j) =

8
>>>>><

>>>>>:

�
f(j)�f(i)

�r

X

g2{0,1}N , Ham(i,g)=1

f(g)�f(i)>0

�
f(g)�f(i)

�r if f(j) > f(i) and Ham(i, j) = 1

0 otherwise
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and97

P(i ! i) =
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1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a�ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! � we have the steepest gradient ascent101

SSWM model (as in Kau�man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di�ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t � N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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equation 3 to ensure our model is a Markov Chain. In this case the step t to t + 1 can
be chosen to take some fixed arbitrary time.

The distribution of a population at time t is related to its initial distribution, µ(0), by

µ(t) = µ(0)P t. (5)

Since the Markov chain is absorbing we know that there exists some k such that
P kP = P k [73]. Consequently, we know that the matrix

P � = lim
t��

P t (6)

exists and in fact this limit is reached after only finitely many matrix multiplications.
To intuitively see that this limit is reached in finitely many steps note that all paths
through the Markov chain are strictly increasing in fitness and there are only finitely
many states (corresponding to the genotypes). Thus a given initial population
distribution µ(0) will converge to a stationary distribution µ� after a finite number of
steps in our model. Furthermore, if P � is known then we compute the stationary
distribution µ� as

µ� = µ(0)P �. (7)

In particular, provided a drug is applied for sufficiently long to ensure that the disease
population reaches evolutionary equilibrium, we can explore the effects of applying
multiple drugs sequentially by considering the matrices P � for the associated fitness
landscapes. By encoding the evolutionary dynamics in a Markov chain we can
investigate the evolutionary process from an algebraic perspective. In particular, as the
transition matrix P encodes all of the evolutionary dynamics of the associated fitness
landscape f , we can explore global properties of f by considering the algebraic
properties of P .
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equation 3 to ensure our model is a Markov Chain. In this case the step t to t + 1 can
be chosen to take some fixed arbitrary time.

The distribution of a population at time t is related to its initial distribution, µ(0), by

µ(t) = µ(0)P t. (5)

Since the Markov chain is absorbing we know that there exists some k such that
P kP = P k [73]. Consequently, we know that the matrix

P � = lim
t��

P t (6)

exists and in fact this limit is reached after only finitely many matrix multiplications.
To intuitively see that this limit is reached in finitely many steps note that all paths
through the Markov chain are strictly increasing in fitness and there are only finitely
many states (corresponding to the genotypes). Thus a given initial population
distribution µ(0) will converge to a stationary distribution µ� after a finite number of
steps in our model. Furthermore, if P � is known then we compute the stationary
distribution µ� as

µ� = µ(0)P �. (7)

In particular, provided a drug is applied for sufficiently long to ensure that the disease
population reaches evolutionary equilibrium, we can explore the effects of applying
multiple drugs sequentially by considering the matrices P � for the associated fitness
landscapes. By encoding the evolutionary dynamics in a Markov chain we can
investigate the evolutionary process from an algebraic perspective. In particular, as the
transition matrix P encodes all of the evolutionary dynamics of the associated fitness
landscape f , we can explore global properties of f by considering the algebraic
properties of P .
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Predicting Evolution with a Substitution Model

Evolution is Not Repeatable - in vitro Validation

Background: Lung cancer is the leading cause of cancer death in America with an estimated 158,000 deaths 
in 2015. The direct cause of these deaths is the evolution of resistance to our presently most effective 
therapies. While the underlying Darwinian dynamics of cancer evolution are now accepted, this evolutionary 
process is rarely considered in the development of treatment strategies. We propose to extend evolutionary 
mathematical and experimental techniques we have used previously to study the emergence of antibiotic 
resistance with the aim to make similar gains in lung cancer. While our approach is applicable to any cancer 
which is sensitive to targeted therapy, we will focus on a recently identified subgroup of non-small cell lung 
cancers (NSCLC) driven by an oncogenic fusion involving the anaplastic lymphoma kinase (ALK) gene. These 
tumors in particular have been found to be exquisitely sensitive to a family of protein tyrosine kinase inhibitors 
(TKIs)1,2. The first of these TKIs, crizotinib, showed promising results in clinical trials, more than doubling 
progression free survival3. Unfortunately, the effects are rarely durable4 and are soon abrogated by the rapid 
evolution of resistance through a diverse number of molecular escape mechanisms (a pattern conserved 
across many cancers with targetable mutations)5. Since this realization, additional TKIs (e.g. ceritinib6, 
alectinib7 and lorlatinib8), other classes of agents (Heat Shock Protein-90 (HSP-90) inhibitors9 and standard 
cytotoxics have shown promise as potential second line therapies. However, while it is now accepted that drug 
resistance is driven by Darwinian dynamics10, the evolutionary consequences of drug application remain 
absent from the design of treatments following the failure of crizotinib. 
 Historically, new treatment methods have been developed by conducting head to head clinical trials. As 
new drugs are developed at increasing pace, and with greater specificity, these trials are quickly becoming 
both intractably slow and prohibitively expensive - especially when combinations or sequences of drugs are 
considered. In response to the analogous problem in the evolution of antibiotic resistance, the infectious 
disease and theoretical evolutionary biology communities have built mathematical models to analyze evolution 
under the selective pressures of different therapies and highlight potential combinations for further clinical 
study. To model the evolution of resistance, we have previously used a simplified model of the genotype-
phenotype mapping called the fitness 
landscape. This model relates each of the 
possible permutations of genetic mutations 
with the drug response of that mutant (Fig. 
1), forming a high-dimensional ‘landscape' 
of ‘hills’ (fitness optima) and 
‘valleys’ (fitness minima)11 specific to that 
drug. Evolution is then modeled as a 
search through genotype space, with 
trajectories biased by selective pressures, 
and populations constantly moving 
towards higher fitness (‘climbing uphill’). 
Fitness landscapes often differ for different 
drugs and, where they are known, it is 
possible to design drug sequences which 
carefully shift the hill and valleys of the 
landscape to ‘steer’ evolution away from 
resistance (or towards sensitivity) to other 
therapies. 
 This approach has yielded good 
results in the treatment of infectious 
disease12,13, and whilst the mathematical 
techniques can apply to any asexually 
reproducing population, little combined 
theoretical and experimental work has 
been done to extend these models to 
cancer. In previous work, we have shown 
that understanding the fitness landscapes 
of E. coli under different antibiotics allows 
us to predict how different sequences of 
drugs affect the evolutionary trajectory of 
the population - the order in which a 
population accrues mutations14. Using a 
mathematical model, we were able to 
determine optimal sequencing of 
antibiotics to minimize the probability of 

environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 � 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau�man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i �= j,96
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P(i ! j) =

8
>>>>><

>>>>>:

�
f(j)�f(i)

�r

X

g2{0,1}N , Ham(i,g)=1

f(g)�f(i)>0

�
f(g)�f(i)

�r if f(j) > f(i) and Ham(i, j) = 1

0 otherwise

, (2)

and97

P(i ! i) =

8
<

:
1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a�ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! � we have the steepest gradient ascent101

SSWM model (as in Kau�man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di�ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t � N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 � 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau�man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 � 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau�man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i �= j,96
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0 otherwise
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and97

P(i ! i) =
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:
1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a�ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! � we have the steepest gradient ascent101

SSWM model (as in Kau�man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di�ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t � N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83
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these variants of the SSWM model within our model.91
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In this case there can be no more changes to the population under the SSWM assumptions and118
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 � 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau�man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94
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r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! � we have the steepest gradient ascent101

SSWM model (as in Kau�man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di�ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t � N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 � 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau�man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i �= j,96
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probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di�ers103
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Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115
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there are no beneficial mutations that can occur and this definition of a time step is not well defined.117
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 � 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau�man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i �= j,96
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1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a�ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! � we have the steepest gradient ascent101

SSWM model (as in Kau�man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di�ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t � N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 � 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau�man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i �= j,96
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 � 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau�man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i �= j,96
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1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a�ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! � we have the steepest gradient ascent101

SSWM model (as in Kau�man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di�ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t � N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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is either beneficial or deleterious, then each beneficial mutation in the population will either reach71
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assume that this always occurs. In the case that Mu2 � 1 stochastic tunneling [Nowak et al.,74
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98
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Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115
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there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)
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holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84
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2005] and which of these move rules is most accurate depends on the population size [de Visser and86
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 � 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau�man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i �= j,96
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 � 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau�man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i �= j,96
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a�ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! � we have the steepest gradient ascent101

SSWM model (as in Kau�man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di�ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t � N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 � 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau�man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i �= j,96
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a�ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! � we have the steepest gradient ascent101

SSWM model (as in Kau�man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di�ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t � N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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Fig 2. Steering evolution in E. coli. We constructed a mathematical model using an 
empirically measured G-P map to optimize antibiotic therapy. Here given Amp alone 
or Sam➣Amp allows for the most resistant phenotype, but Sam➣Cpr➣Amp 
prevents it3.

Predicting Effective Drug Sequences Through in vitro 
Experiments

Evolutionary Steering can Guarantee Collateral 
Sensitivity  

than 100mg/ml. Adaptation to doxycycline and ampicillin
was much slower, with populations tolerating less than
3mg/ml after five exposures. Adaptation by four of the five
combination-evolved populations (ciprofloxacin–ampicillin,
fusidic acid–amikacin, doxycycline–erythromycin, and doxy-
cycline–ciprofloxacin) was similar to their slowest evolving
single drug counterparts, whereas lineages evolved to the
fusidic acid–erythromycin combination were approximately
10! less than their slowest evolving single drug counterpart
(fig. 2 and supplementary data S1, Supplementary Material
online).

Resistance Profiles of Adapted Lineages
Following resistance adaptation, four isolates from each of the
adapted populations were profiled for their individual resis-
tances. Results show that all isolates exhibited a substantial
increase in resistance following five exposures (fig. 3 and sup-
plementary data S1, Supplementary Material online). In many
cases, the IC90 values of the isolates were 100! greater than

the WT value and in the case of the fusidic acid isolates more
than a 1,000! larger. Exceptions to this trend were observed
in the ampicillin, ciprofloxacin–ampicillin, and fusidic
acid–erythromycin isolates where IC90 values were only
10–30! the WT value. Increased resistance differed among
isolates evolved to the same drug(s) and in some cases this
difference was considerable (fig. 3). We attributed the differ-
ences observed within a given drug(s) group to be the result
of genotypic changes acquired by the isolates through
adaption.

The fusidic acid–amikacin isolates (antagonistic interac-
tion, supplementary data S1, Supplementary Material online)
had the greatest increase in resistance improvement followed
closely by isolates adapted to doxycycline–ciprofloxacin (syn-
ergistic interaction, supplementary data S1, Supplementary
Material online). Isolates evolved to ciprofloxacin–ampicillin
(additive interaction, supplementary data S1, Supplementary
Material online) had the least resistance improvement, an
average of 11! the WT MIC value. These results contrast
with previous reports based on sub-MIC adaptations, which

X

Exposure 1 Exposure 2 Exposure 3

Wild Type
S. aureus
Newman

Concentra!on

Y

X+Y

FIG. 1. Adaptation of Staphylococcus aureus to individual drugs and drug pairs. An overnight culture of WT S. aureus was used to inoculate microtiter
plates containing different drugs or combinations with increasing concentrations or media only. Three replicate populations were recreated for each
condition. The highest concentration where growth was present was recultured in fresh media and then used to inoculate the next concentration
challenge, referred here to as exposure. A total of five exposures were performed for each condition.

Table 1. Antibiotics Used and Their Modes of Action.

Antibiotic Name Abbreviation Class Target

Amikacin AMI Aminoglycoside 30S ribosome

Ampicillin AMP Beta lactam Cell wall

Ciprofloxacin CPR Quinolone DNA synthesis

Erythromycin ERY Macrolide 50S ribosome

Doxycycline DOX Tetracycline 30S ribosome

Fusidic acid FUS Other Protein synthesis

Combination Abbreviation Interaction

Amikacin and fusidic acid FUS-AMI Antagonistic

Ampicillin and ciprofloxacin CPR-AMP Additive

Ciprofloxacin and doxycycline DOX-CPR Synergistic

Erythromycin and doxycycline DOX-ERY Synergistic

Erythromycin and fusidic acid FUS-ERY Synergistic

3
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AMP AM CEC CTX ZOX CXM CRO AMC CAZ CTT SAM CPR CPD TZP FEP
AMP 1.00 0.24 -0.01 0.01 0.22 -0.02 0.09 0.46 0.50 -0.36 0.31 0.31 0.05 0.26 0.49
AM 0.24 1.00 -0.33 -0.21 -0.31 -0.38 0.09 0.39 -0.07 -0.33 0.63 -0.35 -0.16 -0.18 0.35
CEC -0.01 -0.33 1.00 0.24 0.18 0.03 0.59 -0.17 0.45 -0.11 -0.48 0.54 0.18 0.01 0.16
CTX 0.01 -0.21 0.24 1.00 0.78 0.64 0.64 -0.20 -0.14 -0.09 -0.45 -0.08 0.84 -0.59 0.11
ZOX 0.22 -0.31 0.18 0.78 1.00 0.55 0.33 -0.25 0.04 0.19 -0.51 0.13 0.82 -0.28 0.08
CXM -0.02 -0.38 0.03 0.64 0.55 1.00 0.27 0.04 -0.03 0.03 -0.22 0.07 0.75 -0.24 -0.03
CRO 0.09 0.09 0.59 0.64 0.33 0.27 1.00 0.15 0.22 -0.16 -0.07 0.15 0.57 -0.40 0.52
AMC 0.46 0.39 -0.17 -0.20 -0.25 0.04 0.15 1.00 0.07 -0.19 0.63 -0.02 -0.01 0.29 0.52
CAZ 0.50 -0.07 0.45 -0.14 0.04 -0.03 0.22 0.07 1.00 -0.21 -0.06 0.65 0.09 0.23 0.53
CTT -0.36 -0.33 -0.11 -0.09 0.19 0.03 -0.16 -0.19 -0.21 1.00 -0.15 0.14 0.09 0.30 -0.38
SAM 0.31 0.63 -0.48 -0.45 0.51 -0.22 -0.07 0.63 -0.06 -0.15 1.00 -0.31 -0.34 0.07 0.35
CPR 0.31 -0.35 0.54 -0.08 0.13 0.07 0.15 -0.02 0.65 0.14 -0.31 1.00 0.02 0.48 -0.02
CPD 0.05 -0.16 0.18 0.84 0.82 0.75 0.57 -0.01 0.09 0.09 -0.34 0.02 1.00 -0.50 0.30
TZP 0.26 -0.18 0.01 -0.59 -0.28 -0.24 -0.40 0.29 0.23 0.30 0.07 0.48 -0.50 1.00 -0.17
FEP 0.49 0.35 0.16 0.11 0.08 -0.03 0.52 0.52 0.53 -0.38 0.35 -0.02 0.30 -0.17 1.00

Table 3.2 Spearman Correlation of Fitness Values Between Landscapes. The scatter plots
for the shaded region are shown in Figure 3.4. The remainder of the scatter plots are presented
in Appendix 1.

not well founded although drugs within a class, for example the cephalosporins, show more
correlation that those between groups. An ideal pair of drugs for use in an alternating fashion
would have a high negative correlation such that the evolution of resistance under one drug
would induce sensitivity to a second. Unfortunately, no such drug pair exists and we must
employ more sophisticated methods to identify viable sequential drug strategies.

We next performed an in silico derivation of tables of collateral response, or collateral
sensitivity matrices (CSMs), by simulation of evolution with the model described by Equa-
tion 3.4. These simulations mirror the experimental techniques used to derive empirical
collateral response, for example those used by Imammovic and Sommer [131] to determine
drug cycling protocols. Evolutionary trajectories in each drug fitness landscape, fx, were
stochastically simulated from the wild–type starting genotype (g0 = 0000) by sampling the
associated Markov chain defined by Px (Equation 3.4). The simulation was terminated when
the evolutionary trajectory encountered a local optimum genotype, g�

x . The fitness of this final
genotype in the second drug landscape, fy, was then recorded and collateral response was
calculated as

Collateral response of Y to X = log2

 
fy(g�

x)

fy(g0)

!

These collateral response measures we collated to form a table.
We can count the total number of CSMs that can be generated through this simulation.

There exist 3 landscapes with only one peak accessible from the genotype g0 = 0000, 6 in
which two peaks are accessible, 4 in which three peaks are accessible and 2 in which four
peaks are accessible. Assuming that for each landscape, fx, evolution is simulated from g0

a single time to determine g�
x and then the collateral sensitivity of g�

x in each of the other
landscapes, fy is recorded. Then there exist

13 �26 �34 �42 = 82944
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Figure 1: Left: Collateral sensitivity matrix of fold change of EC50 for resistant cell lines
(columns) as treated by the panel of ALK-TKIs (rows). All sequences of therapy resulted in
cross-resistance except Alectinib followed by Lorlatinib, which was neutral. Right: Pop-out
figure shows example of EC50 comparison in case of collateral resistance of Lorlatinib resis-
tant cells treated with Ceritinib, as compared to wild type (WT). Experimental data (markers)
and model fit (solid lines) are shown.

2.2 Drug holidays stochastically induce collateral sensitivity between ALK TKIs

with few conserved motifs

In the clinical setting, drug holidays have been suggested as a strategy to overcome therapeutic

resistance, as resistance may not be preserved throughout time. Furthermore, there is often a

substantial time period in which no drug is given, after the administration of the first drug, and

prior to the administration of the next. This drug holiday may affect the efficacy of the drug

sequencing protocol, but is often neglected in experimental and theoretical studies of resistance

alike. It is therefore of critical importance to assay the stability of possible sequencing regimens

not only among cell lines in which resistance has been derived, but also in which drugs have

been stopped for a period of time, to simulate clinically-relevant situations. To address this,

we assayed the four resistant cell lines for five drug holiday periods: 1 day, 3 days, 7 days, 14

days, and 21 days.

After assaying each of the cell lines for drug response, we construct the temporal collateral

sensitivity matrices (Figures 2A - E, left) and derive the resultant sensitivity networks in Fig-

ures 2A - E, right. For details on graph construction and associated code, see Methods. We

find that there are patterns that change particularly quickly, such as the collateral sensitivity to

Lorlatinib in Ceritinib resitant cells, appearing on the first day of holiday, then disappearing on
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not well founded although drugs within a class, for example the cephalosporins, show more
correlation that those between groups. An ideal pair of drugs for use in an alternating fashion
would have a high negative correlation such that the evolution of resistance under one drug
would induce sensitivity to a second. Unfortunately, no such drug pair exists and we must
employ more sophisticated methods to identify viable sequential drug strategies.

We next performed an in silico derivation of tables of collateral response, or collateral
sensitivity matrices (CSMs), by simulation of evolution with the model described by Equa-
tion 3.4. These simulations mirror the experimental techniques used to derive empirical
collateral response, for example those used by Imammovic and Sommer [131] to determine
drug cycling protocols. Evolutionary trajectories in each drug fitness landscape, fx, were
stochastically simulated from the wild–type starting genotype (g0 = 0000) by sampling the
associated Markov chain defined by Px (Equation 3.4). The simulation was terminated when
the evolutionary trajectory encountered a local optimum genotype, g�

x . The fitness of this final
genotype in the second drug landscape, fy, was then recorded and collateral response was
calculated as

Collateral response of Y to X = log2

 
fy(g�

x)

fy(g0)
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These collateral response measures we collated to form a table.
We can count the total number of CSMs that can be generated through this simulation.

There exist 3 landscapes with only one peak accessible from the genotype g0 = 0000, 6 in
which two peaks are accessible, 4 in which three peaks are accessible and 2 in which four
peaks are accessible. Assuming that for each landscape, fx, evolution is simulated from g0

a single time to determine g�
x and then the collateral sensitivity of g�

x in each of the other
landscapes, fy is recorded. Then there exist
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2.2MathematicalModelsofEvolutionandtheGP–Map11

2.2.2FitnessLandscapes

Thefitness(oradaptive)landscapemetaphorwasfirstintroducedinthe1930sbyWright
[59,60]asamodeltoaccountforepistasic.Epistasisreferstoanygeneticinteractionin
whichthephenotypic(orfitness)impactofamutationataspecficlociismodulatedbythe
geneticbackgroundonwhichisoccurs.Wrightwasparticularlyinterestedinthepossibility
that,owingtoepistasis,genotypesmayexistinwhichallsinglemutationsaredeleterious
butforwhichafittergenotypeexists.Itispreciselythisphenomenon,theexistanceof
multipeakedlandscapes,thatwewillexploittodesignoptimalsequentialdrugtherapies
(Chapter4).

Forastaticenvironment,allGP-mappingsinduceafitnesslandscapeaccordingto
Equation2.2,however,wecanconsiderthefitnesslandscapeastheGP–mapitselfby
equatingthegenotypespaceG(oftentakenas{0,1}NforsomeN�N)withthephenotype
spacePandtakingRGPastheidentity.Underthisconstructionepistaticinteractionsare
mathematicallyquantifiableandtheireffectsonlandscapetopographycanbemeasured.
Coupledwithempiricallyderivedlandscapes,thismathematicalformulationprovidesinsight
intothestructureoftheGP–map.

Thelandscapemodelisparticularlyusefulinstudyingtheaccessibility,repeatability
andpredictabilityofevolution.Smith[45]introducedtheconceptofadaptivetrajectories
indiscretesequencespaces,notingthatpointmutationsaresufficientlyrarethatwemay
assumenotwooccursimoultaneously.Thus,evolutionarytrajectoriescanbeencodedasa
sequenceofpointsubsitutionsthatincreasefitnesswhichMaynardSmithlikenedtoa“word
ladder"whereinonewordmustbetransformedtoanotherbysubstitutingonecharacterat
atime:"COLD!CORD!CARD!WARD!WARM".Eachintermediatestringof
charactersmustalsoformavalidword.Thisruleistheanalogofafitnessrequirementin
evoltuion;onlyvalidwordsareviable.

Acommonvisualisationofafitnesslandscapeistoviewthex�yplaneasagenotype
spaceGwithasurfaceabovethatindicatesfitnessonthezaxis(Figure??).Evolutionary
trajectoriesarethenviewedas“uphill"walksonthisthissurface.Thismetaphorhas
receivedsomecriticism[17]asinrealitythegenotypespaceisextremelyhighlydimensional,
apropertynotedbyWrighthimself[59].

TheoreticalStudiesofFitnessLandscapes

Epistatisishasasignficantimpactonhowadaptationtoanewenvironmentproceeds.Fit-
nesslandscapes,byassociatingasimplephenotypemeasure(fitness)witheachgenotype,
offeranaturalmodelinwhichtostudytheeffectsofepistasicinteractionsonlandscape

We parameterised our model with 15 landscapes of E. coli under beta-
lactam antibiotics (derived by Mira et. al). 14/15 of these landscapes are 
multi-peaked, allowing for divergence evolution of drug resistance.

Previous studies identify effective drug sequences through in vitro evolution 
experiments with small numbers of replicates. This experimental 
methodology can miss rare evolutionary trajectories.

We exhaustively explored all evolutionary trajectories in the 15 small 
antibiotic landscapes to identify potentially divergent collateral response. We 
found a total of 82944 unique CSMs. The most common CSM occurs with 
probability 0.0023.

Careful drug selection of drug sequences can steer evolution to prevent 
genetic divergence and guarantee collateral sensitivity. Drug 
landscapes must be known to predict sequences in this way.

To verify divergent evolution can result in differential collateral response 
we performed 12 replicates of experimental evolution under 
Cefotaxime. We found 3/4 second line antibiotics exhibited both 
increased or decreased sensitivity in dependent on the  replicate.

Towards a Clinically Viable Metric for Drug 
Sequences - Collateral Sensitivity Likelihood
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In silico Modelling Reveals Divergent Collateral Response

Measuring Empirical Fitness Landscapes

second line drugs

• Experimentally derived collateral sensitivity measures are not 
repeatable and may suggest sensitivity where resistance occurs.  

• In silico modelling reveals the extent of the non-repeatability 
of evolution. 

• In vitro experiments confirm the non-repeatability of evolution. 

• More effective multi-drug therapies can be predicted from 
mathematical modelling or consideration of collateral sensitivity 
likelihoods.    

• These evolutionary principles are equally applicable to cancer.

Distributed data collection allows prediction of effective sequences.

Predicting Collateral Sensitivity 
Through Experimental Evolution
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Hypothesis: Can the evolution of resistance to one drug 
induce sensitivity in a second?
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Figure 3. Experimental evolution reveals divergent collateral response. A) A
schematic of the evolutionary experiment. E. coli were grown using the gradient plate method
and passaged every 24 hours for a total of 10 passages. Twelve replicates of experimental
evolution were performed. B) The MIC of each strain (X1-X12) under cefotaxime exposure
was measured following passages 0, 2, 4, 6, 8 and 10, these values are plotted. The SHV gene
was sequenced following each passage. Geometric shapes indicate distinct mutations at the
earliest time point they were detected. C) A partial collateral response matrix showing the
fold–change in susceptibility for the twelve replicates at passage 10 under exposure to four
antibiotics: piperacillin (PIP), ticarcillin/clavulanate (TCC) and ampicillin/sulbactam (AMS)
and ceftolozane/tazobactam (CFL). Differential collateral response is observed for PIP, TCC
and AMS. Inset stars indicate value is a lower bound for fold-increase in resistance.
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Antibiotic resistance represents a growing health crisis that necessitates the immediate

discovery of novel treatment strategies. One such strategy is the identification of collateral

sensitivities, wherein evolution under a first drug induces susceptibility to a second. Here,

we report that sequential drug regimens derived from in vitro evolution experiments may

have overstated therapeutic benefit, predicting a collaterally sensitive response where cross-

resistance ultimately occurs. We quantify the likelihood of this phenomenon by use of a

mathematical model parametrised with combinatorially complete fitness landscapes for

Escherichia coli. Through experimental evolution we then verify that a second drug can indeed

stochastically exhibit either increased susceptibility or increased resistance when following

a first. Genetic divergence is confirmed as the driver of this differential response through

targeted and whole genome sequencing. Taken together, these results highlight that the

success of evolutionarily-informed therapies is predicated on a rigorous probabilistic

understanding of the contingencies that arise during the evolution of drug resistance.

https://doi.org/10.1038/s41467-018-08098-6 OPEN

1 Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK. 2Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer
Center and Research Institute, Tampa, FL 33612, USA. 3 Research Service, Louis Stokes Department of Veterans Affairs Hospital, Cleveland, OH 44106, USA.
4Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA. 5 The Jackson Laboratory for Genomic
Medicine, 10 Discovery Dr, Farmington, CT 06032, USA. 6 Departments of Biochemistry, Molecular Biology and Microbiology, and Pharmacology, Case
Western Reserve University School of Medicine, Cleveland, OH 44106, USA. 7 Center for Proteomics and Bioinformatics, Case Western Reserve University
School of Medicine, Cleveland, OH 44106, USA. 8Medicine Service and Geriatric Research Education and Clinical Center (GRECC), Louis Stokes Cleveland
Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA. 9 CARES, CWRU-VA Center for Antibiotic Resistance and Epidemiology,
Cleveland, OH 44106, USA. 10Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX1 3LB, UK. 11 Departments
of Translational Hematology and Oncology Research and Radiation Oncology, Cleveland Clinic, Cleveland, OH 44195, USA. 12Present address: Evolutionary
Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK. Correspondence and requests for materials
should be addressed to D.N. (email: daniel.nichol@icr.ac.uk) or to J.G.S. (email: scottj10@ccf.org)

NATURE COMMUNICATIONS | ���������(2019)�10:334� | https://doi.org/10.1038/s41467-018-08098-6 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

ARTICLE

Antibiotic collateral sensitivity is contingent
on the repeatability of evolution
Daniel Nichol1,2,12, Joseph Rutter3, Christopher Bryant4, Andrea M. Hujer3,4, Sai Lek5, Mark D. Adams5,
Peter Jeavons1, Alexander R.A. Anderson2, Robert A. Bonomo3,4,6,7,8,9 & Jacob G. Scott 7,10,11

Antibiotic resistance represents a growing health crisis that necessitates the immediate

discovery of novel treatment strategies. One such strategy is the identification of collateral

sensitivities, wherein evolution under a first drug induces susceptibility to a second. Here,

we report that sequential drug regimens derived from in vitro evolution experiments may

have overstated therapeutic benefit, predicting a collaterally sensitive response where cross-

resistance ultimately occurs. We quantify the likelihood of this phenomenon by use of a

mathematical model parametrised with combinatorially complete fitness landscapes for

Escherichia coli. Through experimental evolution we then verify that a second drug can indeed

stochastically exhibit either increased susceptibility or increased resistance when following

a first. Genetic divergence is confirmed as the driver of this differential response through

targeted and whole genome sequencing. Taken together, these results highlight that the

success of evolutionarily-informed therapies is predicated on a rigorous probabilistic

understanding of the contingencies that arise during the evolution of drug resistance.
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How can heterogeneity be maintained?

Are there other ways to move through genotype space?
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