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ABSTRACT

Lokhandwala, Mustafa Ph.D., Purdue University, August 2019. ASSESSING THE
ENVIRONMENTAL IMPACTS OF SHARED AUTONOMOUS ELECTRIC VEHI-
CLE SYSTEMS WITH VARYING ADOPTION LEVELS USING AGENT-BASED
MODELS. Major Professor: Dr. Hua Cai.

In recent years, there has been considerable growth in the adoption and tech-

nology development of electric vehicles (EV), autonomous vehicles (AV), and ride

sharing (RS). These technologies have the potential to improve transportation sus-

tainability. Many studies have evaluated the environmental impacts of these tech-

nologies but the existing literature has three major gaps: (1) the adoption of these

three technologies need to be evaluated considering their impact on each other, (2)

many existing models do not evaluate systems on a common ground, and (3) the

heterogeneous preferences of riders towards these emerging technologies are not fully

incorporated. To address these gaps, this work studies and quantifies the environmen-

tal and efficiency gains that can be gained through these emerging transportation

technologies by developing a Parameterized Preference-based Shared Autonomous

Electric Vehicle (PP-SAEV) agent-based model. The model is then applied to a

case study of New York City (NYC) taxis to evaluate the system performance with

increasing AV, EV, and RS adoption.

The outputs from the PP-SAEV model show that replacing taxi cabs in NYC

with AVs along with RS potentially can reduce CO2 emissions by 866 metric Tones

per day and increase average vehicle occupancy from 1.2 to 3 persons in vehicles with
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passenger seating capacity of 4. A prediction model based on the PP-SAEV output

recommends that 6000 vehicles are needed to maintain the current level of service

with 100% AV and RS adoption using capacity 4 taxis. Taxi fleets with capacity 4

with high RS and low AV adoption are also found to have the least CO2 emissions.

Because the heterogeneous sharing preferences of riders have shown as the major

limiting factor to ride sharing, these heterogeneous sharing preferences are further

modelled. The results show that high service levels are achieved when all the riders

are open to sharing, and the maximum service level is reached when 30% of riders

will only accept shared rides and 70% of the riders are either indifferent to sharing or

prefer to use ride sharing over riding alone. Additionally, the service level and waiting

time of riders that are inflexible (will accept only shared or non-shared rides) are

greatly impacted by varying mix of riders with different sharing preference. Finally,

an optimization model was built to site charging stations in a system with continually

increasing EV adoption. Using the best charging station locations, transforming a

fleet of autonomous or traditional vehicles to electric vehicles does not significantly

change the system service level. The results show that increasing the EV adoption in

fleets with 100% RS and AV adoption reduced the daily CO2 emissions by about 861

Tones and transforming a fleet of traditional taxi cabs to electric taxi cabs reduced

the daily CO2 emissions by 1100 Tones.

In summary, this dissertation evaluates the potential growth of autonomous ve-

hicles, ride sharing, and electric vehicles in systems where riders may have hetero-

geneous sharing preferences, from a system performance‘s perspective and assesses

the environmental impacts. The developed model and the insights gained from this

study can inform policy makers to develop sustainable transportation systems incor-

porating the emerging transportation technologies.
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1. INTRODUCTION

Urban road transportation systems, despite being one of the most important infras-

tructures in the modern world, often bear high levels of congestion and pollution. In

2017, the transportation sector accounted for 29% of all greenhouse gas (GHG) emis-

sions in the United States (U.S.), which makes it the largest contributor of carbon

emissions (U.S. DOE, 2019). Individual vehicle systems, such as taxis and personal

vehicles, make up a large percent of on-road traffic. However, they are highly in-

efficient in operation, often running with less than maximum capacity. According

to the recent National Household Travel Survey (NTHS) data (FHWA, 2011), over

90% of work-related trips were made using a personal vehicle1. Additionally, FHWA

(2016) found that the average occupancy of these personal vehicles was 1.6, showing

that these systems have very low efficiency.

There are different methods of reducing the GHG emissions from vehicle trans-

portation systems. Current solutions have focused on solving the problems at the

vehicle level such as 1) improving the fuel economy by improving engine efficiency

(Farrington and Rugh, 2000; Greene and Plotkin, 2011), 2) the use of alternative

fuel such as biofuel and electricity in cities with appropriate power generation mix

(Egbue and Long, 2012; Cai et al., 2016; Hawkins et al., 2013; FHWA, 2016), 3) the

use of alternative individual mobility services such as bike sharing systems (Romero

et al., 2012; Luo et al., 2019) or car sharing systems (Chen and Kockelman, 2016a;

1A vehicle that is meant for point to point transit, unlike mass transit systems (bus, metro, monorail,
etc.)
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Galland et al., 2014), and 4) introducing connected autonomous vehicles that are

predicted to bring about positive changes in vehicle ownership, usage and driving

patterns (Taiebat et al., 2018). Other solutions involve system-level changes, for ex-

ample 1) optimizing the allocation of existing taxi systems by presenting analytical

solutions such as large scale spatio-temporal visualizations (Jianqin et al., 2015) or

suggesting better taxi dispatching rules (Maciejewski and Bischoff, 2015) and de-

mand forecasting (Xu et al., 2015; Salanova et al., 2014; Kim et al., 2011), or 2) ride

sharing using either personal vehicles (like Uber, Lyft) or using shared taxis. In re-

cent years, with the growth and acceptance of the sharing economy and information

and communication technologies (ICT), ride sharing has emerged as a viable low cost

avenue to reduce the transportation system’s energy use and emissions. Among these

solutions, there has been significant effort in introducing ride sharing (RS) (Fortune,

2016), electric vehicles (EV) (Tesla, 2019), and autonomous vehicles (AV)2 (Waymo,

2019) to aid individual mobility.

The implementation of one of these technologies (RS, EV and AV) can have an

impact on the performance of the other. For example, an advantage of using AVs

in a RS system is that they could potentially reduce fleet sizes since they do not

need to shift in and out of operation like traditional vehicles (non-AV) since human

riders get fatigued and require breaks. Because AVs are avaialble all day and do not

require drivers, they could help reduce costs of fleet operation (e.g. labour wages for

drivers). EVs have a large potential to reduce environmental emissions (Cai and Xu,

2013) in areas where electrical energy comes from clean sources (such as wind, or

geothermal), and hence the adoption of EVs should be promoted. AVs may be able to

accelerate the adoption of EVs, because without having drivers, the electric AVs will

2In this dissertation, autonomous vehicles refer to vehicles with level 5 autonomous driving (fully
automated vehicles with no human intervention required)
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not suffer from common operational inefficiencies that human driven EVs may have

(for example range anxiety). Additionally, AVs can be made to follow a well defined

charging schedule so that the loss of on-road vehicels due to charging can be limited.

On the other hand, the introduction of EVs in a ride sharing system will potentially

affect the systems performance parameters negatively. EVs require a long recharging

time (approximately 30 minutes for 80% charge for a vehicle with a 35kWh battery

and with a charger delivering 50kW electric power) as compared to gasoline vehicles

which would require less than 15 minutes to fill their gas tanks (NYCTLC (2013)

observed that taxis spent about 6.5 minutes refueling per shift). EV charging stations

are not as widespread as gas stations, and to sustain an increased EV adoption,

widespread availability of EV charging stations is necessary. For a ride sharing

system, potentially the limited range and long charging time may restrict EVs from

accepting new ride shares, if at the completion of a ride the EV‘s state of charge is

low. Additionally, the long recharge time and the sparsity of charging stations may

cause many taxi drivers to search for new riders while charging at a charging station

thus affecting the locations at which those taxis would be available.

Because RS, AV, and EVs could be adopted individually or together, it is impor-

tant to discuss the relevant studies in RS individually, then discuss studies in which

AVs and EVs are discussed as a part of a RS system. Therefore, the literature review

is organized as follows: Section 1.1 discusses the concept of ride sharing and relevant

literature in the field. Section 1.2 focuses on studies model ride sharing using AVs

and non-AVs, while Section 1.3 discusses relevant literature pertaining to the syn-

ergy between ride sharing, electric vehicles, and autonomous vehicles. Section 1.4

discuss the gaps in the literature. Finally, Section 1.5 outlines the questions that

this dissertation aims to answer and the plan for the research.
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1.1 Ride Sharing

Unlike the other solutions proposed to reduce vehicular emissions, ride sharing

does not require any special physical infrastructure for implementation and has been

tested and implemented in various platforms, such as UberPool and Lyft Line. In

this study, ride sharing is defined as sharing a vehicle with multiple groups of riders3

along a fully or partially overlapped route, serving the travel demands of multiple

groups of riders in the shared vehicle (for example, a shared taxi). This is different

from car sharing, for which a car owner or a fleet owner allows others to use their car

when it is not in use (for example, ZipCar, car2go, UberX). Uber claims that about

20% of its rides globally are shared rides using UberPool (Fortune, 2016). While

the social and environmental impacts of these ride service apps are still in debate

(e.g., increasing the total vehicle miles traveled and the total number of cars on the

road, competing with taxi drivers for jobs and public transit for riders) (NYC DOT,

2016b), increasing vehicle occupancy rate in private and public vehicles (e.g., taxis)

through ride sharing still offers great opportunities in improving the transportation

sector’s efficiency.

Many earlier studies (Barth and Todd, 1999; Galland et al., 2014) have focused

on the traditional ride sharing (i.e., car pooling), for which the ride sharing is pre-

arranged (e.g., with friends, family members, and colleagues) and often has the same

trip origins and/or destinations. For example, Caulfield (2009) analyzed one day’s

commute trip data (reported as part of a Census survey) in Dublin, Ireland and found

that 4% of the respondents ride-share to work. They estimated that this ride sharing

3I consider a group of riders to be made up of one or more persons riding from and to the same
origin and destination using a single request.
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reduced 12,674 t of CO2 emissions annually. Hong et al. (2017) proposed a clustering

algorithm on GPS trace data to match trips and select routes for carpooling.

In recent years, enabled by the development of information and communication

technologies, dynamic ride sharing has received increasing attentions. Dynamic ride

sharing allows shared rides to form in short notice and among strangers who do not

know each other’s trip itinerary. The higher flexibility of dynamic ride sharing offers

additional opportunity to maximize sharing benefits and improve system efficiency.

Figure 1.1 presents an example of dynamic ride sharing where three rides are being

combined into one single shared ride.

Group ride systems, as discussed in Qian et al. (2017), are a hybrid between

dynamic ride sharing and static ride sharing. While the riders and their routes are

not known ahead of time, the group ride system asks riders to walk to a common

meeting location and ride together. Qian et al. (2017) tested the system using taxi

trip data from 30-minute periods during peak and off-peak hours in three cities

and concluded that this type of ride sharing can reduce vehicle VMT by over 47%.

However, being different from the door-to-door service provided by traditional taxis,

group ride requires the riders to walk to and from the taxi pick-up and drop-off

locations, reducing the convenience of taking taxis. Additionally, the system can

only match taxi trips that are of approximately equal length, and hence reduce

opportunities for sharing.

In a ride sharing system it is important to find good matches for riders and drivers,

and these problems are often difficult to solve. Hence, Section 1.1.1 discusses studies

that focus on algorithms to match riders to taxis in a ride sharing system. Whether

riders choose to use a RS system is also an important factor that affects the systems

efficiency. The factors affecting this ride sharing choice are studied in literature and

these studies are discussed in Section 1.1.2.
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Figure 1.1. Dynamic point-to-point ride sharing - the three rides shown
can be combined to a single ride by a car with a capacity of 4 with a
small amount of delay in arrival for each rider. (PU- Pick Up, DO - Drop
Off)

1.1.1 Ride Matching

In a ride sharing system, it is critical to match the appropriate riders to form the

shared ride. Therefore, many researchers focus on developing algorithms for static4

ride matching. In particular, Kleiner et al. (2011) proposed an auction mechanism

to match rides between two parties and tested its performance using the map of

4Static ride sharing assumes knowledge of all the trips ahead of time and proposes the most efficient
overall match. Since in actual ride sharing systems, the demand is seldom known in advance, this
assumption is a major limitation of static ride matching
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Freiburg, Germany with simulated rides randomly sampled from a uniform distribu-

tion. Agatz et al. (2011) compared the optimization-based approach with a simple

rule-based greedy matching algorithm using travel data from Atlanta, Georgia and

concluded that optimization methods have better system performance in matching

rides and reducing total system vehicle miles traveled (VMT) compared to greedy

matching. However, to simplify the analysis, these studies limited the number of

rides that can be shared at a time to be two (i.e., maximally, two passengers can

share a vehicle).

More recent research has proposed more flexible models to optimize passenger-

vehicle matching and vehicle routing on the fly (dynamic ride matching), considering

the vehicle capacity and the number of passengers traveling together (Lin et al., 2012;

Santos and Xavier, 2015). Some recent work (Li et al., 2016a) proposed an algorithm

to match rides for the purpose of ride sharing as well as parcel delivery. Hosni et al.

(2014); Mahmoudi and Zhou (2016); Masoud and Jayakrishnan (2017) have made

significant methodological advancements to the matching of shared rides using opti-

mization techniques. While these studies have focused on providing efficient solutions

to the dynamic ride sharing problem with given requests and vehicle instances, they

have not commented on the city-scale impacts of implementing these systems.

In summary, most of the research on ride matching techniques makes simplifica-

tions by either limiting the number of shared rides (Agatz et al., 2011; Kleiner et al.,

2011), or testing the models on simulated data and small network sizes (Lin et al.,

2012; Santos and Xavier, 2015; Hosni et al., 2014; Mahmoudi and Zhou, 2016; Ma-

soud and Jayakrishnan, 2017) and are hence unable to provide real world inferences.

Additionally, since static ride sharing assumes that all routes are known ahead of

time, these matching models cannot be used in a dynamic ride sharing setting where

riders’ routes are known only at the time that they wish to be picked up.
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1.1.2 Heterogenous Rider Preference in Ride Sharing

Ride sharing involves multiple riders sharing a vehicle together for potential cost

and environmental savings, while potentially enduring a longer ride. Hence it is

important to understand how different riders prioritize the cost and environmental

savings over a longer ride and having to share their trip with other people. Ex-

isting literature that focuses on understanding behavior of riders in carpooling and

ride sharing commonly distributes surveys and then analyzes the responses of these

surveys. In order to provide a deeper literature review, in addition to ride sharing

studies, I also consider carpooling5 in this literature review because ride sharing and

carpooling share many common factors (such as safety, increased travel distance and

time) which could limit their adoption by riders. Most studies on carpooling (Sha-

heen et al., 2016; Gheorghiu and Delhomme, 2018; Delhomme and Gheorghiu, 2016)

and ride sharing behaviors (Zhang and Zhang, 2018; Amirkiaee and Evangelopoulos,

2018; Nielsen et al., 2015; Neoh et al., 2018; Krueger et al., 2016; Alemi et al., 2018)

have identified that common demographic factors such as age, education, gender, in-

come level, and logistical factors (e.g, time), nearness to public transit, and cost have

an effect on the probability of using these services. Since most of these studies have

different metropolitan areas of focus, many of them also identified unique features of

the city that either aid or inhibit ride sharing adoption. For example,researchers used

surveys in San Francisco Bay Area (Shaheen et al., 2016) and France (Gheorghiu and

Delhomme, 2018; Delhomme and Gheorghiu, 2016) to study the reasons for which

people used carpooling and found that most carpoolers were motivated by potential

time or monetary savings, the convenience of not needing to drive, and the proximity

5which is the pre-arranged matching of a driver and passengers when they are going along the same
route - for example, carpooling to work
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to metro transit. Shaheen et al. (2016) also noted that the Bay Area carpooling sys-

tem is well established, and riders were in general served by the systems reliability,

which could be a factor that influences ride sharing adoption. Krueger et al. (2016)

noted that in Australia, the purpose of the trip would be an important factor in

the respondents’ reason to use AVs but their survey could not identify any trends

in the reasons to use AVs with dynamic ride sharing. Neoh et al. (2018); Nazari

et al. (2018) examined commuters in the UK and US and found that the presence

of school going children, intra-day commutes for work, irregular work schedule, and

the general convenience and flexibility of having access to transportation were also

factors that determined whether an individual uses ride sharing or not. However,

even though these studies indicate that riders may have heterogeneous preferences

towards ride sharing, the existing literature (Alonso-Mora et al., 2017; Fagnant and

Kockelman, 2016; Ma et al., 2015; Simonetto et al., 2019) do not incorporate these

heterogeneous preferences in their models, and instead assign fixed delays and in-

flexible ride selection rules to riders. These gaps are discussed in detail in Section

1.2.

1.2 Ride Sharing using AVs and non-AVs

To study ride sharing in autonomous vehicles and in non-autonomous vehicles

for real world case studies, researchers commonly use agent-based models. ABMs

consist of individual entities (agents) that have their own parameters and actions and

have been used in the field of transportation for many purposes, including travel time

estimation (Chen and Rakha, 2016), disaster relief logistics (Wang et al., 2016), and

choice models (Zou et al., 2016) which are used to incorporate individual preferences

with regards to transportation modes. To study dynamic ride sharing, researchers
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developed agent-based models to simulate such systems (Nourinejad and Roorda,

2016; Fagnant and Kockelman, 2014; Chen et al., 2016a). However, these models are

mostly based on simplified system setups, not considering the real-world road infras-

tructure and the actual travel demands. Nourinejad and Roorda (2016) implemented

three cases of ride sharing system on a small test network containing 24 nodes and

76 edges, and Fagnant and Kockelman (2014); Chen et al. (2016a) considered ride

sharing in a simplified gridded city.

Some studies use agent-based models to make inferences on ride sharing systems

which use AVs. For example, Brownell and Kornhauser (2014); Ma et al. (2015);

Fagnant and Kockelman (2016) focused on the economics of ride sharing and showed

significant potential monetary savings in New Jersey, Beijing, and Austin, respec-

tively. Ma et al. (2015) also showed that using ride sharing, 2.2 million kg of carbon

dioxide can be saved every year in Beijing, while Fagnant and Kockelman (2016)

showed that ride sharing has the potential to replace eleven private cars. Martinez

et al. (2015); d’Orey and Ferreira (2014) studied shared taxis in Lisbon and Porto,

respectively, to infer system level benefits. Both papers (Martinez et al., 2015; d’Orey

and Ferreira, 2014) showed that taxi sharing can help passengers reduce travel costs

with an increase in total transit time. Santi et al. (2014) introduced the concept of

share-ability networks and proposed a mathematical model to quantify the benefits

of ride sharing using AVs. They analyzed the taxi trip data in New York City and

concluded that ride sharing can reduce cumulative trip length by 40% or more. How-

ever, their model also constrained the sharing to be between two riders, ignoring the

potential benefits from a more flexible system. Additionally, they assumed that the

tolerance level for trip delay is identical for all riders, ignoring the individual hetero-

geneous tolerance and needs in the real world. Alonso-Mora et al. (2017) extended

the methodology used by Santi et al. (2014) by allowing for shares with more than
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two riders and showed that the percent of riders served by the system is improved

with the increased amount of fixed delay in travel time that is accepted by the riders

using small and large capacity autonomous vehicles. Wang et al. (2018) used a sim-

ulation model of the city of Singapore to show that SAVs could increase the number

of requests served by about 20% - 25%. Yu et al. (2017) used ride sharing trip data

to estimate the impact of SAVs in the city of Beijing and inferred that SAVs are able

to reduce 46.2 thousand tonnes of CO2 per year. Mourad et al. (2019) has published

a comprehensive review on ride sharing models that have been used for inference.

While ride sharing using AVs (future) is well studied, there are three major gaps.

First, many studies in existing literature do not compare these ride sharing systems

to present day non-AV systems, nor do they take into account fleets having mixture

of AVs and non-AVs. A few studies in ride sharing literature, such as, Brownell

and Kornhauser (2014) and Fagnant and Kockelman (2016) performed analysis on

taxis and simulated the system for less than three hours, and hence did not need

to consider whether the vehicles in the model were autonomous or needed to follow

shifting schedules. Others such as Alonso-Mora et al. (2017); Santi et al. (2014);

Ma et al. (2015) considered the vehicles serving the passengers as AVs and did not

consider non-AVs. Since currently we do not have any level 5 AV in operation, and

the full scale implementation of AVs is not expected for a long time, it is important

to understand how an increasing adoption of AVs will impact a ride sharing system.

Such transitional fleets will have mixtures of AVs and non-AVs operating in the

system at the same time.

Additionally, all of the studies in the literature, discussed in this section, that

study SAVs using agent-based models discuss the variation of output parameters

(for example, reduction in VMT, increase in waiting time, increase in number of

riders served) only describe how the outputs will change will varied inputs without.
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While understanding the response of the output parameters with respect to the in-

put parameters is important, it is also important to compare those scenarios that

offer similar levels of service (number of riders served by the system) to compare the

systems on a fair ground. For example, Alonso-Mora et al. (2017) has established

relationships between the percent of served requests (output) and the maximum set

waiting time for the rider (input). Additionally, they have plotted other output pa-

rameters such as the mean travel delay, mean waiting time, and the percent of shared

riders against the same input parameter. While this analysis gives us insight into

the ride sharing system that they studied, the scenarios are not comparable because

some scenarios serve more riders and would cost more. An analysis between scenarios

on these plots would not be comparable. For example, scenarios that allow higher

allowable delay for the riders would result in a higher average delay (decreased qual-

ity of service), while increasing the fleet size or the capacity of the vehicles would

be associated with an increased cost to the fleet operators. One way to evaluate

these systems would be to find all scenarios that have the same service levels or cost.

Fagnant and Kockelman (2014) and Chen et al. (2016a) found comparable scenarios

by forcing all riders to get served in their scenarios, but varied a small number of

parameters in isolation of each other. While their scenarios were comparable, these

papers were unable to quantify the impact of varying these parameters since the

parameters in these scenarios are set independently from each other. Boesch et al.

(2016) plotted the service level against the AV adoption for different levels of demand

and inferred the size of AV fleet required to serve 85% of the demand against AV

adoption from the same plot. However, since their study was a simulation, it is dif-

ficult to make such inferences without actually running the simulation experiments,

because simulations are unlikely to produce deterministic results at each model run.

Simulation models that consider varying adoption of RS, and AV along with varying
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rider heterogeneity, could potentially have a large number of input parameters. Vary-

ing these parameters to find comparable scenarios becomes challenging, especially if

each simulation takes a long time to run. Hence, to find comparable scenarios, new

methods will be required.

Second, ride sharing has an efficiency limit that has not been investigated in recent

literature. In a ride sharing system, the efficiency of the system can be measured

by studying the average occupancy of the vehicles during the simulation. Alonso-

Mora et al. (2017) predicted that ride sharing can increase the average occupancy

of taxis in New York City (NYC) from 1.2 to approximately 3 persons per vehicle

during the peak hours of the day. Ma et al. (2015) estimated that 11.4% of the taxi

seats were occupied through the day in Beijing if ride sharing is implemented. Even

though ride sharing has potential to bring improvements in transportation systems,

recent literature shows that ride sharing is not able to reach maximum occupancy of

vehicles for an entire day. The benefits of understanding this efficiency limit could

guide system planners on designing incentives to improve this efficiency limit.

Third, the heterogeneous preferences of riders towards RS has received very lim-

ited consideration in SAV modeling literature. Ma et al. (2015); Alonso-Mora et al.

(2017); Fagnant and Kockelman (2016); Wang et al. (2018) did not consider that rid-

ers may have heterogeneous strategies in searching for new rides. Ma et al. (2015);

Alonso-Mora et al. (2017); Wang et al. (2018); Simonetto et al. (2019) modeled all

riders in the system to be able to share rides and every rider in the system could be

matched to the earliest available shared or non-shared ride and whether the match

met the time and monetary constraints of the rider. In reality, not all riders may

search for shared rides in the same way, as discussed in Section 1.1.2. Recently,

Kamel et al. (2019) considered these preferences in a simulation study in Paris, for

which they randomly generated a population of riders from demographic data, and
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assigned travel modes (walk, car, SAV, bike, and public transport) for these riders

based on a travel scoring function and found that when sharing preferences were

taken into account, the percent of people who chose SAVs reduced by 1.5%. How-

ever, their model and inferences were focused only on a single scenario, and hence

their inferences were limited to that specific scenario.

Even for those riders who accept shared rides, their tolerance to accepting a longer

route may be different. A rider who has a time sensitive ride (for example, going to

the airport, or reaching on time to work) my have a very small tolerance to deviating

from their route due to ride sharing as compared to a more flexible rider (for example

a cost sensitive tourist, or a person travelling to the super market). However, this de-

viation heterogeneity has also received limited consideration in existing SAV system

literature. For example, Alonso-Mora et al. (2017); Ma et al. (2015); Simonetto et al.

(2019) considered that each rider would allow a fixed delay in their travel time, Wang

et al. (2018) considered several fixed constraints to limit the maximum waiting time,

maximum arrival and departure delay, and the minimum taxi fare reduced in their

model, while Fagnant and Kockelman (2016) considered that riders could encounter

a delay which was within a fixed percentage of their travel distance. However, as

discussed in Section 1.1.2, literature has identified that common demographic factors

like age, education, gender, income level, and logistical factors such as time, near-

ness to public transit, and cost have an effect on the probability of riders using ride

sharing services. This suggests that all passengers may not have the same fixed pa-

rameters, which are being used in existing literature. Additional research is needed

to incorporate these heterogeneous preferences in simulation models that are used to

understand the system performance parameters to provide better understanding of

ride sharing systems and help design appropriate policies.
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In summary, the main gaps in the research on ride sharing systems using AVs

and non-AVs are: 1) most existing studies do not compare the key performance

parameters of ride sharing systems across scenarios is not done on a fair ground

(comparatively), 2) The efficiency limitations of ride sharing are not well studied, 3)

heterogeneous sharing preferences are not considered for the riders in a SAV system.

1.3 Electric Vehicles and Integration with SAVs

While there is a lot of literature on EVs and EV systems (Richardson, 2013;

Yilmaz and Krein, 2012; Ko et al., 2017), the major limitation the integration of

EVs in an SAV system, is the long charging time of EVs and limited availability of

charging infrastructure. Hence, the literature in this section is reviewed from two

main perspectives, 1) siting charging stations for charging infrastructure development

and, 2) understanding how the adoption of EVs impact the performance of SAV

systems.

It is important to find optimal sites for EV charging stations because EVs need a

long time to charge as compared to internal combustion engine vehicles (ICV) hence

some studies develop methods to do so. Researchers have worked on understanding

EV charging behavior and developed a methodology to optimally locate EV charging

stations. For example, Cai et al. (2014a); Shahraki et al. (2015); Yang et al. (2017a)

used the GPS trajectory data to select sites for optimal charging locations. While

Cai et al. (2014a) used the trip data to identify parking events and site the EV

charging stations accordingly, Shahraki et al. (2015) used an optimization model to

resite the 40 charging stations in Beijing thus improving the electrification rate by

37%. He et al. (2018); Arslan and Karaşan (2016); He et al. (2015); Davidov and

Pantoš (2017) focused on developing the better algorithms for the optimization of
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EV charging station locations. The literature on charging station siting is discussed

in detail in Chapter 6.

Some literature (Chen et al., 2016a; Chen and Kockelman, 2016b; Bauer et al.,

2018) has studied the impact of EVs in SAV systems. Chen et al. (2016a) used

a simplistic agent-based model to infer that a 200-mile battery ranged shared Au-

tonomous Electric Vehicle (SAEV) could replace approximately 5.5 privately owned

vehicles. However, the model was tested on a simulated network using simulated data

and cannot draw significant inferences on system performance parameters. Chen and

Kockelman (2016b) suggested that if SAEVs are priced between $0.75 to $1 per mile,

a 80 - mile ranged electric vehicle can generate significant revenues for the operator

and the fleet owner. Bauer et al. (2018) estimated that for Manhattan, NY the

costs would be lowest for EVs with battery ranges between 50-90miles and 66 charg-

ers per square mile of 11kW each, and an SAEV fleet could reduce GHG emissions

by 73%. However, the previous studies (Chen et al., 2016a; Chen and Kockelman,

2016b; Bauer et al., 2018) do not compare the differences in siting charging sta-

tions for a non autonomous vehicle - ride sharing (AV-RS) system with that for a

AV-RS system and study the system performance parameters as the EV adoption

increases. Since AVs, RS and EVs are each emerging technologies that are growing

at variable rates, it is important to understand the synergies between these systems

to inform policy makers and city planners on best practices regarding the growth of

these technologies.

Hence to summarize, there is a lack of research in the field that considers ride

sharing, autonomous vehicles, and electric vehicles together and compares the results

against the existing scenario (no ride sharing, gasoline vehicles and traditionally

driven taxis). Research is also needed in siting EV charging stations in a SAEV

scenario considering the uptake of these technologies.
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1.4 Research Gaps

In summary, while existing literature makes great advancement in understanding

ride sharing using optimization models and agent-based models, there are several

gaps that this dissertation aims to address:

1. Existing literature does not study fleets that contain a mixture of EV and

gasoline vehicles, AVs and non-AVs (non autonomous vehicles or traditional

vehicles) in a system where each rider has their own preference of sharing a ride

or not. Such future transportation systems have a large number of parameter

settings and current literature often fix some of the parameters to extreme

values (for example, 100% AV or EV adoption).

2. Literature on ride sharing commonly use simulations to find trends between the

input parameters and the output parameters, which help make inferences on

how changing a particular input (say ride sharing adoption) could impact the

system performance (for example number of riders served and waiting time).

However, these studies do not evaluate scenarios on the same ground, and hence

limit the understanding of system outputs with respect changing multiple input

parameters at the same time. Methods are needed to find comparable scenarios

in future transportation systems.

3. Existing research has not explored reasons behind ride sharing being unable to

fully occupy all the seats in the vehicle. While existing literature discuss the

benefits of ride sharing (that include a reduction of fleet size with moderate

increase in ride time, environmental benefits, potential monetary savings), each

of these studies have also noted that, even with ride sharing, most taxis are

unable to reach their maximum capacity. By studying the reasons for these effi-
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ciency limitations, we can better plan ride sharing systems by either deploying

ride sharing in areas where there would be higher participation, or assigning

high capacity vehicles in places where capacity is a limiting factor.

4. EV charging station siting literature also has multiple gaps (siting charging

stations for multiple levels of EV adoption, and the consideration of queuing

of EVs at charging stations, and inflexible charging rules for EVs) which are

discussed in detail in Chapter 6. The existing SAEV system studies do not con-

sider potential differences in siting charging stations, and system performance

parameters for present day non AV-RS systems and future AV-RS systems for

increasing EV adoption.

1.5 Research Structure

To address the gaps discussed in Section 1.4, this dissertation (pictorially rep-

resented in Figure 1.2) develops a Parameterized and Preference-based Shared Au-

tonomous Electric Vehicle (PP-SAEV) model to simulate ride sharing in systems

which have a mix of AV and non-AVs, EVs and ICVs, ad riders can have hetero-

geneous sharing preferences. The model is parameterized so that several simulation

scenarios can be run with varying AV, EV, and RS adoption, fleet sizes, taxi capaci-

ties, and heterogeneous preferences. By running the PP-SAEV model with different

parameter settings, the dissertation aims to answer the below research questions.

In each study the performance of the systems are evaluated based on service level,

waiting time, riding time, percent of shared rides, average occupancy, and GHG

emissions.
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1. How does increasing ride sharing adoption affect systems where the vehicles

used are AVs and non-AVs?

2. How can we size taxi fleets and evaluate system performance comparatively

(providing the same service level) in scenarios where taxi systems may have

different levels of AV and RS adoption?

3. What are the reasons that limit the ability of ride sharing to increase the

efficiency of a taxi system to 100%?

4. How would rider sharing preferences change the quality of service in a SAEV

system?

5. In a shared electric autonomous vehicle scenario, how do we better site electric

charging stations and what would be the optimal capacity of those charging

stations under continually increasing demand?

6. How does increasing EV adoption impact autonomous vehicle - ride sharing

(AV-RS) systems and non AV-RS systems in service level, and how would this

growing EV taxi fleet impact the electric power grid.

The rest of this dissertation is structured as follows. Chapter 2 presents the

PP-SAEV model and describes the case study which is used to to illustrate this PP-

SAEV model. Then, I analyze the performance of ride sharing in an autonomous

vehicle system and a traditional (non AV) system by finding comparable scenarios in

Chapter 3, to answer question 1. Chapter 4 introduces a meta-model based simula-

tion optimization method to find comparable scenarios to analyze fleets that can have

a mixture of AVs and non-AVs, with varying capacities, and varying sharing partic-

ipation tolerances to answer question 2. Chapter 4 also analyzes the efficiency limit
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Figure 1.2. Research overview

of ride sharing using compositional data analysis and suggests policies to overcome

this sharing limitation to answer question 3. Chapter 5 studies the effect of heteroge-

neous rider searching preferences on system performance using mixture experiments

and hence addresses question 4. Chapter 6 builds a model to site charging stations

for a growing EV fleet to address question 5 and analyzes systems with fleets that

have traditional technologies (non AV-RS) and fleets that have future technologies

(AV-RS) to address and addresses question 6. Finally, in Chapter 7, I summarize

the findings and contributions of this dissertation and discuss directions for future

research.
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2. PARAMETERIZED PREFERENCE-BASED SHARED

AUTONOMOUS ELECTRIC VEHICLE (PP-SAEV)

MODEL

To study the synergies between ride sharing and other technological advancements

in vehicles, namely autonomous vehicles (AV) and electric vehicles (EV), this dis-

sertation uses agent-based models. Agent-based modeling allows the modeler to

represent a dynamic ride sharing system with heterogeneous rider and taxi prefer-

ences, and also to look into finer performance parameters of the ride sharing system.

The proposed Parameterized Preference-based Shared Autonomous Electric Vehicles

(PP-SAEV) model simulates ride sharing in systems which have a mix of AV and

non-AVs, EVs and ICVs, and riders can have heterogenous sharing prefenences. The

model is parameterized so that several simulation scenarios can be run with varying

AV, EV, and RS adoption, fleet sizes, taxi capacities, and heterogenous preferences.

Taxi data from the New York Taxi and Limousine Commission (NYC DOT, 2016b)

from the year 2014 is then used to build a case study to answer the questions in

Section 1.5.

The agent-based simulation model (PP-SAEV) described in this chapter accomo-

dates the heterogeneous behaviors of the riders, the taxis, and the charging stations

by modeling taxis and riders as individual entities (agents) that each have their own

parameters and preferences. The model generates data for each agent at several

time-steps through the simulation, using which it is possible to understand spatial
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and temporal variability of performance indicators of the system. The system as

well as each agent (riders, taxis and charging stations) in the model have their own

parameters which can be adjusted to construct different scenarios.

2.1 System Level Parameters

The system level parameters that can be set in the model are listed below:

• fleetSize : The number of taxis that are present in the system

• riderTypeDistribution : A discrete distribution that can take values 1-5 (de-

fined in Section 2.2 and detailed in Algorithm 2) from which the Type of each

rider will be randomly drawn.

• EV Percent : The percent of taxis that are electric vehicles

• AV Percent : The percent of taxis that are Autonomous

• taxiCapacityDistribution : A discrete distribution that can take values from

1 to 10 from which the capacity of the taxi (taxiCapacity) is drawn.

• b : The constants of the charging utility functions as mentioned in Section

A.3.5. The charging utility function determines whether a taxi moves towards

a charging station or not. The utility function considers the current charge

level and the taxis closeness to a charging station.

• outShiftT ime : the off-shift time after a taxi ends a shift set to 3 hours

• dtMode1 :The mode of the distribution of the deviation tolerance deviationTolerance

of the riders. In order to model the heterogeneity of rider-groups, each of them

1Since we do not have prior information of the additional distance a rider is willing to travel
in order to enable ride sharing, we randomly set these deviationTolerance for each rider
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have a unique distance deviation that they allow so as to enable them to share

rides.

Table 2.1.
Sample data from NYC-TLC with pick up (PU) and drop off (DO) time
and locations in latitudes (Lat) and longitudes (Long), and the number
of passengers traveled together (Group Size)

PU Time DO Time PU Lat PU Lat DO

Long

DO Lat Group

Size

06/12/2014

0:00:00

06/12/2014

0:13:24

-73.937 40.797 -73.964 40.760 1

06/12/2014

0:00:00

06/12/2014

0:05:00

-73.993 40.719 -74.001 40.717 3

06/12/2014

0:00:00

06/12/2014

0:04:00

-73.983 40.771 -73.984 40.765 1

...
...

...
...

...
...

...

I run the PP-SAEV for different scenarios by varying these system level param-

eters. The rider parameters are taken from a database similar to that described by

Table 2.1. The individual agents themselves (taxis, riders, and charging stations)

also have parameters that are set according to these system level parameters. The

from a triangular distribution with minimum value = 0, maximum value = 1, and mode
dtMode. The deviationTolerance of the rider-group is calculated as deviationTolerance =
Acceptable maximum trip distance after sharing−Original Trip Distance

Original Trip Distance . We have defined the distance that a
rider group allows for deviating from their original path to be proportional to the unshared trip
distance, because it is unreasonable to expect a rider group whose trip is short (e.g., 0.5 miles) to
accept a large change in route (e.g., 2 miles).
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rider parameters are their sharing preference (defined in Section 2.2), their pick up

and drop off location, and time. The taxis parameters are their capacity, and whether

or not they are autonomous vehicles or electric vehicles. The charging stations pa-

rameters are their location, and number of charging ports (capacity). These are set

from an external database.

2.2 Agent Behaviors

Figure 2.1. Model overview. Matching colors in the flowchart represent
an event / decision taking place simultaneously by the rider and the taxi.
The circular blocks labeled A, B, C, D are used as ”connectors” to imply
a transfer of flow to their corresponding connector

The actions of the agents (riders and taxis) are described simplistically in Algo-

rithm 1-7. A simplified overview of the model can be seen in Figure 2.1. A more
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detailed pseudo-code that rigorously describes these actions is presented in Appendix

A.

The execution of the algorithm starts with the initialization. The map of the

city-of-interest is loaded into the model. The taxis are then loaded into the model

all at once. Each taxi at this time decides whether or not it is an EV, AV, or both,

based on the system level predetermined EV and AV percentages (EV Percent and

AV Percent). The rider-groups enter into the model as per their pick up time and at

the pick up location. Each rider-group decides their sharing strategy while entering

the model. Each agent then executes their own actions at every time step. The

actions that the rider-groups perform are detailed in Algorithm 1. The rider-groups

search for rides as per their searching preference which is detailed in Algorithm 2. If

they receive a response from a taxi, they wait until the taxi arrives to the pick up

location, then ride with the taxi to the drop off location, and then exit the system.

The search preferences of the riders as detailed in Algorithm 2 divides the riders into

five rider-group types as detailed below:

• riderType = 1 (Non-sharing only): This rider type represents a class of riders

who do not want to share at all. The reasons that riders may not want to share

could be either that they are in a hurry and cannot accept deviation from route

or they may not want to get into a taxi with another passenger due to social

reasons. If a rider of type 1 does not find a shared ride in exitT ime seconds,

it exits the system unserved.

• riderType = 2 (non-sharing preferred) : This rider will first search for non

shared rides until time regLimit and if a non-shared ride is not found they will

seek a shared ride until exitT ime. We use this rider type to represent the class
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of riders who may not want to share due to social reasons, but due to lack of

availability of a regular ride are forced to use a shared ride.

• riderType = 3 (indifferent) : These types of riders are indifferent to sharing,

and weigh the advantages (potentially lower cost, better for the environment)

and disadvantages (potentially longer travel distance, safety concerns) of shar-

ing equally. These riders stay in the system searching for shared and non shared

rides until exitT ime

• riderType = 4 (sharing preferred) : These riders first search for a shared

ride until shareLimit before searching for non shared rides until exitT ime.

These represent cost sensitive travellers who would prefer to share a ride for

potentially lower costs. If however, shared rides are unavailable, they will seek

a non-shared ride.

• riderType = 5 (sharing only) : These riders are extremely cost sensitive and

would rather not travel by taxi if sharing was not available. We can assume

that these riders would use another means of reaching their destination (for

example, public transit) if a shared ride was not available in exitT ime seconds.

The taxis execute their actions as per Algorithm 3. If the taxis are traditional

taxi cabs (not autonomous), they will shift in and out of the model as per the rules

defined in Algorithm 5 based on their shift schedules. To model the shift changes for

non-autonomous taxis, at the initialization of the model, we determine the number

of taxis that are in-shift (ns) based on the availability ratio at the model start time

(normally midnight) and day (weekday or weekend), according to Figure 2.5. From

all taxis, ns of them are then randomly selected to be in-shift while the rest to be
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out-shift. Then, the Algorithm 5 is run every 15 minutes to make shift changes.

Only taxis that are in-shift are allowed to participate in serving rider groups.

If the taxis are electric taxis they will follow rules as per Algorithm 6. The

electric taxis go towards the charger if one of the two conditions are met: 1) The

battery energy level is below the minimum operating level as defined by minSOC

or 2) the charging utility is positive. The charging utility is a score that considers

battery remaining and closeness to a charger (Section A.1). Intuitively, a taxi that is

currently searching for a rider, and is close to a charging station and with moderate

battery energy remaining (say 50%) may want to charge its battery while not serving

any riders. This would help the taxi remain in service (have enough battery energy

to serve customers) during periods of high demand.

When the taxis initially enter into the model, they search for rider-groups. The

taxis are matched to rider-groups by using Algorithm 4. Once a match is found,

the taxi adds the rider-group’s pick up and drop off point to its routeList (a list of

points that a taxi visits) and proceeds to serving the rider-group.

On its route, the taxi will try to search for sharing rider-groups using Algorithm

4. There are cases when a taxi will stop searching for shares, and the model tracks

these reasons that a share would be stopped using Algorithm 7. If a valid share is

found, the new pick up and drop off point is added to the route list, and then the

taxi follows this modified route list. Once the taxi has visited all the points on the

routeList, it is designated as idle and starts searching for its first ride again. The

relations between Algorithms 1-7 are illustrated in Figure 2.2.

The ride matching as detailed in Algorithm 4 is a two-step process. The model

uses a preCheck algorithm (Details in Section A.3.2) to filter out rides that would

be unlikely sharing candidates. Those rides that pass through this preCheck are
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Figure 2.2. The relation between Algorithms 1-7 in the agent-based model

evaluated using the bestRoute algorithm (Details in Section A.3.3) where the ride

that minimizes inconvenience to passengers is selected.

2.3 Model Outputs

The outputs of the model include:

• The number of rider-groups leaving the system without being served. A rider-

group is left unserved if the total time in system for the rider group exceeds

their acceptable waiting time.

• Time stamps for each rider at every status change, the information of which

we can use to calculate the following: (Figure 2.3)

– Time taken for a taxi to respond to each rider group’s request and commit

a pickup, TRR

– Time that a rider group waited for a taxi, TRw

– Time the rider group spent riding, TRRide
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– Time between the arrival of the rider in the system till its departure from

the system after reaching its destination, TRSY S

• The number of rider-groups and total passengers in a taxi at any time

• The distance traveled by each taxi with and without passengers

• The reasons each taxi stopped searching for shares, which are:

1. The sharing tolerance limit was reached

2. The taxi was at its maximum capacity

3. The taxi needed to shift out

4. The taxi needed charging

• The state of charge of each electric taxi at all times

• Charging statistics which include the charging station utilization, times when

each taxi started charging and stopped charging

Using the information from these outputs, we can infer:

• The number of vehicles that can be reduced in the system under different

scenarios compared to the base scenario (traditional gasoline vehicle with shifts

and no sharing)

• The degradation in quality of service for the riders in terms of the additional

distance traveled, additional time taken to reach destinations, as well as the

increase in waiting time for the riders.

• The reduction of distance traveled by the taxis due to ride sharing and con-

sequently the reduction of greenhouse gas emissions from the system. I use
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4.17× 10−4 metric tons CO2-eq/VMT estimated by EPA (2017) to convert the

changes in VMT under different scenarios to emission reductions.

• The distributions of the number of taxis that reached the sharing limit for

different reasons, which would help us infer the efficiency limitations of ride

sharing for each scenario.

• The charging station utilization which would help to plan for charging station

infrastructure for the city. This would also give me the variation of the amount

of energy used for charging stations with time of the day (load profiles). This

would help us determine the amount of energy used by the charging stations.

Figure 2.3. Time stamps recorded for each rider group in the system. e
is the time that the rider group enters in the system; tr is the time that
the taxi responds to the rider group to commit a pickup; tp1 is the time
that the rider group is picked up; and td1 is the time that the rider group
is dropped off at its destination.

2.4 Model Assumptions

The key assumptions of the PP-SAEV are :
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1. All rider-group in NYC can be classified into the five rider types as defined in

Section 2.2.

2. A rider group is only eligible to share a ride if the rider group allow a distance

overage of at-least 100m. Similarly, the maximum distance a rider can devi-

ate has been capped at 10,000m. These numbers were tested for sensitivity

and I found that the model output parameters did not change significantly by

allowing less than 100m or more than 10,000m of sharing.

3. The refueling time for ICEVs is considered negligible.

4. Taxis can be a mix of EV Traditional, EV Autonomous, Gasoline Autonomous,

and Gasoline Traditional.

Variables used in Algorithms 1-7 are defined below:

• Rider Group (Algorithms 1, 2, and 4)

– tis : The time that the taxi has spent in the system at the current evalu-

ation

– riderGroup : set of riders currently in the model

– regLimit : Time until which the rider group of riderType = 1, 2, 4 will

search for non-shared rides. The regLimit was set to 5 minutes, as we

assumed that this was a reasonable amount of time that riders would

search for taxis2.

– shareLimit : Time until which the rider group of riderType = 2, 4, 5 will

search for shared rides. In our model, we assumed that riders riderType =

2We tested the value of 5 minutes for sensitivity and found no significant difference in the model
outputs for values of regLimit more than 5 minutes
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2, 4 that shared a ride would spend a time proportional to their deviation

tolerance in searching for shared rides, and riderType = 5 would spend

10 minutes searching for shared rides, since we assume that riders who

search for only shared rides would allow for additional time to search for

an appropriate ride share.

– exitT ime : Time by which a rider group exits the system unserved if

no ride is found. For riderType = 1, 2, 4, 5 exitT ime = shareLimit +

regLimit. For riderType = 3, exitT ime = (1 + deviationTolerance)× 5

(same as the other flexible rider types 2 and 4). The settings for the

regLimit, shareLimit and exitT ime parameters are summarized in Table

2.2.

– State : the state of the rider. Can be set to 1) Searching 2) Waiting for

pick up 3) Riding with taxi 4) Reached destination

– riderType : the rider sharing preference as defined earlier in this section

– deviationTolerance : percent by which rider will tolerate deviation from

path

• Taxi (Algorithms 3, 4, 5, 6, and 7)

– Taxis : Collection of taxis in the system

– State : the state of the taxi. It can be set to 0) Charging 1) Searching for

first ride 2) Riding and searching for shares

– searchSOC : The SOC at which the taxi is allowed to start searching for

passengers when at State = 0

– SOC : State of charge. SOC = the distance that the taxi can drive untill next charge
The distance the taxi can travel in a single full charge
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– requestList : the list of riders that have requested a ride

– holdCode[.] : A set of 4 boolean flags that indicate the reason for which

the taxi stops sharing. If any flag is set to TRUE the taxi stops searching

for new shares. The flags are set according to rules in Algorithm 7

– bestMatch : the rider that was the best match for the taxi as per algorithm

4

Table 2.2.
Settings for the regLimit, shareLimit and exitT ime parameters

riderType regLimit shareLimit exitT ime

1 5 0 5

2 5 deviationTolerance× 5 (1 + deviationTolerance)× 5

3 NA NA (1 + deviationTolerance)× 5

4 5 deviationTolerance× 5 (1 + deviationTolerance)× 5

5 0 10 10
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Algorithm 1 Rider group algorithm

1: procedure RiderAlgorithm(riderGroup)

2: for all r ∈ riderGroup do

3: if State = 1 then . searching for taxis

4: Execute Algorithm 2

5: if State = 2 then . Waiting for Pick Up

6: if taxi is at pick up then

7: State← 3;

8: if State = 3 then . Riding with taxi

9: if taxi is at drop off location then

10: State← 4;

11: else

12: Move with taxi

13: if Algorithm 4 finds a share then

14: Update deviation tolerance

15: if State = 4 then . Exit the system (either served or unserved)

16: Record stats and exit the system
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Algorithm 2 Rider search preference

1: procedure searchPreference(riderGroup rc)

2: if riderType = 1 or riderType = 3 or (riderType = 2 and tis < regLimit)

or (riderType = 4 and tis ≥ shareLimit) then

3: Broadcast non-sharing requests

4: if riderType = 5 or riderType = 3 or (riderType = 2 and tis ≥ regLimit)

or (riderType = 4 and tis < shareLimit) then

5: Broadcast sharing requests

6: else

7: Set State = 4 . Exit system unserved
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Algorithm 3 Taxi algorithm

1: procedure TaxiAlgorithm(Taxis)

2: for all xc ∈ Taxis do

3: if State = 0 then . Charging

4: Check battery level and call Algorithm 6

5: if State = 1 then . Searching

6: if battery needs charging then . Algorithm 6

7: State← 0

8: else

9: receive requests from nearby non-sharing riders and add request

to requestList

10: Call Algorithm 4

11: if a match is found then

12: if taxi can serve rider with available battery energy then

13: add pick-up and drop-off point to route list

14: Proceed to the first point on the route list

15: Set State← 2

16: if State = 2 then . in service

17: if reached destination then Load / Unload rider group as per type of

destination (pick up / drop off)

18: if there are more points to visit in route list then

19: Move to next point in route list

20: else

21: Set State← 1

22: else

23: if Taxi can share (holdCode = {F, F, F, F}) then . Algorithm 7

24: search for share requests and add request to requestList

25: Call Algorithm 4
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Algorithm 4 Matching algorithm

1: procedure match(Taxi xc, List requestList)

2: remove all req ∈ requestList where req.State 6= 1 . Each rider group sends

requests to multiple taxis and could have got matched before xc evaluates their

request

3: bestMatch← NULL

4: for all req in requestList do

5: if xc.State = 2 and holdCode = 0 then . Evaluate Algorithm 7 to set

holdCode . Evaluating a sharing request

6: Use preCheck to eliminate infeasible shares . (Section A.3.2)

7: if req passes preCheck then

8: run bestRoute algorithm to insert req into the route list of xc in

the most optimal way while validating deviation tolerances for all riders involved

in the share . (Section A.3.3)

9: if bestRoute algorithm does not return a valid route then

10: match is not found

11: else

12: match is found

13: if req is better than bestMatch then . A better match is

defined as a one that has a better score based on Equation A.1

14: Set bestMatch← req

15: else . Evaluating a non-sharing request

16: if rider req is the closest rider to taxi xc in requestList then . Taxi

prefers the closest rider group

17: Add req pick-up and drop-off point to routeList

18: Add req to list of possible rides
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Algorithm 5 Shift change

1: procedure shiftChange(Taxis)

2: Randomly select ni taxis to be off-shift and the rest of the taxis to begin

shifts

3: for all xc ∈ Taxis that are in-shift do

4: if xc is in-shift then . in-shift taxis are searching for passengers

5: if time of in-shift > 8 hours then

6: if State = 2 then . still delivering riders

7: Stop accepting new shares . holdCode = 4

8: Set to be off-shift after the last drop off

9: else

10: Set to be off-shift . Not searching for new rides
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Algorithm 6 EV charging

1: procedure EVCharging(Taxi xc)

2: if xc.State = 1 then . Searching for rides

3: if xc.SOC < minSOC then . minSOC is the minimum SOC with

which a taxi can continue to search for new passengers

4: Set State← 0

5: else

6: if there is a charging station close by and the battery needs charge

then

7: search for charger and move towards charging station

8: if taxi is at charging station then

9: update xc.SOC as per time spent at charging station

10: if xc.SOC = 1 then

11: release the charger

12: if xc.State = 0 then

13: if xc.SOC is greater than searchSOC then

14: State← 1
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Algorithm 7 Detect sharing stoppages

1: procedure holdCode(Taxi xc)

2: holdCode← {F, F, F, F} . F: False, T:True

3: if xc.Status = 2 then . Searching for shared rides

4: if any riders in curRiders cannot share then

5: holdCode[1]← T . rider tolerance reached

6: if taxi is at max capacity then

7: holdCode[2]← T

8: if taxi has low battery level then

9: holdCode[3]← T

10: if taxi needs to get off shift then

11: holdCode[4]← T
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2.5 Data and Exploratory Analysis

The PP-SAEV model is applied to a case study of NYC taxis to quantify the

impacts of ride sharing at the city-scale. Although my analysis is based on one city,

it is notable that the model and framework is applicable to any city if similar data

is available. We choose NYC as our case study due to the following reasons:

• Data availability: NYC DOT (2016b) has published an extensive and highly

detailed database which allows us to validate the agent-based model at a micro

level.

• Potential impacts: The great demands of taxi rides in NYC indicate potential

significant saving opportunities. The average number of daily trips by taxis in

NYC is 485,000 (NYC DOT, 2014). During the evening peak hour, on average,

there are over 8,000 pickups within every 15 minutes (Figure 2.4(a)).

• Spatial sharability: Trips in NYC are highly concentrated (e.g., over 90% of the

taxi pickups are in the Manhattan region)(Figure 2.4(b)). The high number

of taxi rides along with the high spatial and temporal concentration of rides

make ride sharing a great transportation alternatives.

• High ratio of single-rider trips: Over 65% of all trips in NYC are single-person

trips (Figure 2.4(c)), which leaves a large amount of unused capacity in the

vehicles. This unused capacity can be filled by shared trips.

A sample of the data used in this study is shown in Table 2.1. The data we used

are the green and yellow taxi trip data from the year 2014 (NYC DOT, 2016b). We

chose data from 2014 because, at that time, ride sharing applications such as Uber

and Lyft had not been widely adopted to impact taxi ride demands (NYC DOT,
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(a) (b)

(c)

Figure 2.4. NYC taxi demand represented as pickups. (a) is a temporal
histogram for the pick ups every 15 minutes, (b) shows the spatial density
of taxi pick ups in NYC. (Grid resolution is 0.005◦ × 0.005◦, roughly
equivalent to 0.5km×0.5km). (c) Histogram for the number of passengers
in a rider group. (a) and (b) plots use the data from the date 8/24/2014.
(c) uses data from the year of 2014.

2016a). Hence the trip data from 2014 is more representative of the total demands
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in the city than the most recent data. The NYC-TLC records each pick up and

drop off for all yellow and green taxis registered in the city. The green taxis are not

allowed to pick up passengers below West 110th Street and East 96th Street, or at

the two NYC airports (NYC DOT, 2014), while the yellow taxis do not have such

restrictions. The reason for having this distinction between the Green and Yellow

taxis was to have more taxis available in the suburban region of the city (NYC DOT,

2014). The data recorded by the NYC-TLC is the trip pick up time and location (in

longitude and latitude), drop off time and location (in longitude and latitude), and

group size (number of people traveling together).

The travel demands in NYC have been divided into four phases as shown in

Figure 2.4(a) based on pick up time. While data is available for all phases and the

models are run for the entire day, and for multiple days, the discussions are mainly

focussed on the peak demand periods (the evening peak from 5:01pm to midnight),

because peak demand periods can benefit more from system efficiency gain through

ride sharing.

2.6 Modeling Taxi Shifts (for traditional taxi)

Unlike the current taxis that are temporarily unavailable during the off-shift

periods, autonomous vehicles can operate 24 × 7. Figure 2.5 shows the service

valleys of NYC taxis. These valleys can be eliminated by autonomous taxis. In

order to model traditional taxis, we modeled the change of shifts for the traditional

taxis to have shift schedules that are similar to the existing NYC taxi operation

schedules (Figure 2.5). The shifting schedules are modeled in Algorithm 5
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Figure 2.5. Average number of taxis in operation (on shift) every minute
(NYC DOT, 2014)

2.7 Summary

An agent-based model was built to study systems with varying adoptions of RS,

EV, AV wherein riders can have heterogeneous searching preferences. By varying the

parameters of this PP-SAEV model, new scenarios of the system can be generated

and output parameters can be studied. The demand to the PP-SAEV is the NYC

TLC taxi data which identifies the pick-up time and location and the drop-off loca-

tions of the riders. Subsequent chapters will describe different studies that I have

performed by varying the parameters of the PP-SAEV. By studying the output from

different parameter variations of the PP-SAEV model, I am able to provide insights

for policy makers and system designers about SAEV systems.
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3. RIDE SHARING USING SHARED AUTONOMOUS

VEHICLES AND TRADITIONAL TAXI CABS

The results in this chapter have been published in a journal paper: Lokhandwala,

M., & Cai, H. (2018). Dynamic ride sharing using traditional taxis and shared

autonomous taxis: A case study of NYC. Transportation Research Part C: Emerging

Technologies, 97, 45-60.

3.1 Introduction

Ride sharing and autonomous vehicles as discussed in Chapter 1 are emerging

mobility systems. While the implementation of ride sharing has already begun (for

example UberPool and Lyft Line), fully autonomous vehicles are not expected for the

next 10 years (McKinsey & Company, 2018). Hence, it is important to understand

how an increasing adoption of ride sharing impacts both present day non-AV fleets

and future AV fleets ride sharing using autonomous vehicles and using traditional taxi

cabs in order to understand the changes that autonomous vehicles will bring. This

chapter uses the PP-SAEV model developed in Chapter 2 to understand the impact

of increasing ride sharing participation1 in a fleet of AVs and non-AVs. Section 3.2

describes the scenario settings that are used for the PP-SAEV model. Section 3.3

1In this chapter the only two rider types (defined in Section 2.2) used are rider type 1 (non sharing)
and rider type 5 (sharing preferred). Sharing participation is defined as the ratio of rider type
4 to the total number of riders in the model expressed as a percent. Hence percentSharing =

Rider type 4
Rider type 4+Rider type 1 . The impacts of the other rider types 2,3,5 are discussed in detail in Chapter
5
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discusses the results from the case study of NYC in terms of the service level, waitng

time, riding time, percent of shared rides, GHG emissions and potential changes in

the the service level spatially as a result of ride sharing. The conclusions of this

chapter are discussed in Section 3.4

3.2 Simulation Scenarios

In order to study the system of ride sharing, several scenarios of the PP-SAEV

described in Chapter 2 were run to analyze the impacts of adopting ride sharing

and autonomous driving. The purpose of running the simulation scenarios was to

study the change in the performance parameters of the ride sharing system with the

RS adoption and the fleet size for AVs and for non-AVs. I used the demand from

May 7th, 2014 from the yellow and green NYC-TLC dataset NYC DOT (2016b). I

varied the percent of people who were willing to ride share with others (ride sharing

participation) among the values {0%, 25%, 50%,75%, 100%}, and the fleet size among

the values {3000,4000, 5000, 5500, 6000, 7000, 8000} for each of the autonomous

vehicle case (percent of AV’s = 100%) and the traditional (shifted) vehicles (percent

of AV’s = 0%) scenario. The percent of EV’s was set to 0 for this study. These

setting as well as the settings of other parameters are detailed in Table 3.1. In order

to compare the results against the existing NYC taxi system, a base scenario with

13, 500 traditional taxis running in shifts (13,500 is approximately the number of

yellow taxis currently in operation NYC DOT (2014)) was constructed. Yellow taxis

are the focus in this study because the areas they serve (e.g., Manhattan) have higher

trip density and can potentially benefit from ride sharing more.
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Table 3.1.
Simulation scenarios to understand ride sharing using shared autonomous
vehicles and traditional taxi cabs

Parameter Setting

percentSharing {0%, 25%, 50%,75%, 100%}

fleetSize {3000,4000, 5000, 5500, 6000, 7000, 8000, 13500}

AV Percent {0%,100%}

EV Percent 0

taxiCapacity 4

dtMode 0.5

3.3 Results

The scenarios mentioned in Section 3.2 were evaluated to infer city level statistics

such as service levels2, fleet reduction, waiting time, resource utilization, distance

traveled by the taxis and the riders, and spatial service level change to capture both

the advantages and disadvantages of increasing RS adoption.

3.3.1 Fleet Reduction

By better utilizing the available space in each vehicle, ride sharing can help reduce

the fleet size needed to serve the same demand. I consider a reduced fleet with ride

sharing as having the same service level as the existing system, if it can serve the

2The service level is defined as the number of rider groups that were served by the system. (Rider
groups may leave the system unserved if they could not be matched with a taxi within five minutes.
This represents the situations that people give up and seek alternative transportation options after
waiting for too long.)
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same number of rider groups as the base scenario (percent of rider groups transported

from their pick up points to the drop off points as compared to the scenario with

13,500 taxis without sharing). Figure 3.1 shows that a fleet of 5,500 autonomous

vehicles is sufficient to serve the demands during the morning peak period without

sharing. However, to satisfy the demand of the evening peak period at the same

level as the base scenario (labeled as“B” in Figure 6), 5,500 autonomous vehicles

with 100% ride sharing participation (labeled as scenario “A” in Figure 6) is needed.

This service level can also be achieved by scenarios with other parameter sets as

described in Table 3.2.

Table 3.2.
Scenarios and their parameter sets that can provide service within 2% of
the base scenario, during the evening peak. We will from here on refer
to these scenarios by the label.

Scenario

Label

Parameter Set

B Base Scenario 13,500 traditional taxis and 0% sharing

participation

A 5,500 autonomous taxis and 100% sharing participation

A2 6,000 autonomous taxis and 75% sharing participation

A3 7,000 autonomous taxis and 25% sharing participation

S 8,000 traditional taxis and 100% sharing participation

It is notable that, with the same ride sharing participation, a fleet of 5,500 au-

tonomous vehicles has similar service level as a fleet of 8,000 traditional taxis, in-

dicating that autonomous driving is roughly equivalent to adding 2,500 traditional
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taxis to the system. It can also be seen that shared autonomous taxis (Scenario

A) has better service level than all the other equivalent scenarios in the morning

peak. The main reason for this is that for the B and S scenario the number of taxis

available during the morning peak is less than the number of taxis in the evening

peak (Figure 2.5).

Figure 3.1. The average fraction of served rider groups (the ratio of
rider groups served by the taxis to the total ride groups) in the morning
(7:01am-3:00pm) and evening (5:01pm-12:00am) peak periods with dif-
ferent sharing and vehicle type scenarios. The light-red band indicates a
service level within 2% of the base scenario

A potential concern with ride sharing and a reduced fleet is the increased waiting

time and ride time for riders. However, my results (Figure 3.2(a)) show that, with a

fleet of 5,500 autonomous taxis (Scenario A), the average waiting time for the served

passengers (TRW ) only increases by less than two minutes compared to the base
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scenario. The other sharing scenarios also have similar waiting time increase. One

reason for the increased wait time is that the rider groups are spending additional

time searching for a shared ride when an unoccupied taxi may be more readily avail-

able. The average ride time, on the other hand, increases with more ride sharing

participation. In Figure 3.2(b), we can see that scenarios with higher sharing par-

ticipation (A, S, A2) have a higher ride time, approximately 10 minutes longer on

average.

(a) (b)

Figure 3.2. Change in (a) waiting time (TRW ) and (b) ride time (TRRide)
under different ride sharing participation and fleet size scenarios

Figure 3.3(a) shows that the extra distance traveled by shared riders increases

only with the percent sharing and does not change significantly with the fleet size.

This is due to the fact that higher sharing participation increases the number of

rider groups that shared the ride together (Figure 3.4(c)). Having more rider groups

sharing a ride increases the required deviations and the extra distance. However, this

increase is, on average, less than 33% of the original trip distance (Figure 3.3(b)).
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(a) (b)

(c)

Figure 3.3. (a) Average increase in trip distance for the riders. (b)
Average fractional increase in distance for the riders. (c) The average
fraction of individual utilized trip deviation relative to the individual
acceptable level, presented as a violin plot. (A violin plot is two vertical
density plots attached together at their bases. The vertical bar shows the
range of the values while the horizontal width shows the density of the
points at that value).
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Compared to the individual trip deviation tolerance, Figure 3.3(c) shows that very

few people utilize the full tolerance level in the sharing. About 40% of the riders in

scenarios S, A, and A2 only used less than 25% of the tolerable trip deviation. In

scenario A3, where the sharing participation is lower (25%), the utilized tolerance

is even less (over 70% of the riders only used less than 10% of their trip deviation

tolerance).

3.3.2 Increased Resource Utilization

The vehicle occupancy (calculated as the average number of passengers in a taxi)

is a measure of the utilization efficiency of the taxis in the system. Higher occupancy

indicates better system efficiency. Figure 3.4(a) indicates that, on average, the vehicle

occupancy increases with higher participation of ride sharing. With the 4-seat vehicle

capacity modeled in this study, the occupancy can increase from 1.2 (Scenario B) to 3

(Scenarios S and A). The average number of groups in a vehicle indicates the average

number of shares taking place. This value is 1 without sharing (Scenario B) and

increases to 2.5 per vehicle (Scenarios S and A) as a result of sharing (Figure 3.4(c)).

This results show that studies which constrain the sharing to be only between two

rider groups are limiting the sharing participation to be at the 50-75% level Kleiner

et al. (2011); Agatz et al. (2011). The results show that the actual percentage of

sharing participation is lower than the percentage of rider groups that are willing to

share. In scenarios that all riders are willing to share, the actual percentage of rides

that are shared is only about 80% (Figure 3.4(b)).
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(a) (b)

(c)

Figure 3.4. Sharing performance: (a) Change in occupancy in different
scenarios with similar service levels; (b) The actual percentage of rider
groups that participated in sharing; (c) Number of rider groups shared a
ride together varied with service levels

3.3.3 Environmental Benefits

My simulations have shown that the total distance traveled by the taxis reduces

as the ride sharing participation increases. Also, when compared to the base scenario,
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we see a reduction of approximately 2.8 × 106 km in total per day (which is 55%

of the distance traveled by the taxis) in scenario A, with 5,500 autonomous taxis

and 100% ride sharing participation (Figure 3.5(a)). This reduction in total travel

distance translates to approximately lowering CO2 emissions by 725 metric tonnes

per day. Compared the 40% trip reduction in NYC from ride sharing estimated by

Santi et al. (2014), our value is higher because we did not constrain sharing to be

only formed between two groups. We note though, that this emission reduction is

computed purely on the basis of total distance traveled. However, as estimated by

Wadud et al. (2016), autonomous vehicles may help achieve, on an average, a net

of 10-15% energy consumption saving due to potential changes in driving patterns

such as platooning, smoother driving, crash avoidance mechanisms. Another paper,

Gawron et al. (2018), has used life cycle assessment to estimate that introducing

connected automotive vehicles could reduce energy consumption by 9% due to these

driving pattern changes. If we consider this additional 9% reduction, for scenario

A, the overall reduction in CO2 emissions will be 802 metric tonnes per day. On

the other hand, for ride sharing with traditional taxis, even though the number of

vehicles in Scenario S is higher, the total travel distance is lower than Scenario A

(approximately 45% of the base scenario B). This results in a reduction of 3.42×106

km or a reduction of approximately 866 metric tones per day of CO2 emissions.

The percentage of distance for which the taxi is occupied can be studied to

gauge the efficiency of the system from an environmental perspective. Figure 3.5(b)

shows that the percent of occupied distance traveled by the traditional taxis (with

shifts) increases with higher sharing participation (from scenario B and S). For the

autonomous taxis, the fraction of distance for which the taxi remains occupied stays

relative stable regardless of the level of sharing participation. This tells us that, even

though the taxi is serving more customers, it will be traveling less to do so.
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(a) (b)

Figure 3.5. (a) Total distance traveled with respect to the base scenario
(Scenario B) for different scenarios. (b) The fraction of occupied distance
(distance traveled to deliver passengers) for all scenarios

3.3.4 Spatial coverage change

In order to evaluate the impact of ride sharing on the spatial distribution of

service levels, I compared scenarios that have nearly equivalent service levels (within

5% difference in served riders) and analyzed the fractional change in service level

in different regions. Figure 3.6(e) shows the fractional difference between the base

scenario (Scenario B) and Scenario A with 5,500 autonomous vehicles and 100%

sharing. We can see that using conventional taxi cabs without sharing as opposed

to the SAVs has a positive effect in the suburban region (shown as the purple and

blue cells in Figure 3.6(e)), but has a negative effect (shown as the red cells in Figure

3.6(e)) in the regions where the demand is the most dense (Manhattan and, more

significantly, Times Square). To identify whether this service coverage change is

due to autonomous driving or sharing, I further compared scenarios B and A3 to
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evaluate the impact of autonomous driving with no/low sharing and scenarios B and

S (Figure 3.6(b)) to evaluate the impact of sharing with traditional taxis. In both

cases, I observed similar spatial service coverage change. On the other hand, when I

compare scenarios A and S (Figure 3.6(d)) or scenarios A and A3 (Figure 3.6(b)), the

spatial service coverage is quite similar.These results show that both ride sharing and

autonomous vehicles will cause taxis to focus more on areas with higher demands.

While better serving the demands in the regions with more demand, the reduced

fleet decreases the service level in the suburban regions (more in Section SIC). To

remedy this disproportionate change in service, appropriate policies would be needed

to insure service in the suburban regions. Such policies could include providing price

incentives or restricting a portion of the fleet to the suburban regions (similar to the

way NYC currently distinguishes between Green and Yellow taxi cabs as mentioned

in NYC DOT (2014)).

3.3.5 Changes in efficiency of matching

The response time (TRR) represents the efficiency of matching. Our results show

that TRR is lower in the scenarios where the riders are homogeneous (all sharing or

all non-sharing) but higher in scenarios with a mix of sharing and non-sharing riders

(Figure 3.7). The reason for this is that our model assumes that all riders who are

willing to share will first search for a shared ride. So in scenarios with mixed rider

types (some rider groups are willing to share and some are not), it is possible that a

sharing taxi is close to a rider group that is not willing to share or an occupied non-

sharing taxi is close to a rider group that is willing to share. In these situations, the

matching cannot be formed. As a result, the time required to find a match increases



57

(a) (b) (c)

(d) (e)

Figure 3.6. Spatial distribution change in terms of service level. (a) The
fraction change in service level in Scenario A compared to Scenario B,
calculated as ServiceB−ServiceA

ServiceB
. (b) The fraction change in service level in

Scenario B compared to Scenario A3, calculated as ServiceB−ServiceA3

ServiceB
(c)

The fraction change in service level in Scenario B compared to Scenario
S, calculated as ServiceB−ServiceS

ServiceB
(d) The fraction change in service level in

Scenario A compared to Scenario A3, calculated as ServiceA−ServiceA3

ServiceA
.(e)

The fraction change in service level in Scenario A compared to Scenario
S, calculated as ServiceA−ServiceS

ServiceA
. Blue color indicates Scenario B or S has

better service level than Scenario A, while red color indicates Scenario
A provides better service. Grid resolution is 0.005◦ × 0.005◦, roughly
equivalent to 0.5km× 0.5km.

in the scenarios with mixed rider types, indicating a lower efficiency of matching.

However, the delay is less than one minute.
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Figure 3.7. Change in response time (TRR) under different ride sharing
participation and fleet size scenarios

3.4 Conclusion

The PP-SAEV model was used to determine the impact of increasing RS adop-

tion in AVs and non-AV fleets. The insights gained from this study are: 1) while

maintaining the same service level, ride sharing with autonomous vehicles can poten-

tially decrease the fleet size by up to 59% without significant waiting time increase or

additional travel distance; 2) the benefit of ride sharing is significant with increased

occupancy rate (from 1.2 to 3), decreased total travel distance (up to 55%), and re-

duced carbon emissions (725 metric tonnes per day). However, since the occupancy

rate does not go beyond 3 for a 4 seat vehicle, we can also conclude that ride sharing

has an efficiency limit ; 3) constraining the sharing to be only between two groups

limits the sharing participation to be at the 50-75% level and underestimates the

potential benefits; and 4) ride sharing may reduce the service level in the suburban
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areas, which will require complementary policies or incentives to help balance service

in different regions.
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4. RIDE SHARING ADOPTION IN MIXED

AUTONOMOUS VEHICLES AND TRADITIONAL

VEHICLE FLEETS OF VARYING CAPACITIES

4.1 Introduction

Chapter 3, considered taxi fleets which had either fully autonomous vehicles or

fully non-autonomous vehicles, and found scenarios that had the same percent of

riders served across multiple scenarios at 5 discrete levels of ride sharing. Then, vari-

ous performance parameters of the system (for example waiting time, environmental

impacts, ride time, etc) were compared for the scenarios that had the same service

level. However, in reality, the adoption levels of both AV and RS will increase gradu-

ally (continuously). Thus as these adoption levels increase gradually, systems where

the vehicle fleets have a mix of AV and non-AV will exist. Additionally, since we

have no data on how heterogeneous the riders in the system are, we need to test the

system for sensitivity of such sharing heterogeneity. However, studying such systems

using models such as the PP-SAEV model would require large number of parameters

to be varied, and hence a large number of scenarios to be run. Hence, methods are

required to find comparable scenarios for such high dientional systems.

The work in this chapter uses meta-model based simulation optimization to ex-

tend the methodology of finding scenarios that are comparable to each other for

scenarios that can have, fleets with a mixture of autonomous vehicles and shifted

vehicles, the taxis can be set to have different capacity, and the distribution of the
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deviation tolerances of the riders could be different. These comparable scenarios will

then be used to build a model to predict fleet size, understand other system perfor-

mance parameters of the system (like waiting time, and environmental impacts) and

understand the limitations of ride sharing.

In the previous chapter, the parameters of the agent-based model developed in

Chapter 2 were set as per Table 3.1. The fleetSize, and percentSharing were varied

in discrete steps only, and the values of AV Percent were set as either 0 and 1. This

limited the inference to only systems that had either completely autonomous, or

completely traditional taxi fleets. Additionally, the value of taxiCapacity was set to

4 and the value of dtMode was set to 0.5, further limiting our ability to understand-

ing the effect of varying these parameters. Since the number of parameters varied

in Chapter 3 were small, with two continuous parameters (ride sharing and fleet

size) and one discrete parameter (AV adoption), I was able to find five comparable

scenarios by running 50 combinations of inputs. In cases that the model has more

parameters , the parameter space is too large for comprehensively evaluating all the

possible scenarios. In order to extend the analysis presented in Chapter 3, to include

all possible parameter settings that can help us understand how different adoption

levels of RS and AV can influence system performance when taxis fleets are allowed

to have different maximum capacities, in this paper we used meta-model based sim-

ulation optimization to find scenarios that had the same target service level. These

inferences can be used by the modeler to infer the important parameters that affect

the output that we look to optimize. Then we will use the scenarios that we have

identified to have the same service level to make predictions on the correct fleet size

for a variety of systems, and also make inferences on the environmental impacts of

different possible systems. In this study, in order to understand the performance of

fleets with a mix of AVs and non-AVs, with varying fleet sizes of different capacities
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and sharing participation, I varied the parameters of the agent-based model as per

Table 4.1.

Table 4.1.
Simulation scenarios to study ride sharing adoption in mixed autonomous
vehicles and traditional vehicle fleets of varying capacities

Parameter Setting

percentSharing {0%, . . . , 100%}

fleetSize {5000, . . . , 15000}.

AV Percent {0%, . . . , 100%}

taxiCapacity {2, 4, 6}

dtMode {0, . . . , 1}

In Table 4.1, there are 4 parameters (percentSharing, fleetSize, AV Percent,

dtMode) that are varied as continuous variables, and one parameter that is varied

as a discrete variable (taxiCapacity). If these variables were to be discretized and

run simulation scenarios like the study in Chapter 3, there would be 104×3 = 30000

different scenarios for the PP-SAEV (assuming each continuous variable is discretized

in 10 steps). Additionally, it would difficult to know if any of these scenarios actually

was within the range of the target service level (0.82-0.86), thus making it essential

to run each of the 30000 scenarios to find those that met the service targets. Since

it is not computationally feasible to run that many scenarios (each scenario run

takes 3-7 days to complete), a method is needed to run only those scenarios that I

suspect will lie within the target service range. In order to do this, a meta-model

based methodology was used to initially fit a model which describes the relationship

between the output (service level) and input parameters (Table 4.1, and then make
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predictions to find which parameter setting would give a service level that meets the

target.

The rest of this chapter is divided into 4 sections, Section 4.2 discusses relevant

literature that pertains to work done to find comparable scenarios in agent-based

models, Section 4.3 discusses the experimental design methodology that was used to

run the ABM with appropriate parameter settings, and Section 4.4 uses the method-

ology on a case study and discusses fleet sizing, environmental impacts, and ride

sharing limitations for that case study. the conclusions of this study are outlined in

Section 4.5.

4.2 Literature Review

The use of agent-based models to study systems with complex interactions have

increased in recent years owing to the rapid increase in processing power (agent-

based models are computationally intensive). Agent-based models have been used

in the fields such as public policy, social science, economics, biology, and military

(Heath et al., 2009) and have also been used to simulate optimum decision making

in these fields (Barbati et al., 2012). The ability to include transportation networks,

consider individual demands, include parameters that define agent heterogeneity,

enable inter-agent communication, and build protocols for finding the optimum value

of a certain objective for the agents has made agent-based modeling a great tool for

researchers in the field of transportation. Bazzan and Klügl (2014) has conducted

an extensive review of papers that have used agent-based models in transportation

research, showing the wide use of agent-based models to simulate traffic flow, routing,

and collaborative driving etc.
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In the field of ride sharing and autonomous vehicles as discussed in Section 1.1,

1.2 and 1.3, ABMs have been used by many studies (Mourad et al., 2019; Taiebat

et al., 2018) to understand system effects. For example, Alonso-Mora et al. (2017);

Ma et al. (2015); Qian et al. (2017); Fagnant and Kockelman (2014); Fagnant et al.

(2015); Chen et al. (2016a); Simonetto et al. (2019); Boesch et al. (2016); Zhu and

Kornhauser (2017); Farhan and Chen (2018); Loeb et al. (2018); Bauer et al. (2018)

built agent-based models to analyze emerging transportation technologies like ride

sharing, autonomous vehicles and electric vehicles. They studied the effect of varying

their model input parameters (which consisted of the maximum allowed ride sharing

delay and the vehicle capacity) on the output parameters (service levels, waiting

time, and travel delay experienced).

However, these papers only evaluated the models performance on a maximum

of 3 dimensions. For example, Qian et al. (2017) studied the effect of the provided

discount, the day of the week, and the time of the day on the reduction of total trip

mileage. Ma et al. (2015) plotted several preformance parameters like satisfaction

rate, ride sharing rate, average saving rate against the demand increase, and the

money to time rate for different ride matching schemes. Simonetto et al. (2019)

considered different demand rates, fleetsizes. Loeb et al. (2018); Bauer et al. (2018)

simulated a system of shared autonomous electric vehicels (SAEV) using ABMs.

Loeb et al. (2018) measured the charging performance as a function of vehicle range,

and charging rate and Bauer et al. (2018) measured cost of service, and the minimum

taxi fleet required while varying the EV charging station power rating, the EV range.

However, in modern and evolving transportation systems with fleets that have mixed

compositions, often three dimensions are not sufficient to capture all the potential

changes.
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Alternatively, some of the studies evaluated the performance of SAV systems

for multiple parameters by modeling a limited number of specific scenario settings.

Farhan and Chen (2018); Chen et al. (2016a) used an ABM to simulate SAEVs

and simulated 8 parameter sets and 5 parameter sets respecitively. Fagnant and

Kockelman (2014) built an SAV model and ran 25 different scenarios with various

parameter settings. However, simulating a limited number of scenarios based on

specific parameter settings do not give an idea of how an output changes with any of

the input parameters. Second, even though these papers evaluated multiple scenarios

and multiple performance indicators, there is a need to compare these scenarios

against one another on a fair ground as detalied in Section 1.2. For example, (Alonso-

Mora et al., 2017) built an agent-based model to study ride sharing using shared

autonomous vehicles of varying capacities. They tested the effect of varying the

maximum allowed time for a shared trip and showed its impact on the percent of

served requests, waiting time, travel time, and percent of shared rides. However, the

scenarios that were presented in this work were not equivalent because they did not

have the same level of service.

Metamodels, involve estimating the relationship between the simulation output

and the parameter settings and then using optimization techniques to find the op-

timal parameter setting and have been used in many simulation studies (Box and

Wilson, 1951; Amaran et al., 2016; Ankenman et al., 2010; Barton, 2009; Chow and

Regan, 2014; Ekström et al., 2016; Osorio and Bierlaire, 2013) and can be used to

identify comparable scenarios in the PP-SAEV model. There are two main advan-

tages of using meta-models to finding sets of comparable scenarios. First, the method

does not require any hyper-parameters to be set in order to be used unlike level set

approximation approachs (Huang and Zabinsky, 2013) or metaheurestics (Mishra,

2018; Joines et al., 2002; Ding et al., 2005). Second, at each simulation optimiza-
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tion stage, we can infer the important parameter settings easily by observing the

meta-model (which relates the inputs and outputs using regression). This can help

us guide the simulation optimization.

4.3 Method

The objective is to find multiple combinations of input parameters (X), which,

when applied to the PP-SAEV model, produce an output (Y ) that is within range

([Yl, Yu]) of a target value (YT ). We will assume that we have access to N starting

points, which could be either solutions that satisfy this target value or scenarios that

would be able to enhance our understanding of the system. While we prefer solutions

that meet our target output since starting with these solutions would enhance our

knowledge of the surface in the region of interest, we also consider points that do not

meet the target in the initial set because they could help improve the overall initial

estimation of the response surface. The initial solutions can be obtained by domain

expert knowledge, or by varying a subset of the parameters while keeping the others

fixed. Then, we can use the following method to find the target output value:

1. Begin with N starting points. Add those solutions which meet the target value

to a set of accepted solutions A.

2. Generate N designs using the N starting solutions as center points. Each

design will have R runs, each with different input parameters as generated by

the design. The designs can be generated using any of the techniques available

(for example, factorial designs (Fisher, 1935; Box and Hunter, 1961b,a), central

composite design (Box and Wilson, 1992), and Box-Benkhen design (Box and

Behnken, 1960) etc.) The value R is chosen based on the simulation budget.
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3. Run the ABM with the parameter settings (X = (Xc, Xd) where Xc are the

settings for the continuous parameters, and Xd are the parameter settings for

the discrete parameters) generated in step 2 and obtain the outputs (Y ). Add

these R×N model runs to Scenarios.

4. Build a meta-model f(X) which approximates the response Y as a function

of the system parameters X ∈ Scenarios. The model that is chosen should

have good predictive accuracy and can be chosen from a variety of meta-model

classes like linear models, non-linear models like GLMs, spline based models,

and neural networks (Barton, 2009).

5. Use an optimization algorithm to find M solutions that would have the output

within the target range. The optimization model can be in the form of:

Maximize
D∑

d=1

|M |∑
m=1

min(||X̄c,a − X̄c,m||;Xa ∈ A,Xd,m, Xd,a) (4.1)

s.t. Yl ≤ f(Xm) ≤ Yu∀Xm ∈M (4.2)

X ∈ X (4.3)

where X̄c,a and X̄c,m are the normalized values of Xc,a and Xc,m respectively,

Xm = (Xc,m, Xd,m), Xa = (Xc,a, Xd,a), D is the number of unique settings

that the discrete parameters can take and Xd,a, Xd,m is the d-th setting for

the discrete parameters1 . Yl and Yu represents an acceptable lower and upper

bound of our target service level, respectively. We find scenarios that fall within

a band of our target response because it would be extremely challenging to find

scenarios that exactly meet our target output. Here X is the set of all possible

1If there are VD discrete parameters, D =
∏VD

i=1 Si where Si is the number of unique values discrete
variable i can take
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values the parameters X can take. The objective function (Equation 4.1)

maximizes the total minimum euclidean distance between the normalized values

of the new proposed M solutions and the existing accepted solutions A. We use

this objective function, so that at each iteration, we are evaluating solutions

in parts of the solution space that is least explored by the model. I choose to

normalize the variables so that a particular parameter is not weighted higher

than any other parameter. The value M is chosen based on our simulation

budget and the predictive accuracy of our meta-model.

6. Run the simulation model with the input parameters of the M solutions to

verify the output. Set Scenarios← Scenarios∪M The set of inputs xm;m ∈

1 . . .M with outputs within our target range ([Yl, Yu]) are added to our verified

set of solutions (A). We can compare the other key performance parameters

of these accepted solutions to give us a like-to-like comparison.

7. If budget permits and if more information (better model or more comparable

scenarios) is needed, proceed to step 8 else go to step 10

8. If predictive accuracy of meta model is sufficient (α% of the M solutions are

in the set A) go to 4

9. Select N new starting points from the set of M simulation parameters which

were not a part of the accepted solution set A. We select solutions that were

not a part of set A so that we can improve the estimation of the metamodel in

regions where our estimates were inaccurate. Go to step 2.

10. Else Stop

A pictorial representation of this method is included in Figure 4.1.
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Figure 4.1. Flowchart of meta-model based simulation optimization
method to find comparable scenarios

In the next section we will apply this methodology to the PP-SAEV model to

demonstrate the use of generating a set of solutions with a target response to make

decisions on fleet sizing and inferences on system performance parameters like CO2

emissions and waiting time for riders.

4.4 Case Study Results

In order to understand the impact of an increasing rate of adoption of AVs and

ride sharing, as well as evaluate systems with different mix of rider sharing prefer-

ences, I use the PP-SAEV model built in Chapter 2 with the range of parameters

mentioned in Table 4.1. In Chapter 3, I identified 5 scenarios, which had a service
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level equal to the service level of the base scenario (table 3.2). In order to find similar

equivalent scenarios, I used the method described in Section 4.3. First, I selected

N = 5 starting solutions (table 3.2) which I knew have the same service level as the

target service level of 0.86. I was running the models on Purdue‘s Snyder computing

cluster on which I had access to 5 nodes with 20 cores each. This meant that at

a time I was able to run up to 100 scenarios of PP-SAEV with different parame-

ter settings. So, for each starting point, and each capacity level, I created a half

24 fractional factorial design. The total number of simulation scenarios that were

run in Step 1 were 24/2 × 3 × 5 = 120. Even though this number is greater than

100 (the number of scenarios that I could run at a time), the scenarios that have a

lower sharing participation get completed much quicker than those with high sharing

percentage. Hence, in order to optimize the computing resources available to me, I

always ran a little more scenarios in a step than what my budget allowed me. The

parameter settings for the 1/2 factorial design are given in table 4.2

Then, I used a linear regression model with 2 factor interactions to model the

relationship between the fraction of riders served by the system (ServedPC) during

the evening peak hours (6:00pm to midnight as per figure 2.4(c)) and the input

parameters in table 4.2 for these 120 scenario runs. Then, using the optimization

model represented in equation 4.1 - 4.3, I generated the next set of 125 scenarios.

Since it is difficult to solve the optimization model (the constraints and the objective

function are non linear), I used an approximate method to select a set of comparable

scenarios.

1. I discretized the continuous input parameters (fleetSize in steps of 100 and

PercentAV , PercentSharing, dtMode in steps of 0.025) and enumerated all

possible combinations of these parameters
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Table 4.2.
The new designs that were used to generate the response surface. Each
cell is a vector of 2 numbers which correspond to the low, and high
settings for that variable.

Derivative

Scenario

fleetSize PercentAV PercentSharing dtMode taxiCapacity

A {5000,

6000}

{0.8, 1} {0.8, 1} {0.25,0.75} {2,4,6}

B {11500,

13500}

{0, 0.2} {0, 0.2} {0.25,0.75} {2,4,6}

S {7500,

8500}

{0.8, 1} {0.8, 1} {0.25,0.75} {2,4,6}

A2 {6500,

7500}

{0.8, 1} {0.6, 0.9} {0.25,0.75} {2,4,6}

A3 {5500,

6500}

{0.8, 1} {0.1, 0.4} {0.25,0.75} {2,4,6}

2. I predicted the response for each of these combinations of inputs

3. I filtered these combinations of inputs to keep only those combinations that had

a predicted response within my target service band (potential next simulation

runs T ).

4. I used the following greedy algorithm to select the top N solutions based on

the distance metric (equation 4.1) from the set of accepted solutions A:
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(a) Calculate the distance metric for all points in set T from all points in set

A

(b) Filter set T by removing all scenarios with a distance metric of less than

0.02 units

(c) Set Temp = A

(d) Repeat for length(T ) repetitions :

(e) Select the scenario in set T with the largest distance metric and add

it to set Temp

(f) Calculate the distance metric Dist = ||X̄c,a − X̄c,t|| for all points

t ∈ Temp

(g) End For

(h) Select the top N from set T solutions with largest Dist calculated in step

4f

While this algorithm is not guaranteed to give a globally optimum set of param-

eters to run, for the purpose of this study, the solutions generated by this algorithm

are sufficient to give us the inferences that we need.

I followed metamodel based algorithm presented in Section 4.3 for 5 iterations

(with a total of 620 simulation scenarios) and obtained 518 combinations of input

parameter settings which were within my target service range of 0.84 to 0.88. At the

end of the 5th iteration, the minimum distance between any two solutions is 0.02

units. The linear regression model from the 620 simulation runs is shown in Table

4.3
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Table 4.3.: Significant terms in the least squares regres-

sion

Term Coef SE Coef T-Value P-Value

(Intercept) −2.01e− 02 2.61e− 02 −7.70e− 01 4.42e− 01

fleetSize 1.47e− 04 3.84e− 06 3.83e+ 01 < 2e− 16

percentSharing 1.12e− 01 1.21e− 02 9.30e+ 00 < 2e− 16

PercentAV 2.74e− 01 1.71e− 02 1.60e+ 01 < 2e− 16

taxiCapacity4 −6.56e− 02 1.40e− 02 −4.68e+ 00 3.80e− 06

taxiCapacity6 −1.52e− 01 1.46e− 02 −1.04e+ 01 < 2e− 16

dtMode 1.93e− 04 9.71e− 03 2.00e− 02 9.84e− 01

I(fleetSize2) −5.96e− 09 1.50e− 10 −3.97e+ 01 < 2e− 16

I(PercentAV 2) −1.85e− 02 5.70e− 03 −3.25e+ 00 1.25e− 03

I(dtMode2) 7.74e− 03 5.14e− 03 1.50e+ 00 1.33e− 01

fleetSize :

percentSharing

−7.97e− 06 9.65e− 07 −8.26e+ 00 1.52e− 15

fleetSize :

PercentAV

−1.88e− 05 1.12e− 06 −1.67e+ 01 < 2e− 16

fleetSize :

taxiCapacity4

8.44e− 06 1.16e− 06 7.30e+ 00 1.26e− 12

fleetSize :

taxiCapacity6

1.87e− 05 1.25e− 06 1.49e+ 01 < 2e− 16

fleetSize : dtMode −1.06e− 06 6.79e− 07 −1.56e+ 00 1.20e− 01

percentSharing :

PercentAV

−1.84e− 02 4.66e− 03 −3.95e+ 00 9.04e− 05

continued on next page
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Table 4.3.: continued

Term Coef SE Coef T-Value P-Value

percentSharing :

taxiCapacity4

3.94e− 02 4.45e− 03 8.85e+ 00 < 2e− 16

percentSharing :

taxiCapacity6

5.72e− 02 4.60e− 03 1.24e+ 01 < 2e− 16

percentSharing :

dtMode

1.10e− 02 3.74e− 03 2.94e+ 00 3.49e− 03

PercentAV :

taxiCapacity4

2.68e− 02 5.67e− 03 4.73e+ 00 2.93e− 06

PercentAV :

taxiCapacity6

5.45e− 02 5.82e− 03 9.37e+ 00 < 2e− 16

taxiCapacity4 :

dtMode

3.67e− 03 3.18e− 03 1.15e+ 00 2.49e− 01

taxiCapacity6 :

dtMode

7.60e− 03 3.61e− 03 2.11e+ 00 3.56e− 02

Figure 4.2 shows the parameters of all of the scenarios that have the same service

level. In the plot of fleetSize with PercentAV and PercentSharing, we see that for

higher capacities, the fleet size required is much lower. Also, we can see that scenarios

with capacities 6 form a lower boundary for the scenarios that are equivalent to each

other at (fleetSize, PercentAV, PercentSharing) = (6000, 1, 1). There seems to be

no apparent upper bound as the scenarios with capacity 2 are limited by their low

capacity, and no increase in fleet size, AV percent, or sharing participation seems to

have any impact on the percent of riders served after a certain value. We also see
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from figure 4.2 and table 4.3 that the variable dtMode does not have a strong impact

on the percent of riders served as compared to the other variables.

The following sub sections will more formally explore the relations between the

input parameters, and the other output performance indicators of the system.

4.4.1 Fleet Sizing

One of the important decisions while considering transportation systems such as

the one described in this dissertation is the number of vehicles that will be required

to maintain the current service level. By estimating the fleet size, a transportation

planner can also estimate the budget that would be required, considering that other

input parameters (percentSharing, percentAV , taxiCapacity, dtMode) are fixed. In

order to estimate the fleetsize required I built seperate regression models for each level

of taxiCapacity. For taxiCapacity = 2, I used Multivariate Adaptive Regression

Splines (MARS) (Friedman, 1991), for taxiCapacity = 3, 4 I used a log transformed

linear model. The prediction model for taxiCapacity = 2 had an R2 = 0.32, for

taxiCapacity = 4 had an R2 = 0.94, and for taxiCapacity = 6 had an R2 = 0.97.

The reason that the taxiCapacity = 2 model has a low goodness of fit (and large

errors - figure 4.3(a)) is that there are potentially many solutions which have the

same percentSharing, percentAV and dtMode, and different fleet size (figure 4.2),

however, the model would only predict one value at a time. Figure 4.3(c) are the

partial dependence plots for the fleet size models. Partial dependence plots illustrate

the predicted change in the response variable for a marginal change in the predictor

variable (Brandon Greenwell, 2016). Using Figure 4.3(c), we can infer the fleet size

change that would be needed as the AV and ride sharing adoption increases. From

the contours of taxiCapacity = 4, we can infer that in order to reduce the fleet size
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Figure 4.2. The input parameters of all the scenarios that have equal
service level. The color refers to the Capacity of the taxis (2 - red), (4 -
blue) and (6 - pink)



77

by 1000 vehicles, we would need to either increase the sharing participation by 30%

or increase the AV adoption by 25%. For a similar reduction in vehicle fleet with

taxiCapacity = 6 we would need to increase sharing participation by approximately

50% or AV adoption by 37%. However, it is noteworthy that for the same level of

sharing participation and AV adoption, the fleet size that is required for a scenario

with vehicles that have a capacity of 6 is less by approximately 500 taxis, as compared

to scenarios with capacity 4.

4.4.2 Analysis of Key Output Parameters

While evaluating the sustainability and usefulness of transportation systems, sys-

tem operators often have to consider multiple performance indicators such as the in-

convenience cause to the riders (increased waiting time or increased travel distance)

and the environmental impact.

4.4.2.1 Waiting time and Travel distance increased

When ride sharing systems are concerned, the major consideration for riders is

the increased travel distance that would result due to the vehicle deviating from its

route. Additionally, since the number of vehicles in ride sharing systems would be

less (figure 4.3(c)) there is a possibility that riders would have to wait more time for

service.

We can see from figure 4.4, the increase in travel distance for riders is mostly

dependent on increasing sharing participation (an increase of 20% in sharing partic-

ipation results in an average increase in travel distance by approximately 10%). In

the case of waiting time though, the trend is not as clear as the increase in travel
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(a) (b)

(c)

Figure 4.3. (a)Errors in in-sample prediction (a) Cross validation errors
(b) The partial dependencies of fleet size with Capacity (panels), shar-
ing participation (x-axis) and fraction of AVs (y-axis), the contours are
spaced at 1000 taxis.

distance. Hence, in order to better understand the relation of the waiting time on

the input parameters I built a linear regression model of waiting time against all the

input parameters. The model (table 4.4) has an R2 of 0.97, with an out of sample

RMSE of 8.807s. Using the partial dependence plots (Figure 4.5) we can further

analyze this model.
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(a) (b)

Figure 4.4. Raster plot of (a) average fractional increase in travel distance
for riders (b) Waiting time for riders

From figure 4.5(a) and 4.5(b) we see that, an increase in fleet size by 1000 taxis

or an increase in AV adoption by 25% can reduce the average system waiting time

by approximately 30s in systems with taxi fleets with capacity 4 and 6. In systems

with capacity 2 fleets, an increase in 1000 taxis or an increase in AV adoption by

37% reduces the average waiting time by approximately 20s. The reason for this

difference between the capacity 2 fleets and the capacity 4/6 fleets is due to the

small capacity vehicles being unable to accept certain riders due to their restricted

capacity.

The partial dependence of waiting time on the percent sharing though is inter-

esting. From figure 4.5(c) we see that for capacity 2 taxis the waiting time increases

for increase in the sharing participation since it is difficult to find shared rides when

the capacity is low and riders would need to wait more to find a ride. In cases where
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Table 4.4.
Regression model for waiting time RMSE = 8.81s and R2 = 0.97

term β Std. Error t value p value

(Intercept) 277.5 9.402 29.509 < 2e-16

fleetSize -0.01253 0.0007462 -16.786 < 2e-16

percentSharing 54.13 11.87 4.558 6.52e-8

percentAV -45.02 3.061 -14.71 < 2e-16

taxiCapacity4 215.9 20.27 10.653 < 2e-16

taxiCapacity6 215.3 38.92 5.534 5.12e-10

dtMode 33.92 6.239 5.436 8.59e-10

fleetSize : percentSharing -0.005281 0.0009148 -5.773 1.38e-10

fleetSize : taxiCapacity4 -0.01682 0.001803 -9.33 < 2e-16

fleetSize : taxiCapacity6 -0.01602 0.003847 -4.164 3.7e-7

fleetSize : dtMode -0.00313 0.0005625 -5.564 4.34e-10

percentSharing : percentAV 6.158 4.102 1.501 0.134

percentSharing : taxiCapacity4 -39.31 5.642 -6.967 1.05e-14

percentSharing : taxiCapacity6 -14.53 8.232 -1.765 0.0782

percentSharing : dtMode 15.12 3.499 4.322 1.87e-6

percentAV : taxiCapacity4 -53.15 5.871 -9.052 < 2e-16

percentAV : taxiCapacity6 -43.33 10.53 -4.113 4.58e-8

the capacity is 4, the waiting time decreases with increase in the percent sharing,

as more riders are able to find shared rides when the capacity is 4. However, when

the capacity is 6, the percent sharing has no effect on the waiting time, since in
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(a) (b) (c)

(d)

Figure 4.5. Partial dependency plots of waiting time (s) form the linear
model (table 4.4) with (a) Fleet Size and Capacity (b) sharing participa-
tion and capacity (c) AV adoption and Capacity (d) dtMode and percent
sharing. In (d) the waiting time is represented by the colour of the con-
tours in the plot of dtMode and percent sharing.

scenarios where the capacity is 6, the fleet size is generally low. As indicated by the

model (table 4.4), fleet size is the most important predictor of waiting time since

a larger fleet means there will be more available taxis at a time. Additionally, the

dtMode parameter has an important role in determining the average waiting time

(figure 4.5(d)). The waiting time increases with increase in the dtMode parameter.

For low values of percent sharing the dtMode parameter has a smaller impact than

at higher sharing adoption since, the dtMode parameter is only meaningful for riders
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who participate in sharing, and when the sharing participation is low the dtMode

parameter becomes irrelevant.

Table 4.5.
Cluster centers obtained using k-means clustering on percentSharing and
percentAV from the comparable scnarios in Table 4.1

percentSharing percentAV

1 0.1184431 0.1497469

2 0.8719863 0.8690239

3 0.7854922 0.2014679

4 0.2458002 0.8088082

Figure 4.6. CO2 per day for each scenario with fleet size. The
taxiCapacity is represented by the shape of the point and the color
refers to the cluster centers obtained using k-means clustering on
percentSharing and percentAV . The coordinates of the cluster centers
are in Table 4.5
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4.4.2.2 CO2 Emissions

Ride sharing and autonomous vehicles have been associated with lower carbon

emissions (Brownell and Kornhauser, 2014; Taiebat et al., 2018; Chen and Kockel-

man, 2016a; Fagnant and Kockelman, 2015). In order to quantify these environmen-

tal impacts, I multiplied the distance travelled by all the vehicles in each equivalent

scenario by the CO2 emitted per mile. I used seperate the CO2 emitted per mile

factors for taxiCapacity 2,4, and 6 vehicles (same as the Chevrolet Spark (271 g CO2

per mile), Toyota Corolla (286 g CO2 per mile) and the Chevrolet Equinox (315 g

CO2 per mile) from EPA (2018)). Also, for the AVs in the model, the total daily

emission was reduced by 9% as per the findings of Gawron et al. (2018). Figure

4.6 plots the CO2 emitted per day for different scenarios against the fleet size. In

order to better understand the impact of the input parameters on the environment,

I clustered these scenarios by percentSharing and percentAV (Table 4.5 are the

cluster centers). We can see that the most scenarios with the least tailpipe emissions

have high percent sharing, low AV adoption and a capacity of 4 since these scenarios

have both a low fleet size and low CO2 emitted per mile. The scenarios where the

taxiCapacity = 2 has the highest range in the total daily emissions, and mainly

depend upon the number of vehicles in the system (since the total distance travelled

increases with the number of vehicles). Even though the CO2 emitted per mile for

capacity 2 vehicles is low, since these scenarios have a relatively large number of

vehicles and hence a higher distance travelled, they have higher daily CO2 emissions

as compared to capacity 4 vehicles. In contrast, scenarios with capacity =6 have

higher emissions per mile but lesser distance travelled and the lowest daily emission

for the scenarios with capacity 6 are approximately the same as that with capacity
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4. So, if scenarios that have lower carbon emissions are desired, we should prefer

fleets of capacity 4 with lower AV adoption and higher ride sharing participation.

4.4.3 Studying the efficiency limitations of ride sharing

(a) (b)

Figure 4.7. Raster plot of (a) Average occupancy for riders (b) Average
number of shares for riders

Figure 4.6 shows us that increasing ride sharing in taxi systems has the potential

to reduce daily CO2 emissions, by reducing the total distance travelled by the vehicles

in a day. Taxi sharing is able to make these reductions in total travel distance by

pooling rides that are along the same path together. We can argue that if a larger

number of rides are pooled in the same vehicle together, we can further reduce the

travel distance or serve more riders by travelling the same distance. However, pooling

more rides together may not always be possible for various reasons (for example,

capacity limitations of vehicles, sharing tolerance of riders, and not having enough

riders sharing a similar route). Using the comparable models developed in Section

4.4, we can plot the changes in capacity for the taxis in the system.
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From Figure 4.7(a) we can see that in scenarios where the taxi capacity is set to 4

or 6, the taxis are unable to reach the maximum capacity available to them using ride

sharing, even though increasing ride sharing permits vehicles to have more riders. In

order to investigate the cause of taxis being unable to reach the maximum capacity,

I studied the status of the taxis from each scenario that I ran of the PP-SAEV,

and recorded events at which the taxis are prevented from sharing by recording the

sharing stoppages using algorithm 7 in Chapter 2. The different statuses that the

taxis can be in are :

Table 4.6.
Sample taxi status table for a scenario with 3000 taxis. Each row sums
to the total number of taxis in the system, in this case 3000

Time

(s)

Outs-

hift

Idle Shar-

ing

LTole-

rance

LCapa-

city

LShift-

Out

LTol-

Cap

LShift-

Cap

LTol-

Shift

LAll3

10 1500 200 1000 286 10 0 4 0 0 0

20 1450 230 988 318 12 1 1 0 0 0

30 1455 220 1100 211 11 0 2 0 1 0

40 1523 231 945 286 8 0 6 0 0 1
...

...
...

...
...

...
...

...
...

...
...

• Outshift: The taxi is not accepting any new passengers as it is not in shift

(meaningful for non-autonomous vehicles). Shifts are decided as per the shifting

schedules presented in Section 2.6.
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• Idle: Not currently serving any customers and willing to accept their first ride.

(Status = 1 in Algorithm 3)

• Sharing: Currently serving passengers and are accepting additional passengers

to share rides. This status occurs only when all the riders in the taxi can accept

shared rides, their deviation tolerance limit has not been reached, the taxis are

not at maximum capacity, and the taxis are not scheduled to go out of shift at

the termination of the current ride. (holdCode = {F, F, F, F} in Algorithm 7)

• LTolerance: Currently serving passengers and not accepting additional passen-

gers to share rides since not all the riders in the taxi can accept shared rides

since the riders deviation tolerance limit has been reached either due to sharing

or if they were non-sharing riders. (holdCode = {T, F, F, F} in Algorithm 7)

• LCapacity: Currently serving passengers and not accepting additional pas-

sengers to share rides since the taxi is at maximum capacity. (holdCode =

{F, T, F, F} in Algorithm 7)

• LShiftOut: Currently serving passengers and not accepting additional passen-

gers to share rides since the taxi is scheduled to shift out at the termination of

the current ride. (holdCode = {F, F, F, T} in Algorithm 7)

• LTolCap: Currently serving passengers and not accepting additional passengers

to share rides since not all the riders in the taxi can accept shared rides since the

riders deviation tolerance limit has been reached and the taxi is at maximum

capacity. Ideally, in order to use the maximum capacity of the taxi each time

we would prefer that all of the taxis would eventually reach this status while

serving riders. (holdCode = {T, T, F, F} in Algorithm 7)
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• LShiftCap: Currently serving passengers and not accepting additional passen-

gers to share rides since the taxi is at maximum capacity and at the termination

of the ride the taxi is scheduled to go out of shift. (holdCode = {F, T, F, T} in

Algorithm 7)

• LTolShift: Currently serving passengers and not accepting additional passen-

gers to share rides since not all the riders in the taxi can accept shared rides

since the riders deviation tolerance limit has been reached and at the termina-

tion of the ride the taxi is scheduled to go out of shift. (holdCode = {F, T, F, T}

in Algorithm 7)

• LAll3: Currently serving passengers and not accepting additional passengers

to share rides since not all the riders in the taxi can accept shared rides since

the riders deviation tolerance limit has been reached, the maximum capacity

of the taxi has been reached, and at the termination of the ride the taxi is

scheduled to go out of shift. (holdCode = {T, T, F, T} in Algorithm 7)

In order to build a data set of the actions of the taxis at a given time, I collected

such status updates from each taxi at 10 second intervals in a data set similar to Table

4.6. Then, since the data in the table reflects a composition where in the counts of

each taxi in a particular status is recorded, (and the total of each row is the number

of taxis in the system), I used compositional data analysis techniques (Filzmoser,

2018), to first find the mean composition of the taxi status in every simulation

during the peak hours of the day, and then I clusterd the data by first transforming

these compositions to their pivot coordinates using Equation 4.4 (Filzmoser, 2018)

and then using hierarchical clustering on the data to identify groups of scenarios

which have similar number of taxis in each state on an average during the evening

peak demand period (Figure 2.4(a)).
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zp =

√
D − p

D − p− 1
ln

xp

D−p

√∏D
k=p+1 xk

(4.4)

In Equation 4.4 zp is the p ∈ {1 . . . D − 1} pivot coordinate, D is the number of

components in the compositional data, and xi is the i-th component of the composi-

tional data. This pivot coordinate transformation is needed since compositonal data

exists in a space defined by the D dimentional simplex SD (also known as Aitchison

geometry) defined by its coordinates, and the transformation given by Aquation 4.4

maps these compositional coordinates from SD to RD−1. In the SD space, standard

distance measures (for example L2 norm) do not represent the distance between

the two points, and data analysis techniques (such as clustering) would not work

as desired. However, by mapping the compositional data to RD−1 we can use data

analysis techniques like clustering to interpret our data. Figure 4.8 and 4.9 shows

the cluster assignment using hierarchical clustering in pivot coordinates and in terms

of the input parameters respectively. Using Figure 4.9, we see that Cluster 1 consists

of scenarios that have 100% AV adoption. As a result of having 100% AV adoption

from the scatter plot of fleetSize with percentSharing we see that these scenarios

give the lowest number of vehicles that are needed to achieve the same service level

of 0.86. Cluster 2 mostly consists of scenarios with a high ride sharing adoption

(above 40%), and in the case where taxiCapacity = 2, all scenarios with ride sharing

adoption greater than 0. Cluster 3 contains all scenarios with no ride sharing. Clus-

ter 4 contains all scenarios with 100% ride sharing adoption and taxiCapacity = 2.

Finally, cluster 5 consists of those scenarios with low ride sharing adoption and AV

adoption less than 0.6. Further analysis of the taxi states within these clusters can

help us understand how we can increase the efficiency of the system in each scenario.
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Figure 4.8. Scatter plot matrix of the pivot coordinates. The colours
represent the cluster that the scenario belongs to based on the taxi status
data (Table 4.6)
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Figure 4.9. Scatter plot matrix of input data. The colours represent the
cluster that the scenario belongs to based on the taxi status data (Table
4.6)
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Figure 4.10. Composition plot for the hierarchical clustering on the pivot
coordinates of the central taxi status composition (Figure 4.8), in original
coordinates colored by percentSharing. The y axis is the fraction of the
taxis in each status (x-axis) for each level of taxiCapacity (column) and
each cluster (row). Each path line of the composition plot represents a
single scenario
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For each of these clusters, and for taxiCapacity = {2, 4, 6} I plotted a composition

plot (Figure 4.10) in order to visualize the status of the taxis within each cluster.

In each composition plot, each scenario is represented using a path line connecting

the fraction of taxis (y-axis) for each of the status codes mentioned in Table 4.6.

The plots can be used to identify trends within each cluster to make inferences and

recommendations for system improvements.

From each of the composition plots a few general trends can be observed. First,

for all the scenarios where taxiCapacity = 2 the fraction of taxis in Idle state are

higher than similar scenarios in taxiCapacity = 3, 4). Additionally, even in cases

where the fraction of Idle taxis are not high (for example a few scenarios in cluster

2 and 4) most of the taxis are available to share (Sharing) but find no riders to

share with due to their limited capacity (for example, if a taxi of capacity 2 has

one occupied seat, it can only accept ride shares where the group size is 1). We

also observe that the fraction of taxis who cannot share due to capacity limitations

(LCapacity) is much higher for taxiCapacity = 2 as compared to those scenarios

where taxiCapacity = 4, 6. Additionally, in cases with high sharing adoption (for

example clusters 2 and 4) on an average the taxis do not reach their sharing tolerance

limit (LTolerance). This tells us that taxi fleets with taxiCapacity = 2 are likely

to be inefficient at serving passengers. Second, in all of the clusters, the trends of

the scenarios with capacity 4 and capacity 6 are very similar to each other. In each

of these scenarios the vehicles rarely reach their capacity limit (LCapacity). In the

cases where the sharing participation is high (Cluster 2) the fraction of taxis which

do not share due to the riders tolerance is slightly higher for scenarios with capacity

6. This indicates that capacity 6 taxis do have a marginal benefit at high levels of

sharing adoption. Since, taxi fleets with capacity 6 emit more CO2 emissions, this
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marginal benefit may not be enough to convince policy makers to use capacity 6

taxis.

The cluster 1 scenarios all have 100% AV adoption. From Figure 4.10 we see that

in cases where the sharing participation is low, most taxis reach their sharing toler-

ance limit (high LTolerance), however in scenarios with high sharing participation,

most of the taxis are still open to accepting new shares. This means that when the

sharing participation is high, there may be a surplus of vehicles available for sharing,

but there may not be enough riders on common routes to share rides. Potentially,

the system could serve even more riders with the same number of vehicles if they

were travelling on the same route. This suggests that if the system operator induces

demand along the routes of the taxis by lowering prices, the same fleet of taxis would

still be able to service the additional demand. However, in these scenarios the frac-

tion of idle taxis is low in these scenarios, the taxi fleet may not be able to serve

additional non-shared rides. Hence, care will have to be taken to ensure that the

system operators design policies in these cases to induce ride sharing demand but

not additional demand for non-shared rides. Cluster 2 contains a large number of

scenarios with varying levels of AV adoption and high ride sharing adoption. Since

the ride sharing adoption is mostly high in these scenarios, we see that on average

a large number of taxis are able to accept new shares. Hence, these scenarios will

also be able to accept new induced demand that is willing to share rides. On the

other hand, when the sharing participation is low (cluster 5) not many vehicles reach

their maximum capacity, very few vehicles are available for sharing and most of the

vehicles are limited from sharing from the tolerances of riders. This can tell us that

there must be a minimum level of sharing participation required to have a successful

ride sharing participation. If we compare the scenarios in cluster 2 with those in
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cluster 5, we see that most of the scenarios where sharing seems to be successful

have sharing participation above 30%.

4.4.3.1 Where can ride sharing be induced?

(a) (b) (c)

(d)

Figure 4.11. Location and direction of taxis that can accept shared rides

From Figure 4.10, it can be observed that scenarios in Cluster 1 and 2 which

have high RS adoption can accept additional ride shares, while cluster 5 may not
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be able to accept additional ride shares. In order to know where can new rides be

introduced such that they may be served in using ride shares, I plotted the locations

of the taxis that are in Sharing status and the direction in which these taxis are

moving at 6:00pm (the time of the day at which there are maximum number of

pickups) in Figure 4.11 for one scenario each from Cluster 1 (55), cluster 2 (36) and

cluster 5 (154) (see Table C.1). We see in each of the scenario, the taxis that are

in the Sharing status are moving from regions of low demand density (Brooklyn and

Queens) to regions of high demand density (Manhattan). However, we see that the

number of taxis in sharing mode in the case of the scenario from cluster 5 is much

less. This suggests that if ride sharing demand were induced with pick up location at

a low demand region and moving towards high demand regions the scenarios may be

able to serve this additional demand with the same input parameters for scenarios

in Cluster 1 and 2. However, scenarios in cluster 5 may not be able to accommodate

large amounts of this additional induced demand.

4.5 Conclusion

In this chapter, I used meta model based simulation optimization to find compa-

rable agent-based modeling scenarios which serve the same number of riders, while

varying 4 continuous parameters (percentAV , percentSharing, fleetSize, dtMode)

and one discrete parameter (taxiCapacity) of the PP-SAEV. Using these equiva-

lent scenarios, we were able to build models to predict the appropriate fleet size

for scenarios with a certain AV and ride sharing adoption for taxi fleets of capac-

ity 4 and 6. The prediction models were not able to make accurate predictions for

taxiCapacity = 2 since for a single setting of percentAV , percentSharing, dtMode

there may be multiple fleet sizes that can serve the same number of riders. By using
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clustering, we identified that scenarios with high sharing participation and low AV

adoption with taxi fleets of capacity 4 had the lowest CO2 emissions.

Then, by studying the proportion of taxi status during the peak demand period,

and using hierarchical clustering, it was found that taxis of capacity 2 are not suffi-

cient for a good taxi sharing program. On the other hand, taxis with capacity 6 are

only marginally better than taxis with capacity 4 for high ride sharing participation.

However, since vehicles with capacity 6 have higher CO2 emissions, taxis with capac-

ity 6 are not recommended for use in ride sharing. Additionally, a minimum sharing

participation of 30% is required for a successful ride sharing program. Finally, by

studying the spatial patterns of the taxis, I inferred that scenarios with high sharing

participation may be able to accept additional ride sharing demand in the direction

of low demand density to high demand density.

It is notable that this chapter did not consider different adoptions of electric

vehicles. In order to extend this analysis to electric vehicles, at each step charging

stations would have to be sited thus making such an extension not trivial. An

experimental design study that incorporates the analysis of electric vehicles and

performs similar analysis could provide an understanding of the combined effects of

EV, AV and RS adoption changes.
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5. UNDERSTANDING THE IMPACT OF

HETEROGENEOUS RIDER PREFERENCES ON A

SHARED AUTONOMOUS VEHICLE SYSTEM

5.1 Introduction

Chapters 3 and 4 show that ride sharing is a potentially lucrative method to curb

carbon emissions from the transportation sector, reduce the number of vehicles on

road, and increase service levels for cities (Ma et al., 2015; Alonso-Mora et al., 2017).

Additionally, with the introduction of autonomous vehicles, the number of vehicles

on road needed to serve the same number of passengers are expected to reduce even

further. However the scenarios evaluated in Chapters 3 and 4 consider restrictive

ride sharing rules. This chapter aims to loosen this restriction by allowing riders to

have heterogeneous sharing preferences. The presence of such heterogeneous sharing

preferences is well studied in the literature as documented in Section 1.1.2.

Not all riders may have a binary sharing preference (either to accept a share or

not). Some cost sensitive riders may stay in areas with limited public transportation

and would prefer to use ride sharing but would accept even a non-shared one to reach

their destination if they cannot get a shared ride. Similarly, those riders who would

not like to share rides due to concerns with safety, may be forced to use shared rides

if a non-shared ride is unavailable (for example, when all the available vehicles at

the moment are shared ones and it will take much longer to wait for a non-shared

one). Other riders may be completely flexible and may choose to use either shared or
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non-shared rides since they have no such restrictions and only want to get from their

pick up location to their destination. Such heterogeneous sharing preferences could

impact the performance of ride sharing systems. Additionally, the compositions of

the rider preferences in the system may impact the service quality of a group of riders

with specific sharing preferences, based on the proportion of the other rider types

in the system. Understanding the impacts of these sharing preferences on system

service quality as well as individual service quality may help system operators design

policies that meet both system service targets and cater to a variety of rider types.

By not considering these heterogeneous preferences, models could be limited in the

capability to fully capture the system dynamics and make system level performance

inferences.

The goal of this chapter is to address the question: how does the performance of a

ride sharing system change with different mixes of heterogeneous rider preferences?

To the best of my knowledge, no existing literature has evaluated a ride sharing

system in which the riders in the system are modeled with varied sharing preferences.

Additionally, no study has been able to quantify the result of varying the proportion

of these rider types in the system. The results from this study could aid system

planners to design incentives to promote riders to adopt a certain sharing preference

to benefit the system (for example, increasing system service level or reducing average

waiting time for customers). By varying the riderTypes parameter of the PP-SAEV,

these heterogeneous preferences can be studied (Table 5.1). Then the output from

the running the PP-SAEV with the parameter settings in Table 5.1 can be used to

study the system service level as well as the service level for each rider type. To

do this, I use the PP-SAEV model that was developed in Chapter 3 to study the

impact of these heterogeneous sharing preferences of riders. Algorithm 2 is used to

classify the searching preferences of the riders into one of the 5 rider-group types 1)
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Table 5.1.
Simulation scenarios for sharing preference

Parameter Setting

riderTypes {1, 2, 3, 4, 5}, proportions of rider typs varied using mix-

ture experiments

fleetSize {4000, 6000}.

AV Percent {100%}

taxiCapacity {4}

dtMode {0, 1}

unwilling to share a ride, 2) prefer not to share, 3) indifferent to sharing, 4) prefer

to share, 5) will only accept a shared ride. Then, I use mixture experiment design to

set parameters for the PP-SAEV so that we can study the impact of each of these

rider types on the SAV system. The parameters varied in this study are as per Table

5.1.

The rest of this chapter is divided into 3 sections, Section 5.2 explains the the

methodology that we used to vary the parameters as per Table 5.1, Section 5.3

illustrates the use of the method on a case study of New York City Taxis and Section

5.4 summarizes my findings from the case study.

5.2 Parameter Variation using Mixture Experiments

In order to estimate how changing the proportions of each riderType impacts

the system, I ran the PP-SAEV model with different rider mixes. In my model,

the proportion of rider types is represented by a vector X = {xi : i ∈ 1 . . . 5} xi
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for each ith riderType. Additionally, I also wanted to study the impact that the

dtMode parameter has on the system for different proportions of riderTypes and for

different fleetSize. Since, in each case
∑5

i=1 xi = 1, I used mixture designs to test

different proportions of rider types in the system.

Mixture models are traditionally used in chemical industries where a product is

commonly a combination of two or more components in a set proportion and the

manufacturer wishes to study the effect of these compositions (Cornell, 1990). By

using mixture experiments, the proportions of each of the rider types in the system

can be varied. These proportions are varied in such a way that the effect of each

of these rider types is understood, while running only those experiments that are

needed to develop the understanding of the surface (Cornell, 1990). Since there are

5 rider types, and I would like to understand the impact of having different propor-

tions of each rider type, a Simplex Lattice Design (Cornell, 1990) of degree 4 for

the 5 rider types (SLD(5, 4)) with additional axial points to augment the design

was used. The resulting design is able to distinguish interaction effects for up to

4 degrees. A degree 5 design is not used, because a degree 4 design is sufficient

to represent the surface at interior design points, and the analysis showed that the

models required polynomials of degree 2 only. Also, a degree 5 design would require

additional 200 runs to complete, which is 2/3rd of the number of runs than a degree

4 design. Since it is possible that different fleet sizes (fleetSize), different devia-

tion tolerance distributions (dtMode represents the mode of the triangular deviation

tolerance distribution), and the different mix of riders could affect the system differ-

ently, the SLD(5, 4) design is crossed with a 22 factorial design 22 factorial design

with the process variables fleetSize and dtMode. The resulting design has 304 runs

(Table D.1).
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In order to make inferences regarding a particular system performance parameter

(for example, service level and waiting time), linear regression models are built for

that performance parameter with the composition variables and the process variables

(Table 5.2). In order to construct the model, the quadratic Scheffe model crossed

by a linear model with linear interactions for the process variables is used (Equation

5.1) as recommended by Cornell (1990).

y =
5∑

i=1

β
(0)
i xi +

4∑
i=1

5∑
j=i+1

β
(0)
ij xixj +

5∑
i=1

2∑
l=1

beta
(1)
il xizl+

4∑
i=1

5∑
j=i+1

2∑
l=1

β
(1)
ijl xixjzl +

5∑
i=1

β
(2)
ilmxiz1z2+

5∑
i=1

5∑
j=i+1

β
(2)
ijlmxixjz1z2 + ε (5.1)

Where xi is the ith mixture component; z1 = fleetSize; z2 = dtMode are the

process variables and y is the response variable. Then, the terms in the model that

were not significant at 5% level are eliminated using step-wise regression. In order

to evaluate the fit of the regression model, the root mean squared error (RMSE) and

the corrected R− sq1 is uesd.

Since the mixture has 5 factors, it can be difficult to visualize the results and

deliver meaningful insights. In mixture experiments, when two or more mixture

components produce the similar main effects and interaction effects (the coefficients

of the regression terms involving the mixture components does not significantly dif-

fer), the components can be combined and analyzed them as a single component

1For models fitted using Scheffe polynomials, since there is no constant term, the regular goodness
of fit statistic R2 = 1 − SSE

SST where SSE is the error sum of squares and SST is the total sum of

squares gives an inflated value. Cornell (2011) suggests to use the corrected R2 = 1− SSE/(N−p)
SST/(N−1) ,

where N is the number of observations, p is the number of terms in the model. All the R2 values
reported in this paper are the corrected R2
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(Cornell, 1990) to simplify the analysis. In this chapter, this model simplification

technique is used to aid my discussion of the effect of the different rider types on the

model. The notation xij = xi + xj is used to indicate this simplification.

5.3 Case Study Results

In order to demonstrate the inferences that the PP-SAEV model can provide, the

case study described in Section 2.5 is used. The factor levels that were run are given

in Table 5.2 (a detailed list of runs is listed in Table D.1). The fleet size variable was

set as per the findings of Chapter 3, where it was shown that a fleet of 5500 AVs with

ride sharing could serve the same number of riders as the present day case (13500 non-

autonomous vehicles with no ride sharing). By setting the fleetSize = {4000, 6000}

I tested the system performance in an under supplied (4000) and an over supplied

(6000) cases. The dtMode parameter was simply set to the highest and lowest values

the variable could take. These settings help us evaluate the system in extreme cases

of these parameter settings. Then the system level impacts of heterogeneous rider

types are analyzed, which can be useful for system planners and policy makers, in

Section 5.3.1. The impact on each rider type in Section 5.3.2 are also analyzed. Such

analysis could help policy makers make decisions on parity among different rider

types.

5.3.1 System level implications

In order to understand the system level implications of having different hetero-

geneous mixes of rider sharing preferences in the system, we examined the service
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Table 5.2.
Simulation scenarios to study heterogeneous sharing preferences in ride
sharing

Parameter Value Settings Design

x1, . . . , x5 {0, 0.1, 0.2, 0.25, 0.5, 0.6, 0.75, 1} SLD(5, 4)

fleetSize {4000, 6000} 22 full factorial

dtMode {0, 1} 22 full factorial

level, waiting time, the percent of rides that were shared, the occupied capacity of

the vehicles, and the environmental impact at a system level.

5.3.1.1 Service Level

For a taxi system, the fraction of riders that are served by the system during the

peak demand period is an important metric to understand its efficiency. Hence, the

changes in the fraction of riders that were served by the system between 6:00pm and

midnight (this is the time of the day that NYC has the highest taxi ridership (NYC

DOT, 2014)) were modeled using regression based on Sheffe polynomials (Table 5.3).

It was initially found that rider type 3 and 4 do not differ significantly in their main

effects and their interactions and hence, I combined the responses for these two rider

types. Figure 5.1 visualizes the predicted service level from this model. In each

surface plot, such as Figure 5.1, the corners of the triangles represent the case where

the component at the corner is set to one and the other components of the mixture

are set to 0. A point on the edge represents a mixture of two components while the

others are set to 0. A point in the interior of the triangle represents a mixture of 3
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components while the other components that are not in the plot are set to 0. The

color of the triangle is the predicted response variable value (which is the service

level in the case of Figure 5.1)

Table 5.3.
Regression model for served PC. RMSE = 0.057 and R2 = 0.86

term β Std. error t value p value

x1 1.24e-01 2.15e-02 5.74 2.34e-08

x2 2.36e-01 2.15e-02 10.979 < 2e-16

x34 2.06e-01 1.89e-02 10.908 < 2e-16

x5 -3.72e-01 2.69e-02 -13.832 < 2e-16

dtMode 2.38e-02 6.58e-03 3.614 0.000354

fleetSize 9.82e-05 3.29e-06 29.822 < 2e-16

x1 : x5 4.29e-01 8.07e-02 5.315 2.11e-07

x2 : x5 8.19e-01 8.07e-02 10.142 < 2e-16

x34 : x5 1.27e+00 6.15e-02 20.643 < 2e-16

Figure 5.1 shows that the highest service level reached when the fleetSize = 6000

and the dtMode = 1 is when either rider type 3 or 4 is approximately 70% with 30%

of rider type 5 in the model. This result shows that higher service levels are reached

when all of the riders in the system are open to sharing, with most willing to accept

non-shared rides and a few (30%) unwilling to accept a non-shared ride. While

it is intuitive that a higher percent of sharing preferred/ indifferent riders would

increase the service level of the system, it is interesting that, in order to achieve a

higher system service level, a small number of riders who accept only shared rides is
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(a) (b)

(c) (d)

(e)

Figure 5.1. Surface plots of the predicted service level using the model
represented by 5.3 at different compositions of rider types at fleetSize =
6000 and dtMode = 1
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desired. Because, rider type 5 stays in the system longer as compared to the other

rider types, and in a system with a limited number of taxis, riders are more likely

to find shared rides as most of the vehicles will be occupied by other riders that can

accept ride shares.

The service level depends linearly upon the process variables fleetSize and

dtMode as seen in Table 5.3. By removing 2000 taxis from the system, the number

of riders served by the system can decrease by 20%. Also, if the riders in the system

are less tolerant to ride sharing (dtMode = 0), the service level could decrease by

2%. These results indicate that it is more important for a ride sharing system to

have riders that are at-least open to sharing (as indicated by Figure 5.1) than having

riders with a higher tolerance for deviating from their original route.

We can also see from Figure 5.1 that the least system service level is reached

when no riders in the system will accept a non-shared ride (100% rider type 5), since

there will be no riders to initiate a shared ride if no one is willing to accept a non-

shared ride. Thus, policies and incentives should not be set in a way to encourage

all riders in a system to only accept shared rides. On the other hand, if there are no

riders in the system that are willing to participate in ride sharing, the service level

will be reduced by approximately 20%. Hence, if the goal of the ride sharing service

provider is to maximize service level, incentives should be set in such a way to bring

the proportion of riders in type 3 or 4 to 70% and type 5 to 30%.

5.3.1.2 Sharing efficiency

In a ride sharing system, the efficiency of ride sharing can be measured by study-

ing the percent of shared rides and the average vehicle occupancy during the peak

demand periods. In order to do this, I built regression models for the percent of



107

shared rides (Table E.1) and the average taxi capacity (Table E.2) between 6:00pm

and midnight, using the methodology outlined in Section 5.2 and examined the pre-

dictions form the model.

(a) (b)

Figure 5.2. Effect plots of the predicted percent shared rides using the
model represented by Table E.1 at different compositions of rider types
at (a) fleetSize = 4000 and dtMode = 0 (b) fleetSize = 6000 and
dtMode = 1. I have plotted the points with large standard error of
prediction (se>0.015) using hollow circles. Each line on the effect plot
belonging to rider type i indicates the predicted response if the amount
of that rider type increased/decreased by a fraction of ∆ and the rest of
the mixture components decreased/increased in the same proportion as
they were in the reference mixture X̄ = {0.2, 0.2, 0.2, 0.2, 0.2}.

In order to visualize the effect of the mixture components and the process vari-

ables (fleetSize and dtMode), I plotted effect plots for the percent shared rides

(Figure 5.2) and taxi capacity (Figure 5.3). A reference mixture is first selected (in

this case X̄ = {0.2, 0.2, 0.2, 0.2, 0.2}, the centroid of the space formed by the 5 dimen-

sional tetrahedron with corners x1, . . . x5) and hold the process variables (fleetSize

and dtMode) at a constant value. Then, for each mixture component i (colors), we
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(a) (b)

Figure 5.3. Effect plots of the predicted occupancy using the model
represented by Table E.2 at different compositions of rider types at
(a) fleetSize = 4000 and dtMode = 0 (b) fleetSize = 6000 and
dtMode = 1. I have plotted the points with large standard error of
prediction (se>0.005) using hollow circles. Each line on the effect plot
belonging to rider type i indicates the predicted response if the amount
of that rider type increased/decreased by a fraction of ∆ and the rest of
the mixture components decreased/increased in the same proportion as
they were in the reference mixture X̄ = {0.2, 0.2, 0.2, 0.2, 0.2}.

increase / decrease its composition in the mixture by an amount ∆ ∈ [−x̄i, 1 − x̄i]

(xi = x̄i + ∆ is on the x-axis). The other mixture components are calculated using

the formula xj = x̄j − ∆x̄j

1−x̄i
∀ j ∈ {1, 2, 3, 4, 5}; j 6= i. This is done for several val-

ues of ∆, and for each mixture proportion setting X, I plot the predicted response

(y-axis) using the regression model (Table E.1 for Figure 5.2) for the set value of

the process variables and the mixture components. Each line on the effect plot be-

longing to rider type i indicates the predicted response if the amount of that rider

type increased/decreased by a fraction of ∆ and the rest of the mixture components

decreased/increased in the same proportion as they were in the reference mixture X̄.



109

From Figures 5.2 and 5.3, we see that increasing the proportion of rider type 1

(non-sharing) results in a linearly decreasing proportion of shared rides and average

occupancy during the peak period (which is expected). Additionally, for rider type

5, as I increase its proportion in the system, both the fraction of shared rides and the

occupancy increase till a certain point. Beyond this point, increasing the proportion

of rider type 5 would decrease the system efficiency. This suggests that if rider type 5

is present in the system, its proportion should be adjusted, using incentives, in such

a way that its proportion remains at 0.3 when fleetSize = 4000 and dtMode = 0

and 0.4 when fleetSize = 6000 and dtMode = 1. The effect that rider type 2 has on

the system depends on the number of vehicles in the system. We can see in Figures

5.2(a) and 5.3(a) that since there are less taxis in the system, rider type 2 is forced to

share rides, thus increasing the system ride sharing efficiency. However, when there

are sufficient vehicles in the system, increasing the proportion of rider type 2 would

decrease the system ride sharing efficiency, since they would take non-shared rides.

Lastly, when there are low number of taxis, increasing the proportion of rider type 3

and rider type 4 have similar effects to increase the percent of shared rides. However,

when the number of taxis in the system is higher, in order to increase the percent of

shared rides, it is helpful to incentivize other rider types to become rider type 4.

5.3.1.3 CO2 Emissions

The emission reduction as a result of ride sharing as estimated in the literature

(Caulfield, 2009; Fagnant and Kockelman, 2014; Levofsky and Greenberg, 2001) and

in Chapter 3 could be improved by considering the heterogeneous ride sharing prefer-

ences. We estimated the total distance travelled by all the taxis over the day in miles

for each scenario in Table D.1, then, we multiplied this by a factor of 404 g/mile
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which is the USEPA estimte for the CO2 equivalent of one mile of gasoline vehicle

travelled (EPA, 2017) to find the GHG emissions for one day of operation for each

scenario.

From Figure 5.1, we see that, since different mixes of riders can have large changes

in service level, in order to compare the scenarios on a fair ground, we considered

only those scenarios that had a service level between 0.85-0.86 (since as per Table

3.2, a service level of 0.86 is equivalent to the present day taxi operations in NYC

in the base case). In the set of scenarios that had a service level between 0.85-0.86,

all the scenarios had fleetSize = 6000 vehicles and dtMode = 1. Figure 5.4 shows

the composition of rider types in these 19 scenarios, which are ranked in increasing

order of their GHG emissions (in tones of CO2-equivalent). The difference between

the GHG emission levels of scenario 1 and scenario 19 is 34 tonnes CO2-equivalent.

From Figure 5.4, we see that when there are low number of vehicles in the system,

having all riders in the system sharing rides is essential. However, there does not

seem to be a clear pattern in the composition of rider types (specially in relation to

rider type 2,3, and 4) in relation to the environmental impacts, as long as all the

riders in the system are willing to share (sharing does not have to be preferred).

However, we do see in Figure 5.4 that, if we do wish to reduce GHG emission, it is

beneficial to have a small fraction of type 5 riders (sharing only) in the system.

5.3.2 Individual rider types

The aggregated system level implications presented in Section 5.3.1 are useful

for city planners to study the overall impact of implementing ride sharing for a

given rider type mix. However, it is also important to understand how the rider

composition affects the service quality for each rider type. Such analysis can help
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Figure 5.4. rider type compositions for scenarios with service level be-
tween 0.85 to 0.86 ranked in decreasing order of

transportation planners and service providers to implement policies that can either

target a particular segment of the population, or ensure that all potential customers

have equal service quality. Ride sharing companies could also provide such infor-

mation to particular riders to incentivize them to adopt a particular ride sharing

strategy.

The riders service quality depends on how likely they are to be served, and

how long they need to wait for the service. I can use the simulation experiments

to find the fraction of served riders, and their waiting time, for each rider type.

Figure 5.5 shows that there are major difference in the service quality of the 5 rider

types. In general, we can see that those rider types that are rigid in their sharing

preferences (that is, sharing only or non-sharing only) have the least service level,

the maximum variability in service level and lower waiting times, since sometimes

the riders preferred type of vehicle may not be available. We also see that when rider

type 1 does get served, they have the lowest waiting time of all in the system because

if they are served, it needs to be within their low exitT ime of 5 minutes (see Table
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2.2). On the other hand, the most flexible rider type (rider type 3) has relatively

high service level, low waiting time, and the least variability in both service level

and waiting time. Interestingly, rider type 2 (non-sharing preferred) has the highest

average waiting time as well as the most variability in waiting time.

(a) (b)

Figure 5.5. Box plots of (a) fraction of riders served and (b) Waiting time
for the five rider types

In order to understand the effect of individual rider types on each other’s service

quality, I built regression models for the fraction of riders served for rider type 1 -

5 (Table E.3 - E.7) and the average waiting time for rider types 1 - 5 (Table E.8 -

E.12). Then, in Figure 5.6 and 5.7 for each rider types service fraction and waiting

time, I plotted the predicted change in these variables (x-axis) when the fraction of

rider type xj (y-axis) was increased from 10% to 30% and from 30% to 50%.

From Figure 5.6, we see that the fraction of riders served for rider type 1 and

type 5 is most dependent on the fraction of other riders present in the system, since

they are the most inflexible. For rider type 1, we see that its service level and waiting

time are relatively independent of changes in its own fraction in the system, but are
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(a)

(b)

Figure 5.6. 2D bar plots for the change in the (a) served fraction (b)
waiting time (color) for a rider type on the x axis with a change in
fraction of the rider type on the y axis between the values indicated by
the panel labels when fleetSize = 6000 and dtMode = 1
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(a)

(b)

Figure 5.7. 2D bar plots for the change in the (a) served fraction (b)
waiting time (color) for a rider type on the x axis with a change in
fraction of the rider type on the y axis between the values indicated by
the panel labels when fleetSize = 4000 and dtMode = 0
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positively influenced by increasing fractions of rider type 2 (they would behave similar

to rider type 1 but, if needed, would only share among themselves) and rider type

5 (since, rider type 5 would not get served themselves as there would be less riders

to initiate shared ride. The effective outcome of increasing rider type 5 would be to

reduce the total number of riders eligible for service in the system). Also, increasing

rider type 4 results in the largest decrease in service level for rider type 1 and the

largest increase in waiting time, due to lower number of non-sharing taxis being

available (since rider type 4 prefers shared rides, and can also initiate them). Figure

5.7 shows similar trends when the number of vehicles and the deviation tolerance

is lower. For rider type 5, its service level is actually most negatively affected by

increasing its own fraction in the system, since rider type 5 needs flexible rider types

to initiate ride sharing. In fact, at higher fractions of rider type 5, an increase in its

fraction would increase its own waiting time by a large quantity. The service fraction

of rider type 5 is positively influenced by adding more flexible riders in the system as

they would help initiate ride shares. However, its service level is relatively unaffected

by the number of vehicles in the system. The change in waiting time though is larger

when there are more vehicles in the system.

The service quality for flexible rider types (2,3,4) are less affected by changes

in other rider type fractions when the number of vehicles is higher (Figure 5.6).

However, when the number of vehicles are low, the fraction of other rider types

greatly affect the fraction of served riders for the flexible rider types as well (Figure

5.7). The service quality of rider type 2 is most positively influenced by increasing

rider type 5 when the number of vehicles are high (since a higher number of vehicles

allow the rider type 2 to find non-shared rides as per their preference). However,

when the number of vehicles are low, increasing type 5 riders actually decreases the

quality of service for rider type 2, because low number of vehicles will actually result
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in more shared rides, which is not preferred for rider type 2 but is required for rider

type 5. Rider type 3 is the least affected by changes in other riders proportions in the

system, specially when the number of vehicles are high, since rider type 3 is mostly

self sufficient by giving equal priority to shared and non-shared rides. When there

are less vehicles in the system though, we see that the service fraction of type 3 riders

are increased with increasing fraction of type 4 and decreased by increasing its own

fraction in the system. These insights regarding service quality can help planners

to design incentives that target specific groups of riders, thus encouraging riders to

adopt a certain sharing preference.

5.4 Conclusions and future scope

The PP-SAEV model was applied on a case study of New York City taxis, and

it was found that changes in rider sharing behaviors can have a large impact on the

performance of a ride sharing system. Specifically, different compositions of different

sharing preferences can change the service level by as much as 10%. The highest

service level can be achieved with a composition of 70% of Type 3/4 riders (riders

which are either indifferent to sharing or prefer to share) and 30% of riders of type

5 (which will only accept shared rides). However, rider sharing preferences do not

have a major impact on GHG emissions.

In order to inform incentive formulation, the impact of changing rider compo-

sitions on the service level and waiting time of individual rider types was studied.

The service quality of rider type 1 and rider type 5 are most affected by changes in

compositions of other rider types, while the service level of the flexible rider types

(2, 3, and 4) are most impacted by changes in composition only when the number of

vehicles in the system are low.
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It is notable that this study did not consider how variations in rider compositions

in space and time could affect the performance of the system. In reality, research

has shown that sharing preferences of riders could be correlated to the the pick

up and drop off time as well as the demographics of people (which could differ in

different areas of the city). A model that considers these variations could improve

the understanding of how different sharing preferences could impact SAEV systems

in a city.

While studied the impact of different rider preferences was studied, the reasons

and incentives that cause a rider to adopt a certain sharing preference are beyond

the scope of this study. Future studies that do identify these correlations between

incentives and rider preferences would help us gain a deeper understanding of the

ride sharing system.
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6. SITING CHARGING STATIONS FOR INCREMENTAL

ELECTRIC VEHICLE ADOPTION IN TRADITIONAL

FLEETS AND FUTURE SHARED AUTONOMOUS

VEHICLE FLEETS

6.1 Introduction

Electric vehicles (EV), especially battery electric vehicles, have the potential to

reduce the transportation sector’s greenhouse gas emissions (Choi et al., 2018). Tra-

ditionally, EV adoption has been slow due to the higher initial costs, limited battery

range, long charging time, and low availability of public charging (Clean Technica,

2018). However, in recent years, with the fast dropping battery prices and the in-

troduction of electric cars with longer and longer ranges, EV adoption has been

increasing rapidly (Bloomberg NEF, 2018). Many cities and countries have built an

initial charging infrastructure to support this increasing EV adoption. However, as

the share of EVs grows, the charging infrastructure will also need to be expanded to

support the additional charging demands.

The additional charging infrastructure can be built in two ways: (1) installing

new charging stations (one charging station may have one or more charging ports)

or (2) selecting existing ones to install more charging ports (station expansion), if

space allows. Each option has different advantages and disadvantages. New station

installation can help expand the spatial coverage of the charging network. If sited

closer to the charging demands, new charging stations can help reduce the distances
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Figure 6.1. Adding a new charging station can decrease the total travel
distance for charging. The blue dots indicate the charging demand (e.g.,
vehicles with the need for charging), the green chargers indicate the lo-
cations of the existing charging stations, the yellow charger indicates the
additional charging station, and the dotted lines indicate the route to the
closest charging station for each charging demand.

vehicles/drivers have to travel to visit a charging station (Figure 6.1). However,

building new charging stations is expansive. Expanding the capacity of the existing

charging stations, on the other hand, can reduce the installation costs by leveraging

the existing infrastructure (e.g., existing electrical service) at that location (Smith

and Castellano, 2015). Given a fixed budget, this saving could potentially allow

installing more charging ports at the existing charging stations, having a total of

more charging points than what can be offered by installing new charging stations.

The expanded capacity at the existing stations can also reduce the waiting time at

that station, if multiple EVs are queued for charging. However, the location of these

additional ports are constrained to the locations of the existing stations, which may

cause the drivers/vehicles longer travel distances to visit the stations. Therefore,

when siting charging stations for incremental EV adoptions with a given budget, it

is important to consider the trade-offs between reducing waiting time (expanding
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existing stations to build more charging ports) and reducing overall travel distance

for charging (building new charging stations to be close to the charging demands).

This chapter proposes a method to site charging stations for a growing fleet of

electric vehicles, considering preexisting charging infrastructure. The model sites

charging stations (including installation of new ones and expansion of existing ones)

under a fixed budget constraint, optimizing the number of charging stations, the

location of the charging stations, and the number of ports at each charging station.

The charging demand is generated using an agent-based model that simulates the

interactions among vehicles, rider groups, and charging stations. The optimization

model minimizes the total time wasted due to charging, evaluating the trade-offs

between travel time to charging stations and waiting time spent in the charging

station queue. This method is applied to the case study of New York City taxis

(Section 2.5) with different adoption pathways, evaluating the co-adoption of EV

and other emerging transportation technologies (e.g., ride sharing and autonomous

driving). The rest of the chapter is organized as follows. Section 6.2 discusses

the existing literature of EV charging station siting, identifies the research gaps,

and summarizes the contributions of our proposed method. Section 6.3 provides

the details of our proposed method to site EV charging stations for a growing EV

fleet. Section 6.4 introduces the case study and discusses the results. Lastly, the

conclusions and directions for future research are reported in Section 6.5.

6.2 Literature Review

Charging station siting for EVs have received increasing attentions in recent

years. For an extensive review on alternative fuel vehicle (which includes EV) fuel-
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ing/charging station siting, I refer the readers to Ko et al. (2017). In this Section, I

would like to focus the discussion on the major limitations of the existing literature.

First, the existing literature sites charging stations for static (or fixed) EV adop-

tion (non-increasing) EV adoption which represent extreeme cases. For example, He

et al. (2015) and Chen et al. (2016b) considered a case in which all trip requests

are fulfilled using EVs; Arslan and Karaşan (2016) assumed that there is a fixed de-

mand for EV charging; Shahraki et al. (2015); Yang et al. (2017b); Tu et al. (2016)

considered the travel patterns of a fixed number of electric taxis to site charging

stations; and Liu (2012) evaluated a scenario in which the future charging demand

for electric vehicles could be approximated by the current demand for gasoline (this

represents 100% EV adoption). In reality, EV adoption will not happen over night

but incrementally increase year by year (Bloomberg NEF, 2018). To keep pace with

the increasing EV adoption, charging stations will need to be built at different stages

of EV adoption. When a city is planning for 100% EV adoption, very likely there

are a number of charging stations already existing in the system, which were built

to satisfy charging demand at an earlier stage of EV adoption (e.g., 50%). However,

existing literature (He et al., 2015; Chen et al., 2016b; Arslan and Karaşan, 2016;

Shahraki et al., 2015; Yang et al., 2017b; Tu et al., 2016; Liu, 2012) does not take into

account pre-existing charging stations in the network while siting new ones. If we

solve separate optimization problems for each EV adoption level, this will imply that

we need to relocate many, if not all, of our existing charging stations, which would

not be economically feasible. Additionally, siting EV charging stations for 100% EV

adoption in the present day (when the actual EV adoption is just 3%) would also not

be economically feasible, considering that the useful life of an EV charging station
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is limited1. Some recent studies, Li et al. (2016a); Davidov and Pantoš (2017) have

considered siting charging stations for different periods in time. Davidov and Pantoš

(2017) considered locating stations for an EV car sharing program in a simulated

road network at different points in time based on the demand generated by its users.

Li et al. (2016b) considered the case where new cities would become candidates for

EV adoption. However, Davidov and Pantoš (2017) and Li et al. (2016b) did not

consider that EVs could queue at charging stations (queuing at charging stations is

discussed in subsequent paragraphs)

Second, there are very few papers (Sadeghi-Barzani et al., 2014; Zhu et al., 2016;

Jung et al., 2014; Xi et al., 2013) that optimize the number of charging stations,

the location of the charging stations, and the number of charging ports at each

station integratedly at the same time. For example, Davidov and Pantoš (2017);

Brandstätter et al. (2017); He et al. (2015) used a binary variable to select whether a

site would be developed at a certain time period or not, and Chen et al. (2016b) used

a simulation model to determine the number of sites, but they did not set the number

of ports at each charging station. They instead either assumed that charging stations

would have sufficient capacity to service all demands (Davidov and Pantoš, 2017) or

sited sufficient single port charging stations to serve all riders (Chen et al., 2016b;

Brandstätter et al., 2017; He et al., 2015). Others, for example Shahraki et al. (2015),

considered that cities have a fixed limit on the number of sites for charging stations.

When considering adding new charging stations to a network, system planners will

typically have a budget for expanding an existing network. The costs of installing

and maintaining charging stations can vary from site to site and some of these costs

1There has not been enough data to estimate the actual useful life of an EV charging station.
NYCTLC (2013) considers a 5 year useful life, while Department of Energy (2018) considers a 10
year useful life.
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can be shared by adding additional ports to the same charging stations (expanding).

Thus, it is important to consider the trade-offs in deciding whether to add additional

charging stations, which could cost more but reduce the travel time to a charging

station, at new locations or to expand existing ones by adding more ports.

Additionally, very few papers considered that vehicles may need to queue at

charging stations. For example, Sadeghi-Barzani et al. (2014); Brandstätter et al.

(2017); He et al. (2015) considered the problem of sizing the charging stations but as-

sumed that vehicles would not wait at charging stations for others to finish charging.

They assumed that, at a given time, all charging demands would be met without the

need of queuing. This would result in assigning more capacity to charging stations

than what would be necessary. As shown by Yang et al. (2017b), by increasing the

space for waiting at a charging station, the number of chargers can be reduced by

13-26%. There could be situations in which an EV currently currently in the process

of charging only requires very little time (for example, 1 minute) to finish charging

to its desired state of charge, while a second vehicle enters the station and requires

charging. In this case, the optimization models not considering queuing would choose

to add an additional charging station/port, instead of allowing the second vehicle to

wait for a short period (e.g., 1 minute, which is a reasonable waiting time) for the

charger to become available. Others, (Shahraki et al., 2015; Chen et al., 2016b; Liu,

2012) consider that all sited charging stations had sufficient ports to serve any de-

mand. This could be infeasible in reality, because there is usually a limited budget to

build charging stations and each additional port on a charging station has a certain

cost associated with it. The number of cars that can charge at a charging station is

also limited by capacity constraints of the space itself. A few papers do include the

waiting time at charging stations as a part of their optimization procedure. For ex-

ample, Yang et al. (2017b) used a M/M/x/s (arrival rates and service rates defined
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by a Poisson process) queuing model to consider the wait time at charging stations.

However, in most cases, we cannot expect that either the arrival rate or the service

rate for a charging station remains constant or follows an exponential distribution

for the entire length of the day. Additionally, the service rate cannot be realistically

modeled by an exponential distribution. For example, Morrissey et al. (2016) ana-

lyzed the charging patterns from a charging network in Ireland and found that the

number of vehicles beginning to charge at a certain time is not constant through the

day and peaks at about 3:00pm. Rao et al. (2018) used data from charging stations

in Shenzhen, China and found that the daily distribution of EV taxis’ charging start

time can have multiple peaks and is better approximated by Gaussian Mixture Mod-

els as opposed to an exponential distribution, which has a constant mean through

the day. Some papers, Jung et al. (2014); Tu et al. (2016) do consider waiting time

for the vehicles at charging stations empirically from the data. however both Jung

et al. (2014); Tu et al. (2016) site charging stations for only a single period of time

(as discussed earlier in this Section).

Furthermore, all of the literature on charging station siting considers fixed charg-

ing rules for the EVs. For example, Shahraki et al. (2015) considered that the plug-in

hybrid EVs in their model would maximize the distance that the vehicle would travel

on electricity and charge at all times that the car was parked within the service range

of a charging station. Chen et al. (2016b) considered that EVs would charge if the re-

maining range was less than 2 miles. Others (He et al., 2015) using a fixed constraint

in an optimization program which thresholds the the vehicle’s SOC to a certain min-

imum. Arslan and Karaşan (2016) set a rule that EVs must start and end a trip with

at least 50% SOC. In reality, the reason why an EV (and specifically electric taxis)

would seek charging is complex and cannot be defined by simple rules (Franke and

Krems, 2013; Neubauer and Wood, 2014). For example, electric taxis would need
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to maintain a balance between serving riders and seeking charging opportunities, to

make sure that they have sufficient SOC to meet demands during the peak demand

period. Rao et al. (2018) noted that most electric taxis seek charging opportunities

as much as 4 times a day.

Lastly, most of the literature do not provide insights on how EVs and optimum

charging station siting would affect the performance of a system of EVs as compared

to a system of internal combustion engine vehicles. For example, He et al. (2018);

Arslan and Karaşan (2016); He et al. (2015); Davidov and Pantoš (2017); Alhazmi

et al. (2017); Lee and Han (2017); Wu and Sioshansi (2017); Brandstätter et al.

(2017); Shahraki et al. (2015); Zhu et al. (2016) focused on finding better solutions

and algorithms to find optimal charging station sites and did not provide any in-

sights on system level impacts of EV adoptions. Some studies do report system level

impacts but are mostly concerned with operational characteristics of EVs. Xi et al.

(2013) used their model to show that, with an increasing budget to site charging sta-

tions, the expected daily energy used by EVs increases till a point and then remains

steady, and the number of EVs that ran out of charge while serving customers also

decreases. Li et al. (2016b) studied the impact of variability of future demand in

their multi-period model and reported on parameter setting in their model that would

make the model robust to future changes. Yang et al. (2017b) analyzed the trade-

offs between installing more chargers and increasing the waiting space and showed

that this depended on the ratio of cost of parking spots to the cost of the chargers.

Some studies do focus on making system level inferences. For example, Cai et al.

(2014b) compared the impact of relocating the existing charging stations in Beijing

on the electric power grid and found that the charging peak in Beijing coincided

with the peak demand for electricity. However, Xi et al. (2013); Li et al. (2016b);

Yang et al. (2017b); Cai et al. (2014b) do not report system level statistics such as
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the number of riders being served. These system level statistics are important to

report as they help planners evaluate the performance of their system with respect

to multiple parameters of interest. There are a few studies that do make system

level inferences. For example, Chen et al. (2016b) used their simulation to show that

driving to charging stations would not increase the total daily distance travelled by a

large amount. They also showed that each SAEV could replace 5-9 privately owned

vehicles. Bauer et al. (2018) estimated that, for Manhattan, NY, the costs would be

the lowest for EVs with battery ranges between 50 to 90 miles and 66 chargers per

square mile of 11kW each, and a SAEV fleet could reduce GHG emissions by 73%.

However, none of the previous studies compared the differences in siting charging

stations for a non-autonomous vehicle - ride sharing (non AV-RS) system with that

for a autonomous vehicle - ride sharing (AV-RS) system for increasing levels of EV

adoption. Since AVs, RS, and EVs are each emerging technologies that are growing

at variable rates, it is important to understand the synergies between these systems

to inform policy makers and city planners on adoption strategies and development

plans for these emerging systems. I have summarized the existing literature in Table

6.1

This chapter proposes a method to site charging stations for a city given a certain

budget and uses a case study to make inferences on non AV-RS and AV-RS scenarios.

The unique contributions of this work are to build a model to site charging stations

with the following considerations:

1. Increasing EV adoptions at several points in time, considering the continuous

use of charging stations that have already been installed at previous points.
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2. Optimizing both the number of charging stations and the number of ports

simultaneously with a fixed budget, where the cost of a new charging station

may be different from a new port at the same charging station.

3. Vehicles can wait (queue) at charging stations for other vehicles to finish charg-

ing. Our model does not assume fixed distributions for arrival and service rates

at charging stations, but instead uses a simulation to model the arrival and ser-

vice of vehicles that require charging at a charging station.

The demand for the model to site charging stations is estimated using using an

agent-based model to simulate shared autonomous electric vehicles (the PP-SAEV

model) in which the adoption of ride sharing, autonomous vehicles, and electric

vehicles are variable parameters. The PP-SAEV model allows the EVs to decide

when to charge based on a utility function that considers the distance from a charging

station and the current SOC of the vehicle. Finally, I use a case study to show how

increasing EV adoption would affect the number of riders served, the environmental

impacts, and the effect that the charging EVs would have on the electric grid through

the day using the charging station configurations proposed by the charging station

siting model.
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Table 6.1.: Gaps in recent literature in EV charging station siting. Station Counts refers to whether the number of charging

stations were decided by the model, Charging Ports refers to whether the number of ports at each EV charging charging stations

were decided by the model, Queuing at Station refers to whether the model considered that EVs would wait idle at a charging

station if currently occupied, Multiperiod refers to whether the literature sited charging stations for multiple periods in time.

Reference Network Type Station

Counts

Charging

Ports

Queuing

at Sta-

tion

MultiperiodType of inferences

He et al. (2018) Simulated

Davidov and Pantoš (2017) Simulated � �

He et al. (2015) Simulated �

Chen et al. (2016b) Simulated � System level impact for

AV-RS only

Arslan and Karaşan (2016) Highway

Alhazmi et al. (2017) Highway �

Lee and Han (2017) Highway

Wu and Sioshansi (2017) Highway

Xi et al. (2013) Highway � �

Li et al. (2016b) Highway �

continued on next page
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Table 6.1.: continued

Reference Network Type Station

Counts

Charging

Ports

Queuing

at Sta-

tion

MultiperiodType of inferences

Brandstätter et al. (2017) City �

Cai et al. (2014b) City Impact on Grid

Liu (2012) City

Sadeghi-Barzani et al. (2014) City � �

Shahraki et al. (2015) City

Zhu et al. (2016) City (Simpli-

fied)

� �

Yang et al. (2017b) City � � Waiting time vs driving

time tradeoff

Bauer et al. (2018) City System level impact for

SAEV only

Jung et al. (2014) City (Simpli-

fied)

� � �

Tu et al. (2016) City �

continued on next page
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Table 6.1.: continued

Reference Network Type Station

Counts

Charging

Ports

Queuing

at Sta-

tion

MultiperiodType of inferences

This Study City � � � � System level impact for

AV-RS and non AV-RS
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6.3 Method

The charging station siting framework includes three components: 1) demand

generation using an agent-based simulation to estimate the charging demand (PP-

SAEV) (Generate demand), 2) evaluation of objective function (Evaluate ob-

jective function), and 3) optimization of charging station using a modified genetic

algorithm (Genetic algorithm). These three components are executed as per Al-

gorithm 8 and are explained in details in the subsections of this Section. Figure

6.2 provides a visual representation of this method. The results from this charging

station siting method are used as input to the PP-SAEV used in the demand gen-

eration step, so that I can analyze the system performance of the proposed siting

infrastructure development.

Figure 6.2. Flowchart of the method. The red dashed arrows represent
an input and the blue dashed arrows represent an output. The colors in
the flowchart represent the different parts of the method. green: demand
generation (Section 6.3.2), orange: genetic algorithm (Section 6.3.3.1);
yellow: objective function evaluation (Section 6.3.4)

I introduce the variables that are used in Algorithm 8 below:

• D : The set of charging demand locations, time, and energy requirements.

• i : An iteration counter
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• I : The maximum number of iterations of the genetic algorithm.

• Lfull : A set of potential charging station locations, containing information on

the location of the candidate site and the maximum possible capacity of that

location (in terms of the total number of chargers that can be built on this

site).

• L : A subset of Lfull generated by the filtering procedure which is used to

eliminate unlikely candidate solutions so as to improve the efficiency of the

genetic algorithm (Section F.1.2).

• Lp : A set of all the siting plans (solutions) as found by the genetic algorithm.

Also referred to as the chromosomes.

• L1 : A set new of chromosomes formed by using the genetic operators on Lp

in every iteration.

• Rp : The set of objective functions corresponding to each chromosome in set

Lp

• R1 : The set of objective functions corresponding to each chromosome in set

L1

• S : The selected charging station configuration (the number of charging ports

to be built on each candidate sites). I select the charging station configuration

S ∈ Lp with the least objective function value (from set Rp).

6.3.1 Key Assumptions

Our model is built on the following key assumptions.
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Algorithm 8 Main algorithm

1: procedure Main algorithm(riderGroup)

2: Generate demand D using the PP-SAEV as an estimate of the demand

3: Filter the set of potential charging station locations Lfull to L to improve the

efficiency of the genetic algorithm.

4: Generate an initial population of charging station locations Lp from the set

of filtered locations L using Algorithm F.1.2

5: Evaluate objective function for Lp and add the evaluated objective values

to set Rp . Genetic algorithm

6: for i = 1 . . . I do

7: use genetic operators (Section F.1.3) on set Lp to generate L1 new solu-

tions and Lp ← Lp ∪ L1

8: Evaluate objective function for L1 and Rp ← Rp ∪R1

9: Report the solution Lp that has the lowest objective function value (from Rp)

as the proposed charging station set S

• A known total budget is available to develop the charging infrastructure at

different steps in time with increasing levels of EV adoption. For example, if

the EV adoption were to grow from 0% to 100%, the charging infrastructure

may be built at discrete time points to support a total of 10%, 40%, 70% and

100% EV adoption, with different budget assigned at each time point. In this

study, I refer to a single discrete time point as an epoch.

• I start the first epoch assuming that there are no charging stations currently

in the system. Our model will optimize the charging infrastructure to support

of the first stage’s EV adoption (e.g., 10%) from the initial 0% EV adoption.
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• For all subsequent epochs after the first one, it is assumed that all charging

stations and charging ports in the previous epoch will continue their service as

part of the expanded infrastructure.

• Because this model does not consider the number of years it takes to reach the

next EV adoption epoch, it assumes the life time of charging stations to be

infinite 1.

• All the charging stations that we site are assumed to have the same charging

rate.

6.3.2 Demand generation using PP-SAEV

The charging station demand is generated using the PP-SAEV from Chapter 2

with a set of parameters ( fleetSize, PercentAV , PercentEV , PercentSharing,

ts, tf ) and with the candidate locations for building charging stations/chargers as

inputs. The model then outputs a list of time and locations that the EVs demanded

charging, along with the increase in SOC that was obtained from charging (Table

6.2) for that parameter setting. Because our model considers flexible charging rules

(the decision to charge is made using a utility function described in Section A.3.5.3

of the Supplementary Information), the charging infrastructure can be better sited

using the unconstrained charging demands. From the PP-SAEV, the unconstrained

charging demand is recorded at the locations that the taxis needed / wanted to

charge, assuming that they had access to all possible charging stations. To do this,

the charging station locations are set to be equal to all possible locations where

charging stations can be installed (Lfull). Additionally, these charging stations are

assigned unlimited number of charging ports. We also needed to know the SOC
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increase that the EV required (∆SOC), since I allowed EVs to search for and accept

rides while charging at a charging station. The ∆SOC is recorded as the difference

between the SOC when the vehicle began charging and the SOC recorded when

the vehicle leaves the charging station. Each row of Table 6.2 represents the time,

location, and the (∆ SOC) that is desired, when an EV required charging. The

demand generated is then used as input to the optimization model presented in the

next subsection.

Table 6.2.
Sample demand data generated from the agent-based model

demand Time demand

Lat

demand

Long

SOC

Change

06/12/2014 0:00:00 -73.937 40.797 0.34

06/12/2014 0:10:00 -74.001 40.717 0.23

06/12/2014 0:12:20 -73.984 40.765 0.8
...

...
...

...

6.3.3 Optimization of charging station locations

Our paper sites EV charging stations for different levels of EV adoption. At

each level of EV adoption, the charging stations that are present in the system from

the previous period are considered to be fixed. Idling EVs are allowed to wait at

a charging station while they are seeking rider requests. In order to do site the
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charging stations, the following optimization model represented by Equations 6.1 to

6.5 is solved at each level of EV adoption.

I first define notation that I use to introduce the optimization model:

• B : The total allowable budget to site charging stations in the current epoch

• Cn : The cost to install charging stations at a new location

• Cu : The cost required to add one additional port to an existing charging

station (station expansion)

• D : The demand that is generated using the PP-SAEV

• i : Index for the demand from set D

• I+ : The set of positive integers

• j : Index for the potential charging station location from set L

• Kj : Maximum capacity of charging station j

• L : A subset of Lfull generated by the filtering procedure (Section F.1.2).

• N : A vector {N1, N2, . . . , Nl} where l is the length of L. Each Ni is the of the

number of charging ports at candidate charging station location i in L. If the

number of charging port is zero, it means that no charging station is built at

this candidate site. The set Lp is made up of many different N as determined

by the genetic algorithm.

• Nj : The number of charging ports at candidate location j in the current epoch

• N̂j : The number of charging ports at charging station j in the previous epoch
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• T : The total wasted time (the objective function that we seek to minimize).

• Tw : The total waiting time for all the demands

• Tt : The total travel time for all the demands

• Twi
: The waiting time of demand i

• Tti : The time spent in traveling to charging stations for demand i

minimize T =
∑
i∈D

Twi
+ 2

∑
i∈D

Tti (6.1)

Subject To

Cn

∑
j∈L

(INj>0 − IN̂j>0) + Cu

∑
j∈L

(Nj − INj>0) <= B (6.2)

Nj ≥ N̂j ∀j ∈ L (6.3)

Nj ≤ Kj ∀j ∈ L (6.4)

Nj ∈ I+ (6.5)

Equation 6.1 represents the objective function minimizing the total wasted time

T (in seconds), which I use as a measure of the inconvenience caused to an EV to

satisfy its charging demand 2. The objective function is the sum of the time that

each of the vehicle represented by the demands in D waits at a charging station Twi

and the round trip time Tti that vehicles have to spend on traveling to the nearest

charging station from their original locations. The trip time is computed using the

2Total Wasted Time = 2(Total Time spent in driving to the charging station) +
Total Time spent waiting at the charging station. I double the time spent driving to the
charging station (e.g., considering a round trip) to account for the potential change in service
patterns that could result from having the taxis moving away from its current location to charge.
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distance traveled by road from the vehicle’s original location to the nearest charging

station. The demands D (see Table 6.2) contain information on their location (the

vehicle’s original location when charging demand arises) and the SOC increase that

they obtained from charging at that location (∆ SOC). The waiting time Twi
for

taxi i is recorded from the simulation as the time that the taxi spent waiting in the

charging station queue (the time elapsed between the taxis arival at the charging

station and the time that the taxi began charging). This waiting time is influenced

by Nj. If Nj is larger, there will be more charging ports at location j, and thus

more taxis can be served at the same time, thus potentially reducing Twi
. The trip

time (Tti) is dependent on which of the Lp potential charging stations are selected

to install charging stations or ports by the model. Whether a charging station is

selected by the model is found by applying the indicator function INj>0
3. The goal of

the optimization model is to find the vector of number of ports N which minimizes

T . In order to make use of real-world road networks while computing the travel

time Tti , and to implement queuing at charging stations (which is used to calculate

Twi
), I compute the objective function using a discrete event simulation model that

is further explained in Section 6.3.4.

Equation 6.2 places budget restrictions on the infrastructure development in this

EV adoption epoch. The left hand side (LHS) of Equation 6.2 represents the budget

that is being used by the proposed charging infrastructure expansion configurations.

The first term of the LHS represents the cost incurred to build the first charging port

at each new site, where Cn is the cost of each new location added. The number of

charging stations can be found from INj>0−IN̂j>0 where N̂j is the number of ports for

location j that are carryovered from the previous epoch. The second term calculates

3The indicator function Icond takes the value 1 if the condition cond is true, and 0 if false.
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the cost of installing additional ports to a existing or newly selected location, where

Cu is the cost of adding a new port beyond the first one at a charging station. The

number of new charging ports added to a location can be computed from
∑

j∈L(Nj−

INj>0). The right hand side (RHS) of the equation represents the budget B that is

available for siting the new charging stations or expanding existing ones in the current

epoch.

Equation 6.3 disallows old charging stations and ports to be demolished. Equation

6.4 places a capacity restriction Kj on each potential location L, which represents

physical space restrictions (for example, a parking lot of a certain size can only hold

a certain number of vehicles).

Finding an exact solution of the integer optimization program represented by

Equations 6.1 to 6.5 is computationally challenging, particularly due to a potentially

large number of candidate solutions and the difficulty in evaluating the objective

function (since I needed to use simulation to allow the taxis to queue at charging

stations and thus evaluate the waiting time). Hence I use a modified genetic algo-

rithm as a meta-heuristic to solve this problem.

6.3.3.1 Genetic Algorithm

Genetic Algorithms (GA) are a class of evolutionary algorithms which search for

the optimal solution of an optimization model by starting from an initial point and

then progressing towards the optimal solution by applying genetic operators (such as

mutation and crossover). Genetic algorithms are named after the natural process of

genetic evolution where chromosomes of the parent undergo mutation and crossover

to generate a new individual (Sivanandam, 2007). Genetic algorithms have been

used in previous research on charging station location optimization (He et al., 2015;
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Lee and Han, 2017; Sadeghi-Barzani et al., 2014; Zhu et al., 2016; Jung et al., 2014;

Tu et al., 2016; Li et al., 2016b).

Here I present an overview of our modified genetic algorithm. The steps are ex-

plained in detail in Section F.1 of the Supplementary Information. In order to reduce

the size of the candidate set, I first reduce the number of potential charging stations

sites by applying a filtering procedure (Section F.1.2) to generate L = {l1, l2, . . . , ll}.

The filtering procedure removes candidate locations that would increase the value

of the objective function and thus would be unlikely to be a part of an optimal so-

lution, or those that are located far away from the charging demand. By removing

unlikely sites from the candidate set, I increase the likelihood that the genetic algo-

rithm would find a better solution faster. A chromosome in the genetic algorithm is

represented by a vector of numbers N = {N1, N2, . . . , Nl}, where Ni (also referred

to as a gene) is the number of ports at location i. Then, I generate our initial set of

chromosomes Lp = {n1, n2, . . . , nl}, where each ni is a chromosome which represents

a potential valid set of charging stations that satisfies the constraints Equations 6.2

- 6.5. The objective function values Rp for the chromosomes in set Lp is then com-

puted using the method described in Section 6.3.4. I then generate a set of new

chromosomes L1 with the goal of finding the optimal chromosome using the genetic

operators (selection, crossover, mutate, perturbation, fission, and fusion) on Lp. The

genetic operators are described in detail in Section F.1.3. I then evaluate the objec-

tive function of L1 as R1, append L1 to Lp and append the objective function values

R1 to Rp, and repeatedly apply the genetic operators till a termination criteria is

reached (for example I iterations). In our genetic algorithm, I allow all the chro-

mosomes that have been created to be selected as parents by the selection step in

order to promote more diversity and hence decrease the chance that the population
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gets stuck in a local minimum. The chromosome S ∈ Lp with the lowest objective

function value in Rp is chosen as the charging station setting for that epoch.

6.3.4 Objective function calculation

Below I define the variables that I use in this Section and in Algorithm 9:

• C : The installed charging stations in the objective function simulation model.

It can be found by filtering the locations from L where N > 0

• G : The number of best solutions that the genetic algorithm selects. It is a

model parameter.

• I : The maximum number of iterations

• I+ : The set of positive integers

• Kj : Maximum capacity of charging station j

• Lfull : A set of potential charging station locations, containing information on

the location of the charging station and the capacity of that location.

• Lp : A set of all the siting plans as found by the genetic algorithm. Also

referred to as chromosomes.

• L1 : The modified chromosomes after genetic operations

• Lqs : Queue length of charging station s

• N : A vector {N1, N2, . . . , NL} of the number of charging ports at each charging

station location in L. The set Lp is made up of several N as determined by

the genetic algorithm.
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• Nj : The number of charging ports at potential charging station site j in the

current epoch

• N̂j : The number of charging ports at potential charging station site j in the

previous epoch

• Qd : the current position of the demand d in the charger queue at station s

• Rp : The set of objective functions corresponding to each chromosome in set

Lp

• Stated : A variable keeping track of the state of the demand d in the objective

function simulation model. Possible values are : (0) Not Entered, (1) Moving

to charger, (2) Queued, and (3) Charging.

• T : The total wasted time (the objective function that I seek to minimize).

• Tw : The total waiting time for all the demands

• Tt : The total travel time for all the demands

• Twi
: The waiting time of demand i

• Tti : The time spent in traveling to a charging station for demand i

• Tei : The time that demand i enters the objective function simulation model.

• Tsi : The time that demand i needs to charge so that its SOC increases by

∆SOC

• t : Time in objective function simulation model

• ts : A variable to indicate the time of start of traveling or waiting
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• Us : The number of ports of the charging station s currently in use by the

charging taxis.

The objective function (Equation 6.1), which is the total wasted time for all the

demand points that need to charge, is computed using a simulation model (Algo-

rithm 9). The demands (D) generated by the PP-SAEV (Section 6.3.2) enter into

the objective function simulation at their scheduled time Ted and search for the near-

est location s among the charging stations set C ∈ L that were generated by the

genetic algorithm (Section 6.3.3.1). The demands then start moving towards s and,

when they reach s, they enter the charging station queue. All the charging stations

serve the demands according to the first-come-first-served policy. The charging time

required for each demand is given by TCd
= (∆SOC)× TFC , where TFC is the time

required for the charging station to charge the vehicle from 0 to 1 SOC. Once the

demand obtains the required SOC, it exits the simulation, recording the time it

spent traveling Ttd and the time it spent in queue Twi
. I have illustrated this process

in Figure 6.3.

6.4 Case Study

In order to demonstrate this method and understand the effects of increasing EV

adoption in an SAEV system, I have applied the proposed method to three case

studies. In Chapter 3, we found that 5500 autonomous shared taxis (A scenario)

had the potential to serve as many riders as 13500 conventional taxi cabs without

sharing (O scenario) for New York City taxi cabs. I also refer to the A scenario

as the Autonomous Vehicle Ride Sharing (AV-RS) scenario, and the O scenario as

the non AV-RS scenario. Using the method described in Section 6.3, I site charging

stations for a progressively increasing EV fleet for the A and O scenarios, so that I
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Algorithm 9 Compute objective function

1: procedure Compute objective function(riderGroup)

2: Set t = 0, Tw = 0, Tt = 0

3: Set Stated = 0 ∀ d ∈ Demand to 0

4: Set charging station locations C for those N > 0 and their number of ports

to N for those N > 0

5: Set Lqc = 0;Uc = 0 ∀ c ∈ C;

6: for All d in Demands do

7: if Stated = 0 then . not entered

8: if t = Ted then

9: Set Stated = 1;

10: Find nearest charging station s and move towards it along the GIS

route

11: set ts = t

12: if Stated = 1 and d has reached s then . moving to s

13: set Stated = 2 . Queued

14: Tti = t− ts, ts = t, Qd = Lqs , Lq = Lqs + 1

15: if Stated = 2 and Qd = 0 and Us 6= Ns then

16: set Stated = 3

17: Charging

18: Twi
= t− ts, ts = t,Us = Us + 1 Lq = Lqs − 1

19: if Stated = 3 and Tcd = ts − t then

20: Qd = Qd − 1∀d which are in the queue of s

21: Us = Us − 1 Tw = Tw + Twd
, Tt = Tt + Ttd

22: Exit the simulation

23: t = t+ 1
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Figure 6.3. Illustration of steps used in the objective function evaluation.
The 3 charging stations each have 1 charging port. The dots represent
the current locations of the demands. The color of the dot represents the
demands State - Red = 1 (Entered the simulation and moving towards
charging station); Light Yellow = 2 (queued at charging station); Yellow
= 3 (charging); Green = Exiting. The direction of the black arrows
progressing time steps. The boxes above the charging stations are the
queuing areas for the charging stations.

can understand the impacts of increasing EV adoption on the system performance

indicators (e.g., service level, rider waiting time, total distance driven etc.) In order

to examine the impact of switching from a non AV-RS case to a AV-RS case (the

simultaneous adoption of autonomous driving, ride sharing, and electric vehicles),

I consider a third case where we switch from the O scenario to the A scenario,

while increasing EV adoption. In all three cases, I increase the EV adoption in four

steps/epochs (10% → 40% → 70% → 100%). For each scenario in the case studies,

I assign the budget B, which is the total available resource units to site charging

stations. In order to make scenarios at the same EV adoption level comparable, I
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assign the same budget B for the same level of EV adoption across the three cases4.

The three case studies are listed below. I use the notation RXX, where R refers to

the scenario (A or O), while XX refers to the percent of EV adoption. For example,

A10 refers to scenario A with 10% EV adoption (10% of the vehicles are EV). The

parameter setting for each scenario is presented in Table 6.3.

• Case F (future) : A10 (B = 150)→ A40 (B = 350)→ A70 (B = 500)→ A100

(B = 1000)

• Case P (present): O10 (B = 150) → O40 (B = 350) → O70 (B = 500) →

O100 (B = 1000)

• Case M (mixed): O10 (B = 150)→ O40 (B = 350)→ A70 (B = 500)→ A100

(B = 1000)

I consider that Cn = 2 and Cu = 1, which means that siting a new charging station

costs as much as adding an additional charging port to an existing one. While the

numeric values of the budget were set arbitrarily in this study, I have conducted

sensitivity analysis on the budgets for Case F and Case P in the Supplementary

Information Section H.

6.4.1 Siting charging stations for the case study

I first generate the demand using the method outlined in Section 6.3.2 for each

scenario using the parameter settings in Table 6.3, which correspond to the different

epochs in our three case studies. I assume that all EVs can travel range = 200 miles

on a single full charge (similar to the base version of the Tesla Model 3) and the

4The budget B was set to keep the average waiting time for the vehicles approximately the same
in the A scenario (Figure 6.10(b))
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Table 6.3.
Scenarios for which EV charging stations are sited

Scenario Fleet Size AV Adoption EV Adoption Ride Sharing Adoption

A10 5500 1 0.1 1

A40 5500 1 0.4 1

A70 5500 1 0.7 1

A100 5500 1 1 1

O10 13500 0 0.1 0

O40 13500 0 0.4 0

O70 13500 0 0.7 0

O100 13500 0 1 0

charging ports are fast charging ones that can fully charge an EV in tf = 30 minutes

(Tesla, 2019). Non-AVs can also charge off-shift at a rate of ts = 180 minutes (which

is the time taken for a level 2 charger to fully charge a Tesla Model 3 Tesla (2019).

The SOC of the EVs at the beginning of the day was drawn from a triangular

distribution with mode 0.65.

Even though the total charging demand in both cases is approximately the same

(in all cases the O scenarios have approximately 10% less total demand than their

corresponding A scenario), we see from Figures 6.4 and 6.5 that the spatial distribu-

tion of the demands is very different for the two sets of scenarios (A and O). Spatially,

the charging demands in the A scenarios are more spread out in the suburban regions

5I tested the mode of the triangular distribution by varying it between the values of 0 to 1 and
found that, if I set the mode to 0.6, the SOC distribution at the beginning of the day is similar to
distribution at the end of the day.
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of NYC than the O scenarios ( Figure 6.4). Temporally, the charging demands in the

O scenarios have a single large peak at the beginning of the day, where the demands

in the A scenarios have three smaller peaks (Figure 6.5). Because, in the O scenarios,

the taxis that are off-shift are charged using level 2 chargers, it is highly likely that

they come in-shift with full charge, and wouldn’t need additional charging during

their shift. On the other hand, the autonomous taxis in the A scenarios do not go

off-shift and can only access the fast chargers that are placed in the model. These

spatial and temporal differences in the charging demand distributions are likely to

have a significant impact in the placement of charging stations.

For each of these scenarios, the set of public parking stations in New York City

(NYC Open Data, 2016) is considered as the potential charging station location set

L. Parking lots are considered as ideal sites to locate charging stations since they

are more likely to be located near points of interests for taxi customers and can serve

as good locations to wait while searching for new passengers. Additionally, taxis

cannot charge in the middle of a trip, because it would be unreasonable to expect

the customers to wait while the taxi is charging.

I run 10 instances of the genetic algorithm to account for the randomness of

heuristic algorithms 8 and select the best solution in each scenario. The Genetic

algorithm is run for I = 80 iterations (since after this point the objective function

value does not decrease at a rapid rate as per Section G of the Supplementary

Information) with G = 20, and then the best charging station sites are reported,

which are visualized in Figures 6.6 to 6.8.

Figures 6.6 to 6.8 show that the optimal charging station configurations in the

A and O scenarios are very different. The corresponding objective function values

are presented in Figure 6.10(a). From these results, it can be seen that, first, the

genetic algorithm selects less charging stations with more charging ports in the O
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 6.4. Spatial visualization of the charging demands for each sce-
nario. The contours denote the demand distribution for that scenario
and are superimposed on a map of New York City bounded by the co-
ordinates (-74.1, 40.55) and (-73.7,40.95). The demand concentrated in
the Manhattan area.

scenarios, so that it can reduce the waiting time (Tw) during the large morning peak

as Tw is the dominating contributor to the total wasted time (Figure 6.10(c) and

6.10(d)). On the other hand, the A scenarios have many more charging stations
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(a) (b)

(c) (d)

Figure 6.5. Count of unrestricted charging demand for every 15 minutes
with different EV adoption scenarios: (a) 10%, (b) 40%, (c) 70%, and
(d) 100%

with lower number of charging ports, which would help minimize the time taken

to travel to the charging stations (Tt), because, for the A scenarios, the driving

time is the dominating contributor to the total wasted time (Figure 6.10(c) and

6.10(d)). Second, the objective function value reached is much larger (worse) for the

O scenarios as compared to the A scenarios. From Figure 6.10(b), it can be seen that,
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for the same level of EV adoption, the average wasted time due to charging for each

taxi is much larger in the O scenarios. This indicates that, if we introduce electric

taxis without autonomous driving and ride sharing, we would need more budget to

site enough charging stations to maintain the same objective function value (charging

infrastructure service quality) for the same level of EV adoption. Third, we see that

the objective function values of A70 and A100 scenarios in case 3 are slightly higher

than those in the A70 and A100 scenarios of case 1, because, in case 3, the charging

stations sites for scenario A70, consider pre-existing charging stations of G40. Since

the demand patterns of G40 and A70 are very different (see Figure 6.4 and 6.5), the

sudden shift from O to A results in the system having to deal with more demands

in the suburban regions of the city (where previously there was low demand).
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(a) (b)

(c) (d)

Figure 6.6. Future case : Best charging station siting plan as determined
by the genetic algorithm. The red dots indicate the site and the num-
bers indicate the total number of charging ports at that station. The
purple charging station labels indicate new stations built for that EV
adoption level, while the yellow labels indicate station which exist from
the previous epoch
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(a) (b)

(c) (d)

Figure 6.7. Present case: Best charging station siting plan as determined
by the genetic algorithm. The red dots indicate the site and the num-
bers indicate the total number of charging ports at that station. The
purple charging station labels indicate new stations built for that EV
adoption level, while the yellow labels indicate station which exist from
the previous epoch
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(a) (b)

(c) (d)

Figure 6.8. Mixed case: Best charging station siting plan as determined
by the genetic algorithm. The red dots indicate the site and the num-
bers indicate the total number of charging ports at that station. The
purple charging station labels indicate new stations built for that EV
adoption level, while the yellow labels indicate station which exist from
the previous epoch
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Figure 6.9. Present day charging station sites in NYC

In comparision to the present day charging station sites in NYC (Figure 6.9

obtained from US DOE (2019)) where the EV adoption levels are overall less than

2% of all the vehicles on road, there appear to be some similarities between the

present day case (Figure 6.7). In both, the actual sites for public EV charging

are more concentrated near Manhattan (the region where ridership demand is high).

However, in the actual sites many of the charging stations located in suburban regions

have high number of chargers. This difference can be observed because our case study

focusses on NYC taxi operations, and the ridership demand for NYC taxis is very

low in suburban regions. Alternatively, there may be a significant number of personal

EVs in those suburban regions to justify a large number of charging stations.
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(a) (b)

(c) (d)

Figure 6.10. (a) Objective function values reached in different adoption
scenarios, (b) Scaled objective function value based on the total number
of EVs, (c) Scaled travel time, and (d) Scaled waiting time. The scaled
objective function value is the ratio of the objective function value to the
number of EV taxis in that scenario. The scaled objective function can
be interpreted as the average time additional time that an EV taxi wastes
in moving to and waiting at a charging station

6.4.2 Case Study Analysis

After siting the charging stations for each of these cases, I re-ran the PP-SAEV

with the optimal charging station locations (as shown in Figures 6.6 to 6.8) as inputs
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to analyze the impacts of increasing EV adoption on the performance of the taxi

system.

6.4.2.1 Temporal charging trends

Since I used the unconstrained demand to site charging stations (as discussed in

Section 6.4.1), I need to evaluate that, with the sited charging stations, how closely

our optimal charging stations satisfy the EV charging demand. As shown in Figures

6.11 and 6.12, for the scenarios where the objective function value is relatively low

(see Figure 6.10(b), 10% and 100% EV adoption in case P and all scenarios in case F),

indicating that budget B is sufficient, the resulting charging load (Figure 6.5)closely

matches that of the estimated demands (Figure 6.11), and the queues are relatively

short (Figure 6.12). However, when the budget is not sufficient, the charging load in

the morning peak is more spread out because more taxis need to queue at charging

stations.

From the number of taxis charging throughout the day, I can also calculate the

total power consumed for EV charging by multiplying the number of chargers that

are in use at any given time with the power rating of the charger. Considering fast

chargers with 120kW power rating (Tesla, 2019), I plotted the total power consump-

tion of the city (Figure 6.13a) and the power consumption to support the charging

of 100% EV adoption (Figure 6.13b) in each of the three cases. We can see that, the

power consumption in the city will not be significantly affected due to the different

scale, because the total number of taxis in NYC is relatively small. Additionally,

the peak power consumption by the EV charging occurs during the time when the

power consumption from other sources is low, hence we would not need to expand

the capabilities of the electric power grid to account for EV taxis in NYC. How-
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(a) (b)

(c) (d)

Figure 6.11. Comparison between the demands simulated based on the
optimal charging station siting and the estimated unrestricted demands
in terms of the number of vehicles charging at the charging station over
time. The solid lines represent Case F, Case P, and Case M, while the
dotted lines represent the unrestricted scenarios. (a)10%, (b)40%, (c)
70%, and (d) 100% EV adoption.

ever, it must be noted that this study only considers electric taxis and it is possible

that personal EV adoption will also increase along with the adoption of EV taxis

(Bloomberg NEF, 2018). Hence, a similar study would be needed to understand the

overall impact on the grid due to widespread adoption of personal EVs.
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(a) (b)

(c) (d)

Figure 6.12. Count of vehicles queuing at the charging station. The solid
lines represent Case F, Case P, Case M and the dotted lines represent the
unrestricted scenario (a)10% (b)40% (c) 70% (d) 100%

6.4.2.2 Service Level

For each scenario, I studied the service level (the fraction of riders served by the

system) achieved during the peak demand period6 (Figure 6.14(a)) so that the effect

of EVs on the system during rush hours could be understood. The service level

6The peak demand period in NYC is from 6:00pm to midnight (NYC DOT, 2014).



160

(a)

(b)

Figure 6.13. (a) The current power consumption profile of NYC (New
York Independent System Operator, 2019), and (b) The power consump-
tion by charging EVs for 100% EV adoption in the evaluated cases (color).
The solid lines represent Case F, Case P, Case M and the dotted lines
represent the unrestricted scenario (a)10% (b)40% (c) 70% (d) 100%

achieved during the peak charging demand period7 was also evaluated, because this

would be the time that less vehicles would be available to serve customers (Figure

7From Figure 6.5, we see that the peak charging demand occurs at the beginning of the day (1:00am
to 7:00am), when the demand for taxis is low.
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6.14(b)). In order to understand the impact that EVs would have on the system,

assuming they had access to unlimited charging infrastructure, I also plotted the

service levels for scenarios that had access to all potential charging locations from

set L. We see that EVs have minimal effect on the service level in all cases for the

peak charging time (1:00 am to 7:00 am). This indicates that, at the peak charging

time, sufficient vehicles are available to serve riders. For the unrestricted charging

case, more EVs are able to charge as compared to the restricted charging case, and

hence the number of vehicles available to serve riders is less. However, in the peak

demand period (6:00pm to 12:00am), we see that, for the O scenarios (Case P, and

the G10 & G40 scenarios of Case M ), there is little change in the service level. The

reason is that, during the peak demand period, there is very little charging demand.

Therefore, the number of vehicles that are available do not decrease by a large number

by EV charging. For the A scenarios there is a larger decrease in the service level for

increasing EV percentage. However, we see an increase in service when the percent

EV increased from 70% to 100%. We can expect this increase in service level because

the objective function value of the optimal sites in the A100 scenario is actually lower

than that of the A70 scenario (Figure 6.3). This may be caused by the fact that I

assigned the A100 scenario a budget that was relatively larger (for the same EV

adoption increase, an additional budget of 500 was allocated) than the A70 scenario.

We also see that the service level of the A70 and A100 scenarios of Case M is higher

than the corresponding A70 and A100 scenarios of Case F. This happens because

there are more vehicles charging during the peak demand period in Case F than in

Case M (see Figure 6.11), reducing the service level.

Since there are limited number of charging stations and the EVs would need to

relocate to charge at charging stations, the service levels in different parts of the

city would change with increasing EV adoption. For the three cases, I plotted the
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(a) (b)

Figure 6.14. Service level for (a) rider demand peak (6:00pm to 12:00am)
(b) charging demand peak (1:00 am to 7:00 am); The solid lines represent
Case F, Case P, Case M and the dotted lines represent the unrestricted
scenario (a)10% (b)40% (c) 70% (d) 100%

change in the service levles between 100% EV adoption and 0% EV adoption. In

each case though, we observe no major spatial trend8 in the change in service levels

throughout the city for the entire day (Figure 6.15). This result indicates that EV

adoption is unlikely to significantly impact the taxi service in different regions of the

city, as long as the charging stations are appropriately placed.

6.4.3 Environmental Impacts

In order to estimate the environmental impact of EV adoption in the NYC taxi

fleet, I studied the total distance travelled by all vehicles (Figure 6.16(a)) distance

8In some of the cells we see a 100% change in service level. This occurs since the demand for taxi
rides in that region is very low, and even a small change in the absolute number of served riders in
that cell would result in a large change in service level
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(a) (b) (c)

Figure 6.15. Change in service levels over the city between 100% EV
adoption and 0% EV adoption for the entire day. The color in each cell
corresponds to the change in service level, which is measured as the ratio
of the change in the number of riders served by the two scenarios in that
cell to the total number of riders in that cell

travelled by the EVs (Figure 6.16(b)). While the total distance decreases by about

1 × 105km throughout the day in both the F and P cases, we expectedly see an

increase in the distance travelled by the EVs in each case. Additionally, we see

that the total distance travelled between the P case and the F case is approximately

different by 2 × 105km per day (similar to Section 3.3.3). This reduced distance is

mainly on account of having 100% ride sharing adoption in the F case (and hence

less total distance travelled for the same number of rides) as compared to the P case

(0% ride sharing). In each case though, we see from the difference in travel distance

between Case M and case P (for 70% and 100% EV adoption) that placing the

charging stations optimally has a very small effect on the total travel distance. This

is in line with the observations of Bauer et al. (2018) that the additional distance
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travelled due to charging will likely not have a major impact on the total travel

distance.

For ICEVs, every mile driven results in tailpipe emissions and is estimated to

contribute 404 g of CO2 (US EPA, 2019b). However, for electric vehicles, while

the tailpipe emissions are 0, CO2 emissions are produced at the source of electricity

generation. For New York City, this is estimated to be 110 g (US EPA, 2019a) of

CO2 for a mid range Tesla Model 3 (The Tesla model 3 has a range closest to 200

miles per charge as considered in our model). For AVs, we consider an additional 9%

reduction in CO2, which is predicted by Gawron et al. (2018) as a result of potential

changes in driving efficiencies. Using these conversion factors, I estimated the daily

CO2 emissions for our three cases (Figure 6.17). While increasing the EV adoption

from 0 to 100%, the CO2 emissions reduced by about 861 Tonnes (74%) (this is

consistent with Bauer et al. (2018)) in the A scenario and about 1100 Tonnes (78%)

in the O scenario. Interestingly, due to a larger increase in the distance travelled by

EVs for the P scenario, increasing EV adoption will result in a larger reduction in

CO2 emissions than the F scenarios.

6.5 Conclusion and Future Scope

In this chapter, I presented a method to site charging stations considering a

fixed budget, while optimizing the number of charging stations and the number of

charging ports at each station. The proposed method considers queuing at charging

stations and the presence of existing charging infrastructure. The charging demand

was estimated using an agent-based model to simulate shared autonomous electric

vehicles which have flexible charging rules. A genetic algorithm was used to find the

optimal charging infrastructure expansion plan.
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(a) (b)

Figure 6.16. The distance travelled by (a) all the taxis (b) Only the
electric taxis with increasing EV adoption

Figure 6.17. CO2 emissions in Tonnes for increasing EV adoption

I used the proposed method on three case studies where the EV adoption was

increased from 10% to 100% in four steps. By studying the outputs from running the

case studies with the optimal charging station identified using the genetic algorithm,

I found that for non AV-RS (P) case, there is no overall change in service levels due
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to the presence of EVs in the system. For the AV-RS case (F), I found that the

overall service level decreased by approximately 2%. Additionally, I estimated that

EV taxis would be able to reduce CO2 emissions by about 790 Tonnes per day in the

F scenario and 1100 Tonnes in the P scenario.

While this study improves the existing charging station siting method from mul-

tiple aspects, it has a few limitations that I would like to note to shed lights for

future research. First, I sited charging stations for one epoch at a time consider-

ing the charging stations that were sited in the previous epoch. Future work could

look at siting charging stations for multiple periods at the same time considering

the uncertainty in future AV, ride sharing, and EV adoption. Second, more research

could be done in finding exact solutions to our problem. Genetic algorithms do not

guarantee global optimal. It is possible that better solutions can be found. Third,

the model can incorporate more complex charging behaviors. Our simulation model

considers that taxis would only go to the nearest charging station and the decision of

whether to seek charging opportunities only depended on the SOC and the distance

to the charging station. In reality, the taxis would consider a number of factors in

evaluating whether to charge or not, or select an alternative charging location (for

example, the queue length and the expected waiting time at the charging station, the

potential of finding new riders at the current location of the taxi and at the charging

station, and the cost of charging etc.) Fourth, since I was siting charging stations

for a fleet of taxis, I did not consider a mix of charging stations with different power

ratings. While assuming that all charging stations have the same power rating may

be reasonable in this case, it may not be reasonable to make the same assumption

for other cases (for example personal EVs). Additionally, I considered the cost of

building/expanding charging stations at different sites to be identical. However, the

cost of building the same type of charging stations at different locations could vary
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considerably based on prevailing land prices and the types of surface on which the

charging stations are installed (NYCTLC, 2013). Studies that include more accurate

charging stations building costs can generate more realistic solutions. However, this

will depend on information such as land price, surface type, and existing electric

service to be available at the large-scale for all candidate sites.



168

7. CONCLUSION

This dissertation uses agent-based modeling to better understand emerging trans-

portation systems that are used for personal mobility. These emerging transportation

systems could be comprised of a mixed fleet of autonomous vehicles, electric vehicles

and may have a varied adoption of ride sharing. Additionally, the preferences of the

riders towards ride sharing in the system may also be different. The understanding

of such systems is crucial to formulating policies that guide the adoption of these

new technologies (ride sharing, autonomous vehicles and electric vehicles).

The major contribution of this dissertation is in building the Parameterized

Preference-based Shared Autonomous Electric Vehicle (PP-SAEV) model, which is

an agent-based model that simulates systems of SAEVs. The model is patrame-

terized so that it is able to evaluate varying adoption levels of AVs, EVs and RS.

The PP-SAEV model also includes settings to define the heterogeneity of riders to-

wards choosing a shared ride or a non-shared ride, and can also accept heterogeneous

charging rules for EVs. The output from the model can help estimate the aggregate

performance of a system with a particular parameter setting in terms of service level,

waiting time, riding time, percent shared rides, extra distance travelled by riders, oc-

cupancy of vehicles and the distance travelled by the vehicles. Additionally, more

specific inferences can also be made from the model output for example, the spatial

and temporal service patterns of riders, the status changes of vehicles through the

day, locations of charging demand, and potential routes where additional demand

can be induced.
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By comparing the outputs of several scenarios against each other, the impacts

of changing a particular parameter setting can be studied. The dissertation also

introduces a method to comparatively analyze multiple scenarios by identifying those

scenarios that are comparable to each other based on a selected performance metric

(for example, service level). It is important to find scenarios that are comparable to

each other and compare their secondary performance metrics (for example waiting

time, or environmental impacts) so that the systems are being compared on a fair

ground. Using meta-model based simulation optimization, comparable scenarios can

be identified even when there are many continuous and discrete parameter settings.

By identifying comparable scenarios researchers are able to identify multiple scenarios

that can be implemented and then evaluate these options on the basis of other

important parameter settings.

The dissertation introduces a new method to site charging stations for electric

vehicles when the budget to site charging stations is fixed. The method selects

charging stations from potential charging station locations and allocates the number

of ports to each charging station, considers queuing of EVs at charging stations, and

considers charging stations already in the system while siting new ones.

The key results that were obtained by applying the methods developed in this

dissertation to a case study of NYC taxis are discussed in Section 7.1. The insights

that these results can provide for system planners are discussed in Section 7.2. While

this dissertation does improve our understanding of these sustainable transportation

technologies, it also has some limitations which are outlined in Section 7.3.
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7.1 Key Results from Case Studies

This section outlines the key results that were obtained from running the PP-

SAEV model with several parameter variations. In each case study, the parameters

of the PP-SAEV were varied so that the questions that were asked in Section 1.5

were addressed.

The PP-SAEV was used to identify scenarios that had comparable service level

with respect to the present day taxi operation using a case study of New York

City taxis for systems with AVs and non-AVs by varying the parameters of the

PP-SAEV in discrete steps. It was found that 8000 traditional vehicles with 100%

ride sharing adoption or 5500 autonomous vehicles with 100% ride sharing adoption

could service the same demand as a system of 13500 traditional taxi cabs with no

ride sharing. Comparable scenarios were also developed for systems which had a

mixture of AVs and non-AVs in varying proportions, for different taxi capacities.

Using these comparable scenarios, a fleet size prediction model was developed and it

was found that to reduce the fleet size by 1000 vehicles, the system operator could

increase AV adoption by approximately 25% or increase the RS adoption by 35%

for taxis of capacity 4. For taxis of capacity 6, about 50% AV adoption or 37% RS

adoption could bring about the same reduction in taxi fleets. However, the reduction

in the number of vehicles in the system could result in 1) increased wait times and

2) a reduction of service in suburban areas.

The service level determines the usability of the transportation system, and hence

it is important to understand how different system parameters (for example rider

heterogeneity and EV adoption) impact the service level. While EV adoption was

not found to have a significant impact on service level, the rider heterogeneity did

impact the service level significantly. Mixture experiments were used to vary the
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proportions of the riders in the PP-SAEV to understand the impact of different

mixes of riders in a SAV system. The analysis shows that system with about 70%

riders that are either indifferent to sharing or those that prefer sharing with about

30% of riders accepting only shared rides have the best service level for 6000 SAVs.

Increasing the proportion of non-sharing riders could potentially reduce the service

level of a RS system by 17%. Individual service levels for each rider type were also

analyzed, and sets of rider types that positively and negatively affected the service

quality of the other were identified. The riders with the most flexible ride sharing

preference were least affected in terms of service level by changing the proportions

of other rider types in the SAV system. These insights can help formulate policies to

design ride sharing systems that are able to target riders with a particular sharing

preference.

While analyzing the CO2 emissions of these comparable scenarios, it was found

that AVs with RS could reduce approximately 866 metric tones of CO2 per day in

capacity 4 taxis mainly by reducing the total distance travelled by all the vehicles.

Additionally, capacity 4 taxis have the most potential to reduce CO2 emissions when

compared to taxis with capacity 2 or 6. While studying the impact of rider hetero-

geneity on the RS system, no significant impact of varying rider compositions was

found on the CO2 emissions. By introducing EVs in SAV systems we are able to

reduce approximately 810 metric tonnes of CO2 emissions and by introducing EVs in

traditional taxi systems a reduction of 1100 metric tonnes of CO2 can be achieved.

Ride sharing systems are not able to reach maximum capacity thus limiting their

efficiency in serving more riders. In order to further understand the limitations of ride

sharing, the status of the taxis through the day was studied and used composition

data analysis techniques to analyze the reasons for sharing limitations from the taxi

status data. Using hierarchical clustering groups of scenarios were identified which
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had similar patterns of taxi statuses and it was found that for taxis with a fleet size

of 2, ride sharing would not be successful due to most of the taxis either reaching

their maximum capacity, or being unable to find new riders to share with since

they may have more than two persons in their group. Taxis with fleet size 4 and

6 are potentially capable to add additional riders to their vehicle. However, since

appropriate ride shares may not be available, taxis of size 4 and 6 are unable to reach

their maximum capacity. This indicates that if appropriate incentives are provided

to encourage ride sharing on similar routes taxis with capacities 4 and 6 may be able

to serve additional demand. Because, taxis with capacity 4 and 6 have approximately

similar taxi status patterns, it would be better to use taxis with capacity 4 for ride

sharing since taxis with higher capacities would emit more tailpipe emissions.

The adoption of ride sharing has a significant impact on the average waiting

time of riders in an SAEV system. The waiting time of the riders increased by

approximately 30% when switching from 0% ride sharing participation and 100%

ride sharing participation. By building a regression model of waiting time as a

function of fleet size, AV adoption, RS adoption, capacity, and deviation tolerance

it was found that by increasing the fleet size by 1000 taxis or increasing the AV

adoption by 25% the average waiting time for the riders could be reduced by 30s for

capacity 4 taxis. The waiting time of riders is also affected by the sharing strategy

of the riders and the overall composition of rider types (sharing preferences) in the

system, and in general, the trends in the dependence of waiting time on the rider

type composition were negatively correlated with the trends of service level.
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7.2 Insights for SAEV System Development

The PP-SAEV model and the insights as discussed in Section 7.1 can guide policy

makers to design future transportation systems which may have varying adoption

levels of ride sharing, electric vehicles and autonomous vehicles.

• Policy makers can test various “what if” scenarios using the PP-SAEV model

developed. The model outputs fine grained status data that can be used to

find aggregated level system performance metrics for example the service level,

average waiting time, percent of rides shared. Additionally, the fine grained

status output from the PP-SAEV can be used to make inferences at spatial

and temporal levels for system key performance indicators.

• By analyzing scenarios that are comparable to each other (for example, in

Chapter 3 and 4), relationships between other system performance indicators

such as average waiting time, environmental impact and system ride sharing

efficiency can be identefied. Based on these system performance indicators, a

policy maker can choose to drive efforts to achieve a certain adoption level of

AVs and RS.

• By inducing additional shared rides (as discussed in Section 4.4.3) from the

suburban regions (where the demand is low) to the city center (where the

demand is high), potentially extra rides could be served by the system. Thus

policy makers could incentivize riders traveling in the same direction but using

other modes of transportation (for example personal vehicle) to instead adopt

the ride sharing system as a preferred transit mode. This could be done by

lowering rates for such rides.
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• The heterogeneous preferences of riders (as discussed in Chaper 5) do impact

the system performance (in terms of service level, waiting time and ride shar-

ing efficiency) as well as the individual riders service quality (service level and

waiting time). If the rider types of a rider can be identified, the system perfor-

mance can be studied more accurately using the PP-SAEV model, since it can

account for these rider types. Additionally, in order to achieve a certain sys-

tem performance, the system operators can use monetary or other incentivies

to modify the sharing preference of riders to bring the overall composition of

rider types towards a desired level.

• Charging stations can be sited for a fleet of electric vehicles given a fixed budget

using the method developed in Chapter 6, so as to cause least inconvenience to

the taxi fleet. Also, by studying the switchover case (switch from non AV-RS

to AV-RS system at 70% EV adoption) I showed that such a sudden adoption

of future technologies could increase the inconvenience caused to EV taxis that

seek charging when compared to the AV-RS case. In order to minimize this

inconvenience, if future systems are likely to have high AV and RS adoption

levels this switch-over should be made as early as possible by promoting fast

adoption of AV-RS systems as compared to EVs to avoid having greater con-

straints in siting charging stations and thus having more inconvenience to EVs

looking to charge.

7.3 Limitations and Future Research Directions

The limitations of this dissertation and potential future research directions are

listed below. Some of these limitations can be addressed using the PP-SAEV model
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itself or by minor extensions, while others may need additional research work beyond

the scope of the current PP-SAEV.

• The causes and impacts of induced rider demand need to be analyzed. It is pos-

sible that due to incentive policies (lowering taxi fares for shared rides), many

additional riders may be added to the system and it is important to analyze

the impact of this induced demand on the system performance. In Chapter 4 I

inferred that if the induced demand is along existing shared routes, it may be

possible to accommodate some additional sharing riders. The demand supplied

to the PP-SAEV can be tested with varying fractions of induced demand to

see how the system performance parameters change. Additionally, research is

needed into how new policies can control this induced demand.

• In order to study the impacts of incentives, a cost structure for using the system

should be incorporated in the PP-SAEV model. In reality, the adoption of

ride sharing, electric vehicles and autonomous vehicles would depend upon the

costs that are associated with using these systems. For example, in order to

incentevize riders to share rides or adopt a certain rider type sharing strategy,

system operators would have to subsidize shared rides appropriately. If electric

vehicles are a part of the system, planners may want to implement a variable

pricing scheme for charging at different charging stations in order to balance the

utilization. Studies that consider such pricing schemes and model the demand

according to these schemes would provide a better understanding of the system.

• Although the PP-SAEV model does match riders with taxis for shared and

non-shared rides, it makes these matching decisions locally. There have been

several optimization algorithms to find optimal matches in literature (Lin et al.,
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2012; Santos and Xavier, 2015; Hosni et al., 2014; Mahmoudi and Zhou, 2016;

Masoud and Jayakrishnan, 2017) which can potentially find better matches

thus potentially allowing a further reduction in fleet size to serve the same

rider demand. However, neither of these algorithms have been shown to have

practical inferential applications on real-world road networks due their long

running time. Research is needed to find globally optimal real-time matching

algorithms for shared autonomous electric vehicles and how they would improve

system performance.

• To demonstrate the use of the PP-SAEV model in making inferences for SAEV

systems in cities, this dissertation uses a case study of NYC taxis. if input data

is available or input data can be approximately generated, multiple cities can

be compared to see if there are any peculiar features of cities that enhance the

sustainability of these new technologies.

• All the taxis in a single scenario had taxis with the same capacity (Capacity = 4

in Chapter 3, 6 and 5 and Capacity = 2, 4, 6 in Chapter 4). However, it

is possible to have taxi fleets where each taxi may have a different seating

capacity. For example, in areas where the number of rides shared are higher,

and additional ride sharing demand can be served, larger capacity vehicles can

be introduced. Research is needed to find how these heterogeneous sized taxi

fleets could help improve system performance

• Although in Chapter 4, varying adoption of RS and AV is considered, this

dissertation does not consider varying the adoption of EVs, AVs and RS all at

the same time. In Chapter 4, I varied the adoption of RS and AV but did not

consider changing adoptions of EVs since in order to extend this analysis to
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electric vehicles, at each step charging stations would have to be sited (using

the method developed in Chapter 6) thus making such an extension not trivial.

An experimental design study that incorporates the analysis of electric vehicels

and performs similar analysis could provide an understanding of the combined

effects of EV, AV and RS adoption changes.

• Chapter 5 considers heterogeneous preferences in ride sharing. However, it was

noted that the sharing preferences defined in Chapter 5 actually depended on

demographic and logistical factors of the riders. A study that understands the

relationship between these factors of the riders and their sharing preference may

provide a more direct intuition regarding how incentives should be designed to

produce a desired effect (for example,) reduce waiting time or increase the

service level for a particular rider type in the ride sharing system.

• Charging stations were sited by considering the demand generated by fixing the

charging utility function (Equation A.1) for each rider in Chapter 6. However,

each taxi may have their own charging preferences with regards to trading off

waiting in queue at a nearer charging station vs driving further in search of

a potentially empty charging station. Further, each taxi may have a different

SOC threshold beyond which they would like to charge. These thresholds

likely impact optimal charging station placement, and by studying the impact

of these heterogeneous charging rules on a system with electric vehicles could

lead to better insights on the system performance parameters.

• The optimization model in Chapter 6 considered siting charging station for

increasing levels of EV adoption considering each EV adoption level sequen-

tially. However, if charging stations are sited in such a way at each stage of
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EV adoption without considering its impact on future stages of EV adoption,

we may not get an optimal charging station configuration at a later stage.

However, since we may not be able to clearly predict the future EV/AV/RS

adoption states, it might be risky to site charging stations for different levels

of these adoptions. Research is needed into studying how an optimal charging

station configuration would change considering variability in adoption of new

technologies like AV and RS.

In summary, future systems of shared autonomous electric vehicles offer great po-

tential to reduce carbon emission by reducing VMT, and lowering tailpipe emissions.

The proposed PP-SAEV model is a helpful tool to analyze systems with various

mixes of AV, EV and RS adoption and can guide decision making. When evaluat-

ing system performance of several scenarios, comparable scenarios can help discover

important trends relating the performance indicators to the input parameters. The

proposed meta-model based simulation optimization method can help identify such

comparable scenarios while using less computational resources. Large capacity vehi-

cles may not be environmentally efficient because they emit more GHG emissions per

mile and ride sharing efficiency can be limited by low sharing tolerance and spatially

variable demand density. Heterogeneous sharing preferences of riders should be con-

sidered while modeling SAEV systems since they do have an impact on the service

quality of riders. Last, EVs, though environmentally friendly, require an extensive

charging station network and while evaluating an SAEV system, it is important to

site these charging stations for incremental adoption of EVs. EV charging station

siting models should consider queuing at stations, the locations of existing charging

stations and budget limitations while determining the appropriate charging station

sites. The genetic algorithm based approach used in this dissertation incorporates
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these considerations and can be used to site charging stations for EVs. Future work

needs to be done in exploring the impact of a gradual adoption of EV, AV and RS

in SAEV systems.
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APPENDIX A

PSEUDO CODES FOR PP-SAEV MODEL

I gave a simplified description of the model in Chapter 2. Below I expand on the

details of the parameters and the actions of the individual agents. The pseudo code

here gives additional details to complement Algorithm 1-7 of the main text. Several

steps of Algorithm 1-7 have been broken down into several sub steps to demonstrate

the flow of the agent-based model.

A.1 Main Program and Input Data

The execution of the simulation begins with the first step of the main algorithm.

The algorithms̀ main task is to call two sub algorithms for the taxi agents an the

riderGroup agents, which it does by looping through the collection of agents defined

in Section A.1.1. My algorithm gives control of shifts starts for taxis to the main

section.

I restrict our area of focus to the city of New York which I further divide into two

distinct regions Manhattan and Brooklyn. I have also defined a sub region of Times

Square within Manhattan to account for the significantly low speeds of traffic in that

region. The Regions are defined as per Table A.1. These regions are primarily used

to limit the search area for shares and for rides and also to define average speeds of

taxis.
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Table A.1.
Boundary points defining the regions of NYC

Manhattan Brooklyn Times Square

Latitude Longitude Latitude Longitude Latitude Longitude

1 40.71196 -73.9795 1 40.66567 -73.7416 1 40.77035 -73.987513

2 40.73795 -73.9774 2 40.68595 -73.7267 2 40.76285 -73.969753

3 40.77507 -73.9438 3 40.74382 -73.7331 3 40.74004 -73.986493

4 40.78303 -73.9446 4 40.76253 -73.757 4 40.74762 -74.004151

5 40.79725 -73.9324 5 40.75851 -73.8515 5 40.77035 -73.9875

6 40.83492 -73.9359 6 40.77536 -73.924

7 40.85633 -73.924 7 40.70011 -73.9619

8 40.86915 -73.9297 8 40.70174 -73.9912

9 40.829 -73.9508 9 40.66714 -73.9954

10 40.75087 -74.0075 10 40.61386 -74.0371

11 40.70291 -74.0132 11 40.58898 -73.9835

12 40.71196 -73.9795 12 40.58975 -73.9217

13 40.62609 -73.9028

14 40.66892 -73.8424

15 40.66567 -73.7416

A.1.1 Global Parameters

• taxiDist : Bi-Variate distribution to define the initial locations of the taxis and

to select hot spots for the taxis to return to while searching

• EV Percent : The percent of the taxis that are electric vehicles
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• AV Percent : The percent of the taxis that are autonomous vehicles

• fleetSize : The total number of taxis

• taxiCapacityDistribution : Distribution of the taxi capacity excluding the

driver

• busyPercent : Percent of busy taxis at the start of the simulation

• riderGroups : Collection of all riders in the system

• Taxis : Collection of all taxis in the system

• taxis free man[i][j] :1 Two dimensional grid collection of all the taxis that do

not have any rider (idle) within the Manhattan area as defined by Table A.1.

Resolution of the grid is 200× 200

• taxis free brook[i][j] :1 Two dimensional grid collection of all the taxis that do

not have any rider (idle) within Brooklyn as defined by Table A.1. Resolution

of the grid is 200× 200

• taxis free else : Collection of all the taxis that do not have any rider (idle)

within all other areas except Manhattan and Brooklyn as defined by Table A.1.

• taxis shr man[i][j] :1 Two dimensional grid collection of all the taxis in sharing

mode within Manhattan as defined by Table A.1. Resolution of the grid is

200× 200

• taxis shr brook[i][j] :1 Two dimensional grid collection of all the taxis in shar-

ing mode within Brooklyn as defined by Table A.1. Resolution of the grid is

200× 200

1 i represents the index for the latitude and j represents the index for the longitude.
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• taxis shr else : Collection of all the taxis in sharing mode in all other areas

except Manhattan and Brooklyn as defined by Table A.1.

• Nhot : Count of hotspots for the taxis to pick at the start of the simulation.

• t : Main time counter

• tEnd : Simulation length

A.1.2 Main Algorithm

1. Load GIS region of NYC

2. Draw regions bounding Manhattan and Brooklyn

3. Initialize grid and arrays taxis free man, taxis free brook,taxis free else,

taxis shr man taxis shr brook and taxis shr else

4. Initialize fleetSize taxis in the environment as per taxiDist and set Capacity

from taxiCapacityDistribution, TaxiID, EV Flag as perEV Percent, AV Flag

as per AV Percent, and State (=0)

5. For each taxi do (the taxi parameters and variables are defined in Section A.3).

6. Add all taxis to the collection Taxis.

7. Initialize busyPercent taxis as busy (State = 0.1) and moving to a random

location.

8. Select Nhot locations from taxiDist as hotspots and assign Nhoti hotspots

to each taxi i
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9. Set t = 0

10. For each rider group in the database entering at time t, do

(# rider variables are defined in Section A.2.2)

11. Assign riderID sequentially

12. Set State = 0

13. set r indi, r indj, and r indk as per location

14. set canShare and deviationTolerance as per distribution

15. For each rider group g in the system, execute function riderAlgo(Group g) (#

details of this function are in Section A.2.2)

16. For each taxi xc in the system Execute function taxiAlgo(Taxi xc) textbf(#

details of this function are in Section A.3)

17. If t = t, End and Go to 19

18. Set t = t+ 1 and Go to 10

19. Stop

A.2 Rider Algorithm and Data

The Rider Group Algorithm defines the actions the riders go through when they

enter the system. The riders after initialization go through 3 main states (searching,

waiting and riding) before exiting the system. The riders first search for rides using

algorithm searchForTaxis. If they fail to find a ride within waitLimit the rider
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group exits the system unserved. If the rider group does find a ride they waits for

the taxi to pick them up at the pick up location (pLong, pLat), then ride with the

taxi and exit the system when the taxi drops them off at the drop off location (dLong,

dLat)

A.2.1 Parameters and Variables

The rider agents have the following individual parameters and variables.

• riderID : A unique identification number for each rider. These are assigned

to the rider as it enters into the system sequentially.

• riderType : The type of rider that defines its searching strategy

• State : A state defining the following actions of the rider group. The possible

states are 0. Initialization, 1. Searching taxi, 1.9 Waiting for response 2.

Waiting for pick up 3. Riding

• pDt : The date and time of the riders entry in the system, taken from the data

base.

• pLong : The pickup Longitude

• pLat : The pickup Latitude

• dLong : The drop off Longitude

• dLat : The drop off Latitude

• passengers : number of passengers in the group

• waitLimit : Maximum time a rider will wait before exiting the system
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• taxarr : List of completely empty taxis under consideration

• sharr : List of taxis in sharing mode under consideration

• tl : local time at that state in which it was used

• Stats : A record of the time the rider has changed their state

• shrLimit : The time for which a Type 4 rider would search for shared rides

• myTaxi : Taxi which has been assigned to the group

• myTaxireg : Empty Taxi which has been assigned to the group temporarily

• myTaxishr : Shared Taxi which has been assigned to the group temporarily

• noTaxis : Set of taxis that have refused service to the rider earlier

• regLimit : The time for which a Type 2 rider would search for non shared rides

• r indk : Index defining region (0=Manhattan; 1=Brooklyn; 2 = Else)

• r indi : Row index for rider group’s location within the grid defined in Section

A.1.1

• r indj : Column index for rider group’s location within the grid defined in

Section A.1.1

• tis : Total waiting time of the rider group

• tries : Number of failed tries while searching for a rider group

• deviationTolerance : percent by which rider will tolerate deviation from path

• stats : a record of each time the rider has changed its State
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A.2.2 Rider Algorithm - riderAlgo(Group g)

1. If State = 0 # Initialization

2. Set State = 1

3. Set local time tl = 0

4. If State = 1 # Searching for regular ride

5. Execute Searching Algorithm searchForTaxis

6. If State = 1.9 # waiting for response (taxis will check shares using preCheck

and bestRoute)

7. If message “Coming” received # Match is found

8. Set myTaxi = sender

9. Set State = 2

10. Go to 14

11. Else If tl = 15

12. Set State = 1 and Goto 5

13. Else tl = tl + 1; tis = tis+ 1 and Return to Main Step 15

14. If State = 2 # Waiting for Pickup

15. If (myTaxi.Latitude,myTaxi.Longitude) = (PULat, PULong)

16. Set State = 3
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17. Return to Main Step 15

18. If State = 3 # Riding to destination

19. Set (myTaxi.Latitude,myTaxi.Longitude)→ (Latitude, Longitude)

20. If (Latitude, Longitude) = (DOLat,DOLong)

21. Record Stats and exit the system

22. End

23. Return to Main

24. Return to Main Step 15

A.2.3 Searching Strategies - searchForTaxis(Group g)

1. Exit System if tl ≥ waitLimit # Not found a taxi for time more than

waitLimit

2. If riderType = 1 or riderType = 3 or (riderType = 2 and tis < regLimit) or

(riderType = 4 and tis ≥ shareLimit)

3. Send message “ride” to free taxis within tries index blocks of r indi r indk

r indk # Search for regular taxis within tries index blocks of current lo-

cation

4. tries = tries + 1 # Expand search area

5. If riderType = 5 or riderType = 3 or (riderType = 2 and tis ≥ regLimit) or

(riderType = 4 and tis < shareLimit)
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6. Send message “Share” to Sharing taxis within 2 index blocks of r indi

r indk r indk except noTaxis # Search for sharing taxis

7. Set State = 1.9 # Wait till response is received from taxis

8. Set tl = 0

9. Go to riderAlgo line 6

A.3 Taxi Algorithm and Data

The Taxi Algorithm defined below sets rules for taxis to follow while searching

for new rides (while idle) or while serving current rides and searching for potential

shares.

The non-sharing requests from rider groups are sent to unoccupied taxis. The

taxis give preferences to the rider groups that are closer to their current locations.

Because each rider group may send the ride requests to more than one taxi, it is

possible that a match has already been formed between another taxi and the preferred

rider. So the taxi will check with the rider groups to only commit pick-up to the

closest rider group that is still searching. A match is then formed between the taxi

and the rider group. The rider groups will send out the ride requests first to taxis

that are located in the same grid cell with them (I divided the map into grids). If no

available taxis are found in the same grid cell with the rider group, then the search

will expand to nearby grid cells.

The sharing requests are sent out by the rider groups that are willing to share

rides (broadcasting a share request). The sharing requests are only sent to taxis that

are currently in the process of serving other rider groups that are willing to share

and can accept shares (taxis will stop accepting shares when the remaining distance
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toleration of one or more rider groups currently in the car is used up and cannot

accommodate more sharing). The taxis evaluate sharing requests following in a two-

step process. First, to reduce computational intensity, a pre-screening is conducted

to eliminate sharing requests that are unlikely to be feasible. I have a heuristic

algorithm (preCheck) described in Section A.3.2 preCheck() to serve this purpose.

For requests that pass the screening, the optimal way to insert the pickup and drop-

off locations of the requested rider group to the current trip chain is then identified

to form the candidate new sharing route. The deviation required from the candidate

new sharing route is calculated and compared with the remaining tolerance deviation

of rider groups this taxi is currently serving and that of the requested rider group.

Only if the required deviation of the candidate new sharing route is acceptable to

all rider groups, the sharing is considered feasible. All requests received by the taxi

will be evaluated following this process and the matching will be formed for the best

sharing chosen from all feasible requests.

A.3.1 Taxi Algorithm

Below are the parameters and variables defining the agent type taxi

• taxiID : A unique identification number for each taxi in the system

• newLocation : The next location that a taxi goes to while searching

• capacity : Capacity of the taxi when empty

• curCapacity : Number of empty seats in taxi

• State : State in which the taxi is in, defining current and future actions. The

possible states that a taxi can take are 0. Initialization, 0.1. Busy Start, 1.
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Searching, 1.5 Riding Empty 1.9 Evaluate candidate riders, 2. Occupied and

Searching for shares 2.5 Searching for shares

• newLocation : The next location a taxi goes to while searching

• Nhoti Number of hotspots for the taxi

• rideList : A collection of riders currently in the taxi

• hotspots Set of Hotspots for the taxi

• myRoute : A sequence of points the taxi must visit in order

• newRoute : A route proposed by the ride matching algorithm to enable taxi

sharing

• curRiders : The riders to whom this taxi is currently assigned

• flag : a boolean variable to store the result of the precheck algorithm defined

in Section A.3.2

• index : An array storing the coordinates of the bounding box defined in prechk

• tempRoute : A temporary variable used to permute through the points in

myRoute to evaluate new shares.

• extrad : The extra distance that would be deviated on account of sharing

• allow : The maximum allowable deviation on account of sharing

• df : A factor between 0 to 1 that is used to compare the shares amongst each

other. It is the product of the ratio of the total deviation with the maximum

allowalble deviation for each rider in curRiders and also the rider for which

we are evaluating the share. Smaller is better.
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• shragent : A collection of rider groups under evaluation for sharing (up to 3

riderGroups) not including those in the taxi

• tl : local time in state

• t indk : Index defining region (0=Manhattan; 1=Brooklyn; 2 = Else)

• t indi : Row index for taxìs location within the grid defined in Section A.1.1

• t indj : Column index for taxìs location within the grid defined in Section A.1.1

A.3.1.1 taxiAlgo(Taxit)

1. If State = 0 # Initialization

2. Clear curRiders andmyRoute; myRider = NULL; curCapacity = Capacity

3. Update grid position in free taxi

4. Set State = 1; tl = 0 and Goto 7

5. If State = 0.1 # Initially Busy taxis set at simulation start

6. If taxi has reached random location set state = 0 Go to 1 # Taxi is

now available for service

7. If State = 1 # Searching for the first rider group

8. If message “ride” is received from rider # non shared message received

from rider

9. Set State = 1.9 Goto 23
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10. Set tl = tl + 1

11. If tl ≥ idleT ime # Taxis move from one hotspot to another while

searching

12. Select newLocation ∈ hotspots and begin moving to newLocation

13. Set tl = 0; State = 1.5

14. Else Return to Main Step 16

15. If State = 1.5 # Riding Empty

16. If message “ride” is recieved from a rider ∈ Groups

17. Set State = 1.9 Goto 23

18. Else If taxi at newLocation Goto 3 # Taxi was moving and reached

new location

19. Else If tl ≥ 30

20. Update location in grid

21. Set tl = 0

22. Else Set tl = tl + 1 and Return to Main Step 16

23. If State = 1.9 # Evaluate all riders and select the closest one

24. Set myRider = rider which sent the message

25. Add myRider to curRiders
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26. Add (myRider.PULat,myRider.PULong) and

(myRider.DOLat,myRider.DOLong) to myRoute

27. De-register from free taxi grid

28. Move to myRoute[0] #move at speed defined by road towards myRoute[0]

and update location at each time step

29. Set State = 2

30. If State = 2 # Riding

31. If (Latitude, Longitude) = myRoute[0] Goto 45 # Taxi has reached a

destination point

32. If canShare = TRUE ∀ curRiders # Search for shares only if all rider

groups allow sharing. A rider group which has started sharing may refuse new

requests if they have deviated too far from the original route

33. Update location in shareTaxi grid

34. Set tl = 0 and State = 2.5

35. Goto 37

36. Else Return to Main Step 16

37. If State = 2.5 #Searching for shares

38. Set tl = tl + 1

39. if tl ≥ 10 or shcount = 3
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40. Run flag ← precheck(Groupg, Taxithis,myRiders) # The preCheck

algorithm filters impossible shares and returns TRUE if the ride should be

evaluated by bestRoute

41. If flag = TRUE Run newRoute← bestRoute

42. If newRoute is acceptable set myRoute← newRoute and Goto 28

43. Else If (Latitude, Longitude) = myRoute[0] Goto 45 # At a point in

myRoute

44. Else Return to Main Step 16

45. If State = 3

46. If myRoute[0] is a Drop off point

47. remove the rider whose drop of point is myRoute[0]

48. Remove myRoute[0]

49. If myRoute is empty Set state = 0 and Return to Main Step 16

50. Set State = 1.9 and Goto 28

A.3.2 precheck(Group g, Taxi t, Array< Groups > A)

The evaluation of whether a share is feasible or not is computationally expensive

(O(n2) where n are the number of points involved in the share).Additionally each

time a share is evaluated the routes between each of these combinations of points

need to be evaluated which is highly computationally intensive. To prevent repeated
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evaluations of shares that are not feasible, I introduce the below precheck algorithm

to filter out the shares. Figure A.1 offers a pictorial representation of this algorithm.

Figure A.1. Graphical illustration of the PreCheck algorithm - T : The
current location of the taxi, P: The pick up point of the potential share,
and D: The drop off point of the potential share. The yellow rectangle
represents the largest bounding box formed by the points on the original
trip chain and the current location of the taxi. The gray box is the
bounding box formed with the drop off location of the potential share
and the current location of the taxi. To pass the preCheck, the drop off
point of the potential share should either lie in the yellow box or form a
gray bounding box that covers the yellow box.

I use two bounding boxes to indicate the “direction” of the trips. The preCheck

algorithm is a two-step process. Step 1: the first biggest bounding box is formed

using all the pick up and drop off points that are yet to be visited by the taxi (the
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current trip chain) and the current location of the taxi (shown as the yellow colored

cells in Figure A.1). The drop off point of the candidate share is then evaluated

relative to this bounding box. If the drop off point of the candidate share is within

the bounding box, then this candidate share passes the preCheck and will be further

evaluated by the bestRoute algorithm (Figure A.1a). Step 2: If the drop off point of

the candidate share is outside of this bounding box, a second bounding box will be

formed using the drop off point of the candidate share and the current location of the

taxi (shown as the gray shaded boxes in Figure A.1c and d). If the second bounding

box fully covers the first bounding box (figure A.1c), then this candidate share also

passes the preCheck and will be further evaluated by the bestRoute algorithm. The

second bounding box makes sure that we don’t reject candidate trips that travel

further than the existing trip chain. Because the pick up location of the candidate

will be close to the current location of the taxi (sharing requests are only broadcast

to nearby taxis), only the drop off location need to be evaluated.

The two biggest bounding boxes would encompass most of the streets that the taxi

would travel on and hence allow those candidate sharing trips, that appear on most

possible turns that the taxi would take, to pass the preCheck. We did consider the

possible cases that the drop off location of a candidate trip falling slightly outside of

the bounding boxes. So we tested scenarios with extended bounding boxes (enlarged

by one or two grid cells in all directions). No significant differences are observed in

the results.

Variables:

• index[] : An array to store the bounding box for the taxis

• g : The rider group that is being evaluated as a potential share

• r : A counter for the for loop in Line 8
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• xc : The taxi that calls the precheck algorithm

• A : A collection of all the rider groups involved in the share (that is all the

riders in riderList and g)

• r indi, r indk, r indk : The indexes of the rider group g as defined in Section

A.2.2

• r indi, r indk, r indk : The indexes of the rider group g as defined in Section

A.2.2

A.3.2.1 Algorithm precheck(Group g, Taxi xc, Array< Groups > A)

1. Set index[1, 2]← (xc.Latitude, xc.Longitude)

2. If ∀ Group g ∈ A have the same r indk

3. Set index[3, 4] as the biggest bounding box that can be generated from all

points ∈ myRoute ∪ (t.Latitude, t.Longitude) with index[1, 2] as base

4. If ((r indi−index[1])×(index[3]−index[1]) ≥ −|(index[3]−index[1])| And

((r indj − index[2])× (index[4]− index[2])) ≥ −|(index[4]− index[2])|

5. Return true

6. Else Return false

7. Else

8. For each Group r ∈ A

9. Set d = distance from drop off point of g to drop off point of r
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10. If d > total distance of myRoute

11. Return false

12. Return true

A.3.3 bestRoute(Group a, myRoute)

The function of this algorithm is to build permutations for the points to be vis-

ited by the Taxi in myRoute in addition to the pick up and drop off points for the

new share agent and also to select the best possible route amongst these permuta-

tions. The best possible route is that combination that minimizes the product of the

deviations (A.1).

score =
N∏
i=1

extra distance traveled by the rideri
extra distance allowed for the rideri

(A.1)

Where N is the total number of riders involved in the share

Instead of building all possible permutations for all these points as a heuristic

we consider the original order of points to be visited in myRoute be fixed. We then

sequentially try all other positions for the pick up and drop off points for r while

keeping in mind that the pick up point must always be before the drop-off point. We

thus reduce the time complexity from O(n!) to O(n2) Variables:

• a : The rider group whose share is being evaluated 8

• tempRoute : A temporary variable to store route permutations

• myRoute : The route list of taxi xc which calls the best route algorithm

• distance[][] : A matrix of distances from and to each point in myRoute
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• d : Stores the extra distance of the current iteration

• df : Variable used to calculate the score

• dfs : Variable used to store the smallest score

• i, j, k : For loop counters

• extrad : The extra distance traveled by the rider group due to the share

• allow : The total distance allowed by the rider group after sharing

• rt : The new route for the share

Algorithm bestRoute(Group a, myRoute):

1. Set tempRoute← myRoute

2. Add pick up and drop-off points of r to tempRoute

3. Set newRoute← myRoute

4. Create Array distance[tempRoute.Size][tempRoute.Size]

5. For all i, j ∈ 1 to tempRoute.Size set distance[i][j]← distance between point

i and point j #create the distance matrix

6. Set d = 0, extrad = 0, df = 1, allow = 0,dfs = 1

7. Set riders← all Groups in curRiders and a

8. For i in 0 to tempRoute.Size − 1 #Outer loop to permute the pick up

point of new request

9. Add pick up point of a to newRoute at position i
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10. For j in i + 1 to tempRoute.Size #Inner loop to permute the drop

off point of new request

11. Add drop off point of a to newRoute at position j

12. Set d = distance from taxi to newRoute[0]

13. Set factors← deviationTolerance ∀ riders

14. For k in 0 to newRoute.Size− 1 #Loop to check score of share

request

15. set d = d+ distance of newRoute[k] to newRoute[k + 1]

16. If newRoute[k+1] is a drop off point Check each riders dis-

tance deviation

17. extrad = Remaining distance for newRoute[k+1].passenger

18. allow = (newRoute[k+ 1].deviationTolerance+ 1)× extrad

19. If d > allow, go to 26

20. Else

21. df = df × d
allow

22. factor[i] = factor[i] ×
(
1− d

allow

)
#Calculate the

score of the current iteration

23. If dfs > df #Find the route with the highest score

24. set dfs > df
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25. Set rt← newRoute

26. remove newRoute[j]

27. remove newRoute[i]

28. if df < 1, Return rt, Else return null #Send the proposed route back to

the taxi

A.3.4 Shift Start and End

In order to model traditional taxis which are driven by drivers taking shifts, I

implemented the below algorithm. I assign the initial status (in-shift or out-shift) for

the taxis according to the historical availability ratio based on the model start time

(normally midnight) and the day I am modeling (weekday or weekend). According

to the availability ratio, a certain number of taxis are randomly selected to be in-

service while the rest be out-service. We assume that each shift will last at least 8

hours. So for the taxis started with the in-service status, I randomly assign a shift

start time within the previous eight hours according to the distribution of shift start

time. For the taxis that are in-shift, at the end of their 8-hour shift, the unoccupied

taxis will become off-shift immediately while the occupied taxis will become off-

shift after finishing the current committed rides. For the off-shift taxis, a certain

number of them will be randomly selected to start shift based on the shift start

time distribution curve. To avoid having taxis become in-shift again immediately at

the end of a previous shift, we implemented a “rest time” of 0 to 3 hours (uniform

distribution) before it can be considered for being selected to start a shift. Only

in-shift taxis can receive requests from the rider groups.
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A.3.4.1 Variables

• shiftStart : Distribution of shift starts with time. Generated using the data

obtained from the New York Taxi Cab fact book Figure A.2

• OnShift : True if taxi is in operation, False if not

• inTaxis : Collection of taxis in operation. All taxis in inTaxis execute taxiAlgo

• outTaxis : Collection of taxis not in shift.

• shift : The number of taxis to start shift

• sleepT ime : The minimum time between two shifts for a taxi.

• shiftT ime : The minimum time a taxi stays in shift

• xc : A counter that runs through all the taxis

A.3.4.2 Algorithm shiftControl

At Start:

1. Set OnShiftPC as the percent of taxis on shift at model start time as obtained

from shiftStart

2. For each taxi in taxis

3. Generate a uniform random number rand; If rand > OnShiftPC set

OnShift = TRUE else OnShift = FALSE

4. If OnShift = TRUE
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5. Select shift start time based on previous days entry distribution shiftStart

and set shift end time to occur 8 hours later

6. add taxi to inTaxis

7. Else

8. randomly draw a sleep time sleepT ime from uniform distribution be-

tween 0 to 3 hours.

9. After sleep time expired, add to outTaxis

During run time: This algorithm runs inside the main function every 15 min-

utes

1. Draw number of taxis (shift) to start shift from shiftStart

2. Send message to random shift taxis from outTaxis to begin shift

3. For all xc ∈ inTaxis

4. If time taxi is in inTaxis > shiftT ime

5. If xc.State = 2

6. remove t from taxis shr man, taxis shr brook, taxis shr else

7. set canShare = False

8. Else

9. remove xc from inTaxis

10. add xc to outTaxis
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Figure A.2. Percent of taxis which start their shift at different times of
the day (NYC DOT, 2014)

A.3.5 Electric Vehicles Charging

All electric vehicles in the system require charging as per their range. In order

to facilitate this I have added chargers to the model from the Department of Energy

(2018) data set. The electric taxis go towards the charger if one of the two conditions

are met: 1) The charge level is below the minimum operating level as defined by

batteryThreshold or 2) the charging utility is positive. The charging utility is a

score that considers battery remaining and closeness to a charger.

A.3.5.1 Variables

• batteryRemaining : current state of charge in percentage

• distance : distance traveled since last update

• fullChargeDistance : distance that the EV can travel on a full charge

• utility : the utility function that requires
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• fullChargeT ime : Time required for full charge

• chargeStation : the charge station selected for the taxi

• b : a set of 5 coefficients to weigh the charging decision. b[0] : intercept b[1] :

distance factor b[2] : distance offset b[3] : battery percent weight b[4]: Battery

threshold

• X1 : distance of nearest charger in terms of number of grid cells

• X2 : = batteryRemaining

A.3.5.2 Algorithm

1. For every EV taxi t in Taxis

2. If taxi is moving update batteryRemaining = batteryRemaining− distance
fullChargeDistance

3. If state 6= 7 and state 6= 8

4. If chargingUtility() > 0

5. If state 6= 2.5 find nearest charging Station as chargeStation

6. Move to chargeStation, remove self from sharr and taxiArr

and set State = 7 (Move to Charging)

7. Else Set canShare = FALSE and State = 2

8. Else accept changed myRoute

9. If state = 7
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10. If taxi has reached charging station Set chargeT ime = (1−batteryRemaining)×

fullChargeT ime

11. Set State = 8 (Charging)

12. If state = 8

13. If tis ≥ chargeT ime set state = 1

14. Else tis = tis+ 1

15. t = t+ 1

A.3.5.3 chargingUtility()

1. If batteryLevel < b[4] utility ← −1

2. Else utility ← b[0] + b[1]× (X1 − b[2]) + b[3]× (X1 − b[4])

3. Return utility

A.4 Speed Estimation

The average speed is needed to track the travel time for the shared trips, especially

for the deviated part of the trip due to sharing, for which we do not have information

directly from the historical trip data (as illustrated in Figure A.4(a)). To estimate

the travel speed and time more accurately, we could use the collective information

of all trips to learn about the traveling speed on the road segments. Therefore, I

estimated the speed for each road segment traveled by the taxis by simulating the

trips from the historical taxi trip data. For each trip, based on the pick up and drop
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off locations, I used OpenStreetMaps to identify the shortest path between these two

points. I used the distance and the original trip time to calculate the average speed

of this trip. The taxi will then ”drop” points along the selected path as it travels

(Figure A.4(b)). So each road segment will then store the speed points from this

taxi/trip. I ran this for all trips in one day (May 7, 2014, the same day our analysis

is based on). Then each road segment will then store speed data from different trips.

I then used the average speed as the speed for this road segment.

(a) (b) (c)

(d) (e) (f)

Figure A.3. Speeds on NYC roads as estimated from the data set
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(a)

(b)

Figure A.4. (a) Reason for speed estimation, the green line represents the
non-sharing route for the taxi in green color, while the red line represents
the non-sharing route for the taxi in red color. The black dotted line
represents the shared trip. While the speed of the road segments covered
by the original non-sharing trips can be estimated using the historical
trip data, we do not have information for the speed of the additional
roads traveled due to the deviated sharing trip (highlighted in the yellow
rectangle). (b) Illustration of the speed estimation process. Each taxi
drops equidistant points along the path it travels. The average speed of
the region (shaded in black) and the road (in yellow) is set as the average
speed of all the points in that region or on that road.
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Table A.2.
Speeds on NYC roads (m/s)

Hour Times Square Manhattan Brooklyn HHP JFK Belt Pkwy Bridges

0 7.76 8.08 9.85 11.10 16.70 12.29 11.04

1 8.04 8.42 10.09 11.25 16.73 11.98 11.18

2 8.46 8.76 9.85 11.70 18.74 12.02 11.05

3 8.94 9.25 10.22 12.04 15.96 12.77 11.95

4 9.58 10.85 12.84 13.48 18.45 15.64 14.68

5 9.22 10.49 14.52 12.83 17.99 15.22 14.06

6 8.77 9.79 14.21 12.81 17.70 14.56 13.64

7 8.21 9.20 13.64 11.83 17.19 13.99 12.88

8 7.55 8.49 12.57 11.22 17.29 13.62 12.44

9 7.28 8.03 12.05 10.52 16.72 13.10 11.56

10 6.83 7.60 11.52 10.21 16.28 12.93 11.37

11 6.69 7.36 10.57 9.95 15.38 11.99 11.22

12 6.35 7.28 10.66 9.68 14.48 11.92 12.37

13 6.00 6.80 9.76 9.22 13.38 11.45 10.34

14 5.97 6.93 9.66 9.24 14.13 11.19 10.80

15 6.40 7.01 9.70 8.74 15.33 11.64 10.35

16 6.83 7.26 10.63 8.93 16.15 11.99 10.64

17 6.72 7.10 11.44 9.04 16.08 11.72 11.50

18 6.77 6.92 9.62 8.84 15.80 10.46 10.03

19 6.92 6.62 8.88 8.49 15.26 9.24 9.68

20 6.99 6.76 9.78 8.88 15.16 9.44 10.04

21 6.14 6.51 7.51 8.80 14.96 8.55 8.94

22 6.16 6.71 7.64 9.20 14.67 9.39 9.50

23 6.94 7.57 9.70 12.32 16.15 12.07 10.55

Mean

(Peak

Time)

6.62 6.92 9.35 9.31 15.59 10.61 10.14
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APPENDIX B

SUPPLEMENTARY ANALYSIS FOR STUDYING RIDE

SHARING IN SHARED AUTONOMOUS VEHICLES

AND TRADITIONAL TAXI CABS

B.1 Sensitivity of Busy Start Percent

We tested different values for the initial fraction of busy taxis ranging from 0 to

1. We found out that the initial fraction of busy taxis does not affect the output

of the simulation. Figure B.1 shows that both the fraction of served riders and the

fraction of occupied distance stay the same regardless of the different initial fractions

of busy taxis (same for the other outputs, so we didn’t show all figures). As shown

in Figure 2.4(a) in the manuscript, the demand from midnight to early morning is

very low. Hence, the system has an opportunity to “self balance” no matter how

many busy taxis we started the day with. The busy taxis will have plenty of time

before the morning peak to become available.

B.2 Explanation of Spatial Coverage Changes

Our results showed that as a result of sharing and autonomous vehicles, there was

a reduction in service coverage in the suburban regions. In order to further explore

the change of taxi movement in these scenarios, I calculated the radius of gyrations

and the corresponding center of mass of each individual taxis (Gonzalez et al., 2008;
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(a) (b)

Figure B.1. Sensitivity of busy start percent

Cai et al., 2016) (the center of mass represents the center location of each taxi’s

trajectory and the radius of gyration represents the weighted average of the distance

the taxi travel away from the center of mass). From Figure B.2, we can see that the

spread for the center of masses follow the order (A < S < B), in the same ranking

of the fleet size from the smallest to the largest.

It is also notable that Scenario B has a few vehicles whose center of mass lies

within Brooklyn and has a fairly large radius of gyration (which means large area of

coverage). Even though the service level (the total number of rider groups served)

is maintained, the reduced fleet focuses its service more in the Manhattan area.

Potential policies to remedy this impact include providing price intensive for serving

suburban area or dedicate a portion of the fleet for the suburban area.
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(a)

(b) (c)

Figure B.2. Radius of gyration

B.3 Statistical Significance Tests

For each of the scenarios presented in Table 3.2 we ran three additional runs

to verify the statistical significance of the results that we obtained. The statistical

significance tests for these results are presented in this section.
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• The service level (percent of riders that were served by the system) are derived

by counting the number of riders that were served and dividing it by the total

number of riders. Since the rider groups can either be served or not served (0

or 1) a Pearsons Chi-Squared test is used to test for statistical significance.

– B

Pearson’s Chi-squared test

data: CM X-squared = 13.458, df = 2, p-value = 0.1196

– A

Pearson’s Chi-squared test

data: CM X-squared = 2.9532, df = 2, p-value = 0.2284

– A2

Pearson’s Chi-squared test

data: CM X-squared = 1.05, df = 2, p-value = 0.5916

– A3

Pearson’s Chi-squared test

data: CM X-squared = 0.42664, df = 2, p-value = 0.8079

– S

Pearson’s Chi-squared test

data: CM X-squared = 13.892, df = 2, p-value = 0.09625

• For all other results (the waiting time, riding time, the total distance travelled

and the distance fraction, we use an Anova to test whether the scenario group

is a significant factor and whether the random simulation seed is a significant

factor. These results are presented in Figure B.3.
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(a)

(b)

Figure B.3. ANOVA to test for the statistical significance of the results
with the Scenario and the random simulation Seeds (Seed) for (a) wait-
ing time and riding time (b) distance travelled and deviation tolerance
difference.

We can see that in each of the cases (the Pearsons Chi Squared test and the

Anova) the Seed variable (which refers to the separate simulation runs) are not

statistically significant at the 95% confidence level.
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APPENDIX C

SCENARIOS GENERATED BY SIMULATION

OPTIMIZATION

Table C.1.: All runs for case study in Section 4.4

No. fleetSize Sharing percentAV taxiCapacity dtMode DOE Step In band

1 5000 1.00 1.00 2 0.25 1

2 6000 1.00 0.80 2 0.25 1

3 5000 0.80 0.80 2 0.25 1

4 5000 0.80 1.00 2 0.75 1

5 6000 0.80 1.00 2 0.25 1

6 5000 1.00 0.80 2 0.75 1

7 6000 1.00 1.00 2 0.75 1

8 6000 0.80 0.80 2 0.75 1

9 5000 1.00 1.00 4 0.25 1

10 6000 1.00 0.80 4 0.25 1

11 5000 0.80 0.80 4 0.25 1

12 5000 0.80 1.00 4 0.75 1

13 6000 0.80 1.00 4 0.25 1 �

14 5000 1.00 0.80 4 0.75 1

15 6000 1.00 1.00 4 0.75 1 �
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Table C.1 continued from previous page

No. fleetSize Sharing percentAV taxiCapacity dtMode DOE Step In band

16 6000 0.80 0.80 4 0.75 1

17 5000 1.00 1.00 6 0.25 1

18 6000 1.00 0.80 6 0.25 1

19 5000 0.80 0.80 6 0.25 1

20 5000 0.80 1.00 6 0.75 1

21 6000 0.80 1.00 6 0.25 1 �

22 5000 1.00 0.80 6 0.75 1

23 6000 1.00 1.00 6 0.75 1 �

24 6000 0.80 0.80 6 0.75 1

25 5500 0.90 1.00 2 0.25 1

26 6500 0.90 0.80 2 0.25 1

27 5500 0.60 0.80 2 0.25 1

28 5500 0.60 1.00 2 0.75 1

29 6500 0.60 1.00 2 0.25 1

30 5500 0.90 0.80 2 0.75 1

31 6500 0.90 1.00 2 0.75 1

32 6500 0.60 0.80 2 0.75 1

33 5500 0.90 1.00 4 0.25 1

34 6500 0.90 0.80 4 0.25 1 �

35 5500 0.60 0.80 4 0.25 1

36 5500 0.60 1.00 4 0.75 1

37 6500 0.60 1.00 4 0.25 1 �

38 5500 0.90 0.80 4 0.75 1
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39 6500 0.90 1.00 4 0.75 1 �

40 6500 0.60 0.80 4 0.75 1

41 5500 0.90 1.00 6 0.25 1

42 6500 0.90 0.80 6 0.25 1 �

43 5500 0.60 0.80 6 0.25 1

44 5500 0.60 1.00 6 0.75 1

45 6500 0.60 1.00 6 0.25 1 �

46 5500 0.90 0.80 6 0.75 1

47 6500 0.90 1.00 6 0.75 1

48 6500 0.60 0.80 6 0.75 1 �

49 6500 0.40 1.00 2 0.25 1

50 7500 0.40 0.80 2 0.25 1

51 6500 0.10 0.80 2 0.25 1

52 6500 0.10 1.00 2 0.75 1

53 7500 0.10 1.00 2 0.25 1

54 6500 0.40 0.80 2 0.75 1

55 7500 0.40 1.00 2 0.75 1 �

56 7500 0.10 0.80 2 0.75 1

57 6500 0.40 1.00 4 0.25 1

58 7500 0.40 0.80 4 0.25 1 �

59 6500 0.10 0.80 4 0.25 1

60 6500 0.10 1.00 4 0.75 1

61 7500 0.10 1.00 4 0.25 1 �
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62 6500 0.40 0.80 4 0.75 1

63 7500 0.40 1.00 4 0.75 1 �

64 7500 0.10 0.80 4 0.75 1 �

65 6500 0.40 1.00 6 0.25 1 �

66 7500 0.40 0.80 6 0.25 1 �

67 6500 0.10 0.80 6 0.25 1

68 6500 0.10 1.00 6 0.75 1

69 7500 0.10 1.00 6 0.25 1 �

70 6500 0.40 0.80 6 0.75 1

71 7500 0.40 1.00 6 0.75 1

72 7500 0.10 0.80 6 0.75 1 �

73 11500 0.30 0.30 2 0.25 1 �

74 13500 0.30 0.00 2 0.25 1 �

75 11500 0.00 0.00 2 0.25 1 �

76 11500 0.00 0.30 2 0.75 1 �

77 13500 0.00 0.30 2 0.25 1 �

78 11500 0.30 0.00 2 0.75 1 �

79 13500 0.30 0.30 2 0.75 1 �

80 13500 0.00 0.00 2 0.75 1 �

81 11500 0.30 0.30 4 0.25 1

82 13500 0.30 0.00 4 0.25 1

83 11500 0.00 0.00 4 0.25 1 �

84 11500 0.00 0.30 4 0.75 1
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85 13500 0.00 0.30 4 0.25 1

86 11500 0.30 0.00 4 0.75 1

87 13500 0.30 0.30 4 0.75 1

88 13500 0.00 0.00 4 0.75 1

89 11500 0.30 0.30 6 0.25 1

90 13500 0.30 0.00 6 0.25 1

91 11500 0.00 0.00 6 0.25 1

92 11500 0.00 0.30 6 0.75 1

93 13500 0.00 0.30 6 0.25 1

94 11500 0.30 0.00 6 0.75 1

95 13500 0.30 0.30 6 0.75 1

96 13500 0.00 0.00 6 0.75 1

97 7500 1.00 0.30 2 0.25 1

98 8500 1.00 0.00 2 0.25 1

99 7500 0.80 0.00 2 0.25 1

100 7500 0.80 0.30 2 0.75 1

101 8500 0.80 0.30 2 0.25 1 �

102 7500 1.00 0.00 2 0.75 1

103 8500 1.00 0.30 2 0.75 1 �

104 8500 0.80 0.00 2 0.75 1

105 7500 1.00 0.30 4 0.25 1 �

106 8500 1.00 0.00 4 0.25 1 �

107 7500 0.80 0.00 4 0.25 1
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108 7500 0.80 0.30 4 0.75 1 �

109 8500 0.80 0.30 4 0.25 1 �

110 7500 1.00 0.00 4 0.75 1

111 8500 1.00 0.30 4 0.75 1

112 8500 0.80 0.00 4 0.75 1 �

113 7500 1.00 0.30 6 0.25 1 �

114 8500 1.00 0.00 6 0.25 1 �

115 7500 0.80 0.00 6 0.25 1

116 7500 0.80 0.30 6 0.75 1 �

117 8500 0.80 0.30 6 0.25 1

118 7500 1.00 0.00 6 0.75 1

119 8500 1.00 0.30 6 0.75 1

120 8500 0.80 0.00 6 0.75 1 �

121 13500 1.00 0.00 2 0.25 2 �

122 13500 0.95 0.00 2 0.73 2 �

123 13500 0.00 0.00 4 0.25 2

124 13500 0.00 0.00 4 0.73 2

125 13500 0.70 1.00 2 0.25 2 �

126 13500 0.60 1.00 2 0.61 2 �

127 13500 0.22 0.84 2 0.75 2 �

128 6000 0.97 0.95 6 0.25 2 �

129 6000 0.97 0.95 6 0.25 2 �

130 6000 1.00 0.91 6 0.75 2 �
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131 6000 1.00 0.91 6 0.75 2 �

132 6003 1.00 0.91 6 0.75 2 �

133 6003 1.00 0.91 6 0.75 2 �

134 6911 1.00 1.00 2 0.75 2 �

135 6000 0.96 0.94 6 0.75 2 �

136 6000 0.96 0.94 6 0.75 2 �

137 7000 1.00 0.99 2 0.25 2 �

138 7000 1.00 0.99 2 0.25 2 �

139 10000 0.00 0.00 6 0.25 2 �

140 9997 0.00 0.00 6 0.25 2 �

141 10000 0.00 0.00 6 0.25 2 �

142 6000 1.00 1.00 4 0.25 2 �

143 6000 1.00 1.00 4 0.25 2 �

144 9939 0.00 0.00 6 0.25 2 �

145 9939 0.00 0.00 6 0.25 2 �

146 9939 0.00 0.00 6 0.25 2 �

147 9939 0.00 0.00 6 0.25 2 �

148 9939 0.00 0.00 6 0.25 2 �

149 6000 0.86 1.00 6 0.75 2 �

150 6000 0.86 1.00 6 0.75 2 �

151 10000 1.00 0.00 2 0.25 2 �

152 10000 0.00 0.00 6 0.75 2 �

153 6004 0.86 1.00 6 0.75 2 �
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154 10000 0.00 0.00 6 0.75 2 �

155 10000 1.00 0.00 2 0.25 2 �

156 6000 1.00 1.00 4 0.75 2 �

157 6000 1.00 1.00 4 0.75 2 �

158 6005 0.86 1.00 6 0.75 2 �

159 6005 0.86 1.00 6 0.75 2 �

160 11000 0.92 0.00 2 0.25 2 �

161 6094 1.00 1.00 4 0.75 2 �

162 6094 1.00 1.00 4 0.75 2 �

163 6094 1.00 1.00 4 0.75 2 �

164 6094 1.00 1.00 4 0.75 2 �

165 6094 1.00 1.00 4 0.75 2 �

166 7000 1.00 0.96 2 0.75 2 �

167 7000 1.00 0.96 2 0.75 2 �

168 7003 1.00 0.96 2 0.75 2 �

169 10000 0.99 0.00 2 0.75 2 �

170 10000 0.99 0.00 2 0.75 2 �

171 7000 0.05 1.00 6 0.75 2 �

172 7000 0.06 1.00 6 0.25 2 �

173 7000 0.06 1.00 6 0.25 2 �

174 7000 0.99 0.97 2 0.75 2 �

175 7000 0.99 0.97 2 0.75 2 �

176 13500 0.22 0.35 2 0.75 2 �
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177 11000 0.91 0.00 2 0.73 2 �

178 11000 0.91 0.00 2 0.73 2 �

179 11000 0.00 0.00 4 0.25 2 �

180 11000 0.00 0.00 4 0.25 2 �

181 10998 0.00 0.00 4 0.25 2 �

182 7000 0.93 1.00 2 0.75 2 �

183 7000 0.93 1.00 2 0.75 2 �

184 7004 0.92 1.00 2 0.75 2 �

185 7004 0.92 1.00 2 0.75 2 �

186 7004 0.92 1.00 2 0.75 2 �

187 7005 0.92 1.00 2 0.75 2 �

188 13500 0.33 0.77 2 0.36 2 �

189 11000 0.00 0.00 4 0.75 2 �

190 11000 0.00 0.00 4 0.75 2 �

191 10740 0.00 0.00 4 0.25 2 �

192 10740 0.00 0.00 4 0.25 2 �

193 10740 0.00 0.00 4 0.25 2 �

194 10740 0.00 0.00 4 0.25 2 �

195 8000 1.00 0.07 6 0.75 2 �

196 8000 0.03 1.00 2 0.75 2 �

197 8000 1.00 0.09 6 0.25 2 �

198 8000 1.00 0.09 6 0.25 2 �

199 10717 0.00 0.01 4 0.25 2 �
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200 8000 0.05 1.00 2 0.26 2 �

201 8000 0.05 1.00 2 0.26 2 �

202 8000 1.00 0.09 6 0.75 2 �

203 6000 1.00 0.90 4 0.75 2 �

204 6003 1.00 0.90 4 0.75 2 �

205 13500 0.26 0.43 2 0.34 2 �

206 7000 0.17 1.00 6 0.75 2 �

207 6000 0.65 1.00 6 0.27 2 �

208 6000 0.65 1.00 6 0.27 2 �

209 6004 0.65 1.00 6 0.27 2 �

210 11000 0.00 0.22 2 0.25 2 �

211 11000 0.00 0.22 2 0.25 2 �

212 8000 0.00 0.86 6 0.25 2

213 11000 0.06 0.14 2 0.75 2 �

214 11000 0.06 0.14 2 0.75 2 �

215 7003 1.00 0.79 2 0.75 2 �

216 8000 0.14 1.00 2 0.75 2 �

217 10499 0.09 0.00 4 0.25 2 �

218 11000 0.07 0.18 2 0.26 2 �

219 11000 0.07 0.18 2 0.26 2 �

220 9000 0.79 0.00 6 0.25 2 �

221 9000 0.95 0.00 4 0.25 2 �

222 8000 0.00 0.95 4 0.25 2 �
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223 5000 1.00 1.00 2 1.00 2

224 6500 0.90 0.80 4 1.00 2 �

225 7500 0.40 0.80 2 1.00 2

226 7500 0.10 1.00 4 1.00 2 �

227 11500 0.30 0.30 2 1.00 2 �

228 13500 0.30 0.00 2 1.00 2 �

229 13500 0.30 0.00 4 1.00 2

230 7500 1.00 0.30 2 1.00 2

231 8500 0.80 0.30 2 1.00 2 �

232 8500 0.80 0.30 4 1.00 2 �

233 5000 1.00 1.00 2 0.00 2

234 6500 0.90 0.80 4 0.00 2 �

235 7500 0.40 0.80 2 0.00 2

236 7500 0.10 1.00 4 0.00 2 �

237 11500 0.30 0.30 2 0.00 2 �

238 13500 0.30 0.00 2 0.00 2 �

239 13500 0.30 0.00 4 0.00 2

240 7500 1.00 0.30 2 0.00 2

241 8500 0.80 0.30 2 0.00 2

242 8500 0.80 0.30 4 0.00 2 �

243 9000 0.00 0.38 6 0.00 3 �

244 13000 0.85 1.00 2 1.00 3 �

245 13000 0.00 0.77 2 0.05 3 �
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246 8500 0.50 0.68 2 1.00 3 �

247 9000 0.08 0.30 6 1.00 3 �

248 10000 0.00 0.75 2 0.00 3 �

249 8000 0.31 0.76 2 0.04 3

250 9998 0.33 0.00 6 0.00 3 �

251 10000 0.32 0.00 6 0.97 3 �

252 7501 0.63 0.79 2 0.52 3 �

253 10500 0.49 0.47 2 0.50 3 �

254 11000 0.00 0.60 2 0.98 3 �

255 8000 0.65 0.34 6 0.00 3 �

256 9000 0.00 0.55 4 0.00 3 �

257 7500 0.53 0.55 4 0.50 3 �

258 8000 0.00 0.74 6 0.00 3 �

259 13000 0.00 0.00 4 1.00 3

260 9500 0.50 0.42 2 0.00 3 �

261 7006 0.68 1.00 2 1.00 3 �

262 7006 0.67 1.00 2 0.11 3 �

263 10000 0.02 0.19 4 1.00 3 �

264 8000 0.29 0.67 4 1.00 3 �

265 8000 1.00 0.45 2 0.02 3 �

266 10000 0.00 0.24 4 0.00 3 �

267 8000 0.31 0.52 4 0.02 3 �

268 7000 1.00 0.37 6 1.00 3 �
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269 7000 1.00 0.47 4 1.00 3 �

270 7000 0.40 0.85 6 1.00 3 �

271 6501 0.71 0.84 4 0.52 3 �

272 8000 1.00 0.62 2 1.00 3 �

273 9000 0.49 0.38 4 0.96 3

274 10000 0.72 0.19 2 0.00 3 �

275 13000 0.00 0.00 4 0.00 3

276 6999 0.84 0.62 6 0.00 3 �

277 7999 0.69 0.60 4 0.97 3

278 9000 0.00 0.75 2 0.98 3 �

279 9000 0.51 0.21 4 0.00 3 �

280 13000 0.09 0.25 2 1.00 3 �

281 8999 0.63 0.00 6 0.00 3 �

282 8000 0.25 0.44 6 0.02 3

283 7500 0.50 0.58 6 1.00 3 �

284 11002 0.57 0.36 2 0.95 3 �

285 8000 0.29 0.95 2 1.00 3 �

286 9000 0.93 0.00 4 1.00 3 �

287 13000 0.00 0.31 2 0.55 3 �

288 13000 0.08 0.24 2 0.00 3 �

289 10000 0.63 0.00 4 0.00 3 �

290 10000 0.29 0.23 4 0.96 3

291 13000 0.96 0.00 2 1.00 3 �
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292 10000 0.36 0.00 4 0.00 3 �

293 13000 0.95 0.00 2 0.00 3 �

294 13000 0.85 1.00 2 0.04 3 �

295 8001 0.25 0.44 6 1.00 3 �

296 7001 0.39 1.00 4 1.00 3 �

297 6501 0.66 0.77 6 1.00 3 �

298 10000 0.00 0.49 2 0.00 3 �

299 10000 1.00 0.05 2 0.00 3 �

300 10000 0.01 0.02 6 1.00 3 �

301 10000 1.00 0.02 2 1.00 3 �

302 5737 1.00 1.00 6 1.00 3 �

303 8000 0.98 0.70 2 0.00 3 �

304 10192 0.00 0.00 6 0.00 3 �

305 7000 0.04 1.00 6 1.00 3

306 7000 1.00 1.00 2 1.00 3 �

307 8000 0.03 1.00 2 1.00 3 �

308 8000 1.00 0.06 6 1.00 3 �

309 6000 0.97 0.96 6 0.00 3 �

310 9000 0.95 0.00 4 0.00 3 �

311 8000 1.00 0.09 6 0.00 3 �

312 7000 0.06 1.00 6 0.01 3

313 8000 0.05 1.00 2 0.01 3 �

314 12500 0.51 0.00 2 0.00 3 �
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315 7000 1.00 1.00 2 0.01 3 �

316 10000 0.00 0.43 4 0.97 3

317 11000 0.69 0.00 2 0.00 3 �

318 10000 0.07 0.42 2 1.00 3 �

319 7000 0.48 0.82 4 0.04 3 �

320 8000 1.00 0.20 4 1.00 3 �

321 6000 1.00 1.00 4 0.00 3 �

322 6000 1.00 1.00 4 1.00 3 �

323 9000 0.82 0.64 2 0.97 3 �

324 9000 0.18 0.46 2 0.02 3 �

325 10499 0.16 0.00 4 0.00 3 �

326 9000 0.84 0.42 2 0.00 3 �

327 9000 1.00 0.29 2 1.00 3 �

328 10000 0.70 0.45 2 0.96 3 �

329 9001 0.16 0.26 4 0.01 3 �

330 7003 0.48 0.81 4 1.00 3 �

331 8000 0.00 0.86 6 0.99 3 �

332 9499 0.29 0.18 6 0.00 3 �

333 8500 0.50 0.40 4 0.00 3 �

334 9000 0.16 0.26 4 1.00 3 �

335 12002 0.00 0.63 2 0.00 3 �

336 9000 0.46 0.10 6 0.00 3 �

337 9999 0.29 0.23 4 0.00 3 �
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338 9001 0.16 0.66 2 1.00 3 �

339 6000 0.82 1.00 6 1.00 3 �

340 12000 0.05 0.14 2 1.00 3 �

341 6999 0.82 0.73 6 0.99 3

342 8000 0.95 0.90 2 0.00 3 �

343 7999 0.72 0.44 4 0.00 3 �

344 12002 0.00 0.18 2 0.00 3 �

345 11000 0.00 0.28 2 0.00 3 �

346 6003 1.00 0.80 6 0.04 3

347 9001 0.14 0.42 4 1.00 3 �

348 8000 0.00 0.90 4 0.99 3 �

349 11000 0.08 0.20 2 1.00 3 �

350 8002 0.31 0.52 4 1.00 3 �

351 12000 0.89 0.00 2 1.00 3 �

352 9500 0.38 0.33 4 0.00 3 �

353 12000 0.90 0.00 2 0.00 3 �

354 6000 0.67 1.00 6 1.00 3 �

355 11000 0.94 0.00 2 0.00 3 �

356 11000 0.93 0.00 2 1.00 3 �

357 9000 0.00 0.79 2 0.00 3 �

358 7000 1.00 0.86 2 1.00 3 �

359 6000 0.86 1.00 4 1.00 3 �

360 12000 0.00 0.00 4 0.00 3
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361 12000 0.00 0.00 4 1.00 3

362 11000 0.00 0.00 4 1.00 3 �

363 11000 0.00 0.00 4 0.00 3 �

364 8000 0.16 1.00 2 1.00 3 �

365 8000 0.00 0.94 4 0.00 3 �

366 8998 0.44 0.24 6 0.00 3 �

367 12800 1.00 0.65 2 1.00 3 �

368 12700 1.00 0.55 2 0.00 3 �

369 8300 0.30 0.35 6 1.00 3 �

370 12600 0.00 1.00 2 0.00 4 �

371 8900 0.00 0.45 4 0.00 4 �

372 9900 0.50 0.55 2 0.60 4 �

373 12700 1.00 0.55 2 0.50 4 �

374 10300 0.05 0.65 2 0.45 4 �

375 10100 0.50 0.00 4 0.00 4 �

376 10200 0.00 0.65 2 1.00 4 �

377 13500 0.50 0.60 2 1.00 4 �

378 10000 0.55 0.05 2 0.45 4 �

379 12600 0.00 1.00 2 0.45 4 �

380 12800 1.00 1.00 2 0.55 4 �

381 9100 0.75 0.70 2 0.05 4 �

382 12700 0.50 1.00 2 1.00 4 �

383 8400 0.40 0.30 4 0.15 4
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384 10600 0.60 0.00 2 1.00 4 �

385 6900 1.00 0.55 6 1.00 4 �

386 8900 0.75 0.70 2 1.00 4 �

387 8900 0.00 0.45 4 0.40 4 �

388 8300 0.30 0.35 6 0.60 4 �

389 10500 0.00 0.70 2 0.00 4 �

390 12800 1.00 1.00 2 0.00 4 �

391 12800 0.70 0.30 2 0.45 4 �

392 12700 0.65 0.10 2 0.10 4 �

393 12600 0.00 1.00 2 1.00 4 �

394 7600 0.60 0.60 4 0.00 4 �

395 6900 1.00 0.55 6 0.55 4 �

396 13500 0.55 0.00 2 0.65 4 �

397 7200 0.65 0.55 6 0.45 4 �

398 6800 1.00 0.55 6 0.00 4 �

399 8400 0.10 0.40 6 0.00 4

400 12400 0.45 0.60 2 0.10 4 �

401 12200 0.70 0.35 2 0.80 4 �

402 8400 0.40 0.20 6 0.00 4

403 7400 0.55 0.50 6 0.00 4 �

404 10200 1.00 0.30 2 0.45 4 �

405 12800 1.00 1.00 2 1.00 4 �

406 7400 1.00 0.60 4 0.55 4
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407 13500 0.15 0.55 2 0.00 4 �

408 13400 0.00 0.25 2 1.00 4 �

409 9000 0.00 0.50 6 1.00 4 �

410 9600 0.00 0.30 2 1.00 4

411 10000 0.55 0.00 4 1.00 4 �

412 8900 1.00 0.60 2 0.45 4 �

413 8400 0.30 0.35 4 0.60 4

414 10200 0.55 0.00 4 0.40 4 �

415 10800 0.95 0.20 2 1.00 4 �

416 10000 0.55 0.00 2 0.05 4

417 9200 0.00 0.25 4 1.00 4

418 12000 0.00 0.65 2 0.75 4 �

419 12900 0.15 0.15 2 0.50 4 �

420 10600 0.20 0.00 2 0.00 4

421 8900 0.15 0.50 2 0.10 4

422 10600 1.00 0.25 2 0.00 4 �

423 7100 1.00 0.50 4 0.95 4 �

424 7100 1.00 0.50 4 0.00 4 �

425 8700 0.50 0.90 2 0.50 4 �

426 13000 0.00 0.10 2 0.00 4 �

427 9100 1.00 0.00 4 1.00 4 �

428 7100 0.60 1.00 4 1.00 4 �

429 7000 0.25 0.90 6 0.00 4 �
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430 7000 0.70 0.85 6 0.00 4 �

431 8000 0.90 0.15 4 0.50 4 �

432 12700 0.65 0.85 2 0.00 4 �

433 11900 0.00 0.00 2 1.00 4 �

434 7200 0.75 0.90 4 0.50 4 �

435 8700 0.05 0.45 4 0.75 4

436 9400 0.50 0.20 2 0.85 4

437 6600 0.70 0.95 6 1.00 4

438 8200 0.00 1.00 4 0.55 4 �

439 7900 0.75 0.60 4 0.85 4 �

440 8000 0.85 0.15 6 0.00 4 �

441 7000 0.70 0.55 6 1.00 4 �

442 8400 0.30 0.35 4 0.90 4

443 12200 0.05 0.00 4 1.00 4 �

444 8300 0.85 0.15 6 0.50 4

445 8300 0.65 0.95 2 0.90 4 �

446 9400 0.50 0.20 4 0.80 4 �

447 10100 0.05 0.15 6 0.00 4 �

448 11200 0.60 0.00 2 0.70 4 �

449 8100 0.95 0.90 2 0.50 4 �

450 7000 0.50 0.90 6 0.50 4 �

451 8800 0.30 1.00 2 0.10 4 �

452 11600 0.15 0.00 4 0.50 4 �
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453 13500 0.45 0.25 2 1.00 4 �

454 7900 0.00 0.90 6 1.00 4 �

455 12800 1.00 0.85 2 0.30 4 �

456 8600 0.55 0.30 6 0.80 4

457 10300 0.20 0.05 2 1.00 4

458 12500 0.25 0.80 2 1.00 4 �

459 12600 0.50 0.80 2 0.80 4 �

460 8200 0.00 0.90 2 0.00 4

461 7100 0.70 1.00 4 0.00 4 �

462 12500 0.00 0.00 4 0.00 4 �

463 13400 0.75 0.90 2 1.00 4 �

464 12700 0.45 1.00 2 0.40 4 �

465 9900 0.20 0.20 4 0.80 4 �

466 11000 0.25 0.05 4 0.00 4 �

467 10000 0.55 0.55 2 0.10 4 �

468 7000 0.25 0.85 6 1.00 4 �

469 8700 0.95 0.00 6 1.00 4

470 10600 0.75 0.35 2 0.35 4 �

471 7900 0.95 1.00 2 0.00 4 �

472 9500 0.40 0.20 2 0.15 4

473 8000 1.00 0.10 4 0.00 4

474 8900 0.55 0.40 4 0.35 4 �

475 8000 0.25 0.90 4 0.50 4 �



264

Table C.1 continued from previous page
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476 9400 1.00 0.45 2 0.95 4 �

477 9400 0.20 0.80 2 0.95 4 �

478 10700 0.00 0.05 2 0.50 4

479 9400 0.25 0.55 2 0.85 4 �

480 9100 0.00 0.20 6 0.60 4

481 7200 0.00 0.90 6 0.50 4

482 6900 0.35 0.90 4 1.00 4

483 12100 0.70 0.35 2 0.15 4 �

484 9300 0.25 0.85 2 0.45 4 �

485 8900 0.00 0.75 4 0.50 4 �

486 13400 0.00 1.00 2 0.70 4 �

487 12400 0.80 0.10 2 1.00 4 �

488 9600 0.25 0.00 4 0.50 4

489 7400 0.20 1.00 2 1.00 4

490 13400 0.75 0.50 2 0.30 4 �

491 8950 0.43 0.03 6 0.43 5 �

492 11250 0.73 0.78 2 0.48 5 �

493 8950 0.03 0.58 6 0.53 5

494 11650 0.33 0.93 2 0.08 5 �

495 9650 0.18 0.33 2 0.53 5

496 10950 0.28 0.98 2 0.73 5 �

497 13450 0.53 0.53 2 0.63 5 �

498 10850 0.93 0.63 2 0.23 5 �
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499 13450 0.03 0.68 2 0.48 5 �

500 8750 0.18 0.23 6 0.33 5

501 11950 0.28 0.63 2 0.58 5 �

502 13450 0.98 0.33 2 0.88 5 �

503 9350 0.73 0.93 2 0.28 5 �

504 7750 0.38 0.48 6 0.33 5 �

505 8450 0.58 0.03 6 0.98 5 �

506 12350 0.98 0.28 2 0.28 5 �

507 9050 0.23 0.63 4 0.28 5 �

508 11750 0.43 0.23 2 0.58 5 �

509 8050 0.73 0.63 4 0.28 5 �

510 8450 0.73 0.48 2 0.53 5 �

511 13450 0.08 0.58 2 0.98 5 �

512 12450 0.83 0.03 2 0.48 5 �

513 8650 0.33 0.68 4 0.68 5 �

514 13450 0.48 0.33 2 0.03 5 �

515 11150 0.43 0.63 2 0.98 5 �

516 10350 0.03 0.23 4 0.48 5 �

517 7950 0.48 0.58 6 0.68 5

518 8450 0.58 0.18 4 0.53 5 �

519 13350 0.73 0.58 2 0.03 5 �

520 9450 0.83 0.08 2 0.48 5 �

521 8450 0.78 0.43 4 0.53 5
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522 9950 0.48 0.83 2 0.78 5 �

523 9750 0.03 0.68 2 0.73 5 �

524 8650 0.03 0.73 2 0.28 5

525 12150 0.13 0.63 2 0.28 5 �

526 8450 0.33 0.68 2 0.63 5

527 12350 0.53 0.08 2 0.38 5 �

528 9050 0.28 0.53 2 0.38 5

529 11950 0.98 0.28 2 0.68 5 �

530 9750 0.23 0.28 2 0.83 5

531 9850 0.73 0.33 2 0.68 5 �

532 11350 0.83 0.73 2 0.73 5 �

533 9350 0.63 0.98 2 0.03 5 �

534 9150 0.03 0.68 4 0.93 5 �

535 6850 0.88 0.53 6 0.28 5 �

536 13250 0.58 0.03 2 0.93 5 �

537 6750 0.78 0.88 6 0.48 5

538 9550 0.03 0.43 2 0.33 5

539 9650 0.78 0.03 4 0.53 5 �

540 8750 0.58 0.08 4 0.23 5 �

541 7550 0.68 0.68 6 0.23 5

542 8050 0.38 0.68 6 0.03 5

543 6650 0.48 0.98 4 0.53 5 �

544 11950 0.48 0.18 2 0.83 5 �
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545 8950 0.48 0.43 2 0.98 5 �

546 13450 0.23 0.98 2 0.53 5 �

547 7550 0.73 0.58 6 0.73 5

548 13450 0.03 0.03 2 0.33 5 �

549 13450 0.28 0.03 2 0.68 5 �

550 9650 0.73 0.08 2 0.23 5 �

551 8550 0.03 0.78 2 0.53 5

552 11050 0.33 0.68 2 0.33 5 �

553 9250 0.18 0.23 4 0.33 5 �

554 11150 0.53 0.23 2 0.08 5 �

555 7450 0.83 0.38 6 0.48 5 �

556 13450 0.73 0.68 2 0.63 5 �

557 8350 0.63 0.13 4 0.98 5 �

558 8250 0.18 0.68 6 0.98 5 �

559 7050 0.73 0.63 4 0.63 5 �

560 9350 0.78 0.08 2 0.98 5

561 6550 0.98 0.83 4 0.53 5 �

562 6750 0.23 0.98 6 0.48 5

563 7750 0.23 0.98 2 0.53 5

564 7550 0.68 0.98 2 0.68 5 �

565 7850 0.33 0.98 4 0.08 5 �

566 7050 0.98 0.68 4 0.78 5 �

567 12150 0.23 0.13 2 0.13 5 �
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568 9250 0.33 0.03 4 0.88 5

569 11750 0.38 0.53 2 0.78 5 �

570 11350 0.33 0.03 2 0.38 5 �

571 6750 0.48 0.98 6 0.03 5 �

572 6650 0.98 0.48 6 0.78 5 �

573 9950 0.18 0.28 2 0.13 5

574 13150 0.73 0.13 2 0.78 5 �

575 7550 0.88 0.38 6 0.03 5 �

576 8950 0.98 0.23 2 0.13 5 �

577 8350 0.53 0.63 2 0.03 5 �

578 5550 0.98 0.98 6 0.48 5 �

579 9150 0.98 0.03 4 0.63 5

580 13450 0.33 0.98 2 0.08 5 �

581 10850 0.28 0.03 4 0.98 5 �

582 13250 0.03 0.23 2 0.78 5 �

583 8550 0.38 0.98 2 0.33 5 �

584 9550 0.98 0.78 2 0.23 5 �

585 13350 0.48 0.23 2 0.28 5 �

586 13450 0.28 0.98 2 0.93 5 �

587 9850 0.03 0.23 6 0.83 5 �

588 11250 0.87 0.78 2 0.08 5 �

589 8350 0.02 0.98 4 0.78 5 �

590 10250 0.42 0.03 2 0.88 5
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591 7350 0.72 0.83 4 0.93 5 �

592 9750 0.77 0.78 2 0.68 5 �

593 9350 0.97 0.73 2 0.73 5 �

594 7650 0.72 0.83 2 0.03 5 �

595 5850 0.97 0.78 6 0.98 5 �

596 9950 0.62 0.03 4 0.68 5 �

597 12050 0.07 0.03 2 0.63 5 �

598 13450 0.42 0.83 2 0.98 5 �

599 10850 0.47 0.88 2 0.18 5 �

600 10450 0.97 0.63 2 0.03 5 �

601 13450 0.07 0.03 2 0.98 5 �

602 10350 0.92 0.23 2 0.23 5 �

603 8150 0.62 0.28 4 0.13 5 �

604 11050 0.27 0.78 2 0.68 5 �

605 13450 0.42 0.23 2 0.48 5 �

606 13450 0.82 0.73 2 0.13 5 �

607 6350 0.47 0.98 6 0.88 5 �

608 13450 0.97 0.63 2 0.23 5 �

609 10650 0.03 0.08 2 0.08 5

610 7350 0.77 0.43 4 0.93 5 �

611 9850 0.32 0.13 4 0.28 5 �

612 9350 0.02 0.68 4 0.73 5 �

613 7350 0.97 0.23 6 0.88 5 �
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614 7850 0.32 0.98 4 0.33 5 �

615 8050 0.82 0.13 4 0.93 5 �

616 5950 0.77 0.98 6 0.03 5

617 7550 0.52 0.98 4 0.13 5 �

618 6850 0.82 0.63 4 0.98 5 �

619 11350 0.82 0.18 2 0.13 5 �

620 8550 0.97 0.03 6 0.58 5

621 7750 0.47 0.98 2 0.98 5 �

622 8750 0.92 0.18 4 0.33 5 �

623 7350 0.97 0.33 4 0.88 5 �

624 8850 0.67 0.58 2 0.38 5 �

625 8150 0.07 0.53 6 0.38 5 �

626 8850 0.62 0.38 4 0.63 5 �

627 13450 0.67 0.23 2 0.93 5 �

628 8950 0.87 0.03 6 0.08 5

629 10550 0.02 0.18 4 0.83 5 �

630 13450 0.72 0.03 2 0.38 5 �

631 8450 0.47 0.63 4 0.78 5 �

632 8550 0.77 0.58 2 0.68 5 �

633 13250 0.97 0.28 2 0.13 5 �

634 13250 0.97 0.98 2 0.18 5 �

635 9650 0.47 0.23 4 0.53 5 �

636 10750 0.52 0.33 2 0.23 5 �
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637 13450 0.52 0.28 2 0.63 5 �

638 12350 0.97 0.18 2 0.53 5 �

639 7950 0.17 0.98 4 0.68 5 �

640 13450 0.77 0.03 2 0.03 5 �

641 9550 0.17 0.03 4 0.98 5

642 10850 0.57 0.73 2 0.98 5 �

643 8050 0.62 0.28 4 0.88 5 �

644 8750 0.42 0.13 4 0.98 5

645 7650 0.97 0.18 4 0.68 5 �

646 12050 0.02 0.03 4 0.63 5 �

647 6250 0.82 0.98 4 0.08 5 �

648 8450 0.67 0.53 2 0.03 5 �

649 11250 0.97 0.43 2 0.73 5 �

650 5850 0.92 0.98 4 0.53 5 �

651 11550 0.12 0.03 4 0.13 5 �

652 6650 0.72 0.93 6 0.83 5

653 6950 0.97 0.98 2 0.43 5 �

655 8250 0.87 0.03 6 0.38 5 �

656 7650 0.12 0.93 6 0.88 5 �

657 9250 0.12 0.38 6 0.33 5 �

658 13450 0.97 0.28 2 0.38 5 �

659 7250 0.47 0.83 4 0.53 5 �

660 8750 0.52 0.48 2 0.83 5 �
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661 7050 0.47 0.73 6 0.03 5 �

662 6650 0.92 0.83 6 0.53 5

663 10050 0.52 0.88 2 0.03 5 �

664 9050 0.37 0.78 2 0.73 5 �

665 13450 0.97 0.78 2 0.08 5 �

666 12050 0.67 0.03 2 0.38 5 �

667 8150 0.82 0.58 2 0.03 5 �

668 9350 0.02 0.23 4 0.58 5

669 11350 0.52 0.38 2 0.03 5 �

670 8450 0.92 0.58 2 0.73 5 �

671 8950 0.27 0.63 4 0.43 5 �

672 8850 0.22 0.58 2 0.58 5

673 5950 0.72 0.98 6 0.53 5 �

674 12050 0.02 0.03 4 0.83 5 �

675 11350 0.22 0.88 2 0.18 5 �

676 7850 0.02 0.98 6 0.38 5

677 7250 0.57 0.53 6 0.73 5 �

678 9350 0.32 0.03 4 0.73 5

679 6450 0.32 0.98 6 0.88 5

680 9150 0.97 0.03 4 0.48 5 �

681 13450 0.97 0.33 2 0.73 5 �

682 7150 0.12 0.98 4 0.58 5

683 13450 0.97 0.23 2 0.53 5 �
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684 9950 0.37 0.23 4 0.43 5 �

685 11750 0.47 0.03 2 0.28 5 �

686 8150 0.02 0.63 4 0.98 5

687 8950 0.57 0.03 4 0.63 5 �

688 8050 0.87 0.43 4 0.88 5 �

689 7650 0.32 0.98 2 0.43 5 �

690 7450 0.77 0.53 6 0.23 5 �
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APPENDIX D

SCENARIOS FROM MIXTURE EXPERIMENTS

Table D.1.: Mixture design for case study in Section 5.3

fleetSize riderTypes1 riderTypes2 riderTypes3 riderTypes4 riderTypes5 dtMode

6000 0.1 0.6 0.1 0.1 0.1 1

6000 0 1 0 0 0 1

6000 0 0 0.5 0.25 0.25 1

6000 0.25 0.25 0.5 0 0 1

6000 0 0 0.25 0.5 0.25 1

6000 0.25 0.25 0.25 0 0.25 1

6000 0 0.25 0.25 0 0.5 1

6000 0.25 0 0 0.25 0.5 1

6000 0.5 0.25 0.25 0 0 1

6000 0 0.25 0.25 0.25 0.25 1

6000 0 0 0 0.5 0.5 1

6000 1 0 0 0 0 1

6000 0.5 0 0.25 0.25 0 1

6000 0 0.5 0 0.5 0 1

6000 0.5 0 0 0.25 0.25 1

6000 0.5 0 0.5 0 0 1

6000 0.25 0 0.5 0 0.25 1
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6000 0.75 0 0.25 0 0 1

6000 0 0 0 0.25 0.75 1

6000 0 0 0.25 0.75 0 1

6000 0.25 0 0.25 0 0.5 1

6000 0.25 0.5 0 0.25 0 1

6000 0.25 0.5 0 0 0.25 1

6000 0 0.75 0 0.25 0 1

6000 0 0 0.75 0.25 0 1

6000 0 0.25 0.5 0.25 0 1

6000 0 0 0.5 0 0.5 1

6000 0.1 0.1 0.6 0.1 0.1 1

6000 0 0 0 0 1 1

6000 0.25 0 0 0.75 0 1

6000 0.6 0.1 0.1 0.1 0.1 1

6000 0.25 0 0.75 0 0 1

6000 0.25 0.75 0 0 0 1

6000 0 0 1 0 0 1

6000 0.25 0.25 0.25 0.25 0 1

6000 0.5 0.25 0 0.25 0 1

6000 0 0.5 0 0.25 0.25 1

6000 0 0 0 0.75 0.25 1

6000 0 0.25 0.25 0.5 0 1

6000 0.75 0.25 0 0 0 1
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6000 0 0.5 0.25 0.25 0 1

6000 0.25 0.25 0 0 0.5 1

6000 0.5 0.25 0 0 0.25 1

6000 0.25 0 0 0.5 0.25 1

6000 0.25 0 0.25 0.5 0 1

6000 0.5 0 0.25 0 0.25 1

6000 0.25 0.5 0.25 0 0 1

6000 0.5 0.5 0 0 0 1

6000 0.25 0.25 0 0.25 0.25 1

6000 0 0.25 0 0.25 0.5 1

6000 0 0.5 0.25 0 0.25 1

6000 0 0 0.25 0.25 0.5 1

6000 0.2 0.2 0.2 0.2 0.2 1

6000 0.75 0 0 0.25 0 1

6000 0.25 0 0 0 0.75 1

6000 0 0.25 0 0.75 0 1

6000 0.1 0.1 0.1 0.1 0.6 1

6000 0 0.25 0.5 0 0.25 1

6000 0.5 0 0 0 0.5 1

6000 0 0.75 0.25 0 0 1

6000 0 0.5 0.5 0 0 1

6000 0 0 0.75 0 0.25 1

6000 0 0.5 0 0 0.5 1
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6000 0.1 0.1 0.1 0.6 0.1 1

6000 0 0 0 1 0 1

6000 0.75 0 0 0 0.25 1

6000 0 0 0.5 0.5 0 1

6000 0.5 0 0 0.5 0 1

6000 0 0.25 0 0.5 0.25 1

6000 0.25 0 0.5 0.25 0 1

6000 0 0.25 0 0 0.75 1

6000 0.25 0.25 0 0.5 0 1

6000 0 0 0.25 0 0.75 1

6000 0 0.75 0 0 0.25 1

6000 0 0.25 0.75 0 0 1

6000 0.25 0 0.25 0.25 0.25 1

6000 0 0.25 0.5 0.25 0 0

6000 0.1 0.6 0.1 0.1 0.1 0

6000 0.1 0.1 0.6 0.1 0.1 0

6000 0.2 0.2 0.2 0.2 0.2 0

6000 0.5 0 0.25 0 0.25 0

6000 0 0.5 0 0.5 0 0

6000 0.5 0 0 0.25 0.25 0

6000 0 0.25 0.25 0.5 0 0

6000 0 0 0.25 0.5 0.25 0

6000 0.25 0 0.25 0.25 0.25 0
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6000 0 0.5 0.25 0.25 0 0

6000 0 0 0 0.25 0.75 0

6000 0.75 0 0 0 0.25 0

6000 0.25 0 0 0.5 0.25 0

6000 0 0.25 0 0.75 0 0

6000 0 0.75 0 0 0.25 0

6000 0 0.25 0 0 0.75 0

6000 0 0 0 0 1 0

6000 0 0.25 0.75 0 0 0

6000 0 0.25 0.25 0.25 0.25 0

6000 0.25 0 0.25 0 0.5 0

6000 0.5 0.25 0.25 0 0 0

6000 0.5 0 0.25 0.25 0 0

6000 0 0 0.5 0 0.5 0

6000 0 0 0.75 0 0.25 0

6000 0 0.75 0.25 0 0 0

6000 0 0.25 0.5 0 0.25 0

6000 0.25 0 0 0 0.75 0

6000 0.25 0.5 0 0 0.25 0

6000 0.25 0 0.5 0.25 0 0

6000 0.1 0.1 0.1 0.6 0.1 0

6000 0.25 0.75 0 0 0 0

6000 0 0 0 0.5 0.5 0



279

Table D.1 continued from previous page

fleetSize riderTypes1 riderTypes2 riderTypes3 riderTypes4 riderTypes5 dtMode

6000 0.5 0.25 0 0 0.25 0

6000 0 0.25 0 0.25 0.5 0

6000 0.25 0.25 0 0.25 0.25 0

6000 0 0 0.75 0.25 0 0

6000 1 0 0 0 0 0

6000 0 0.5 0 0 0.5 0

6000 0 0.25 0.25 0 0.5 0

6000 0.25 0.25 0 0.5 0 0

6000 0.5 0 0.5 0 0 0

6000 0.6 0.1 0.1 0.1 0.1 0

6000 0.5 0.5 0 0 0 0

6000 0 0.75 0 0.25 0 0

6000 0.75 0 0.25 0 0 0

6000 0.25 0.5 0.25 0 0 0

6000 0.5 0 0 0 0.5 0

6000 0 0 0.5 0.5 0 0

6000 0.25 0 0.75 0 0 0

6000 0 0.5 0 0.25 0.25 0

6000 0.25 0.25 0.25 0 0.25 0

6000 0 0 0.25 0 0.75 0

6000 0.25 0 0 0.25 0.5 0

6000 0 0 1 0 0 0

6000 0.25 0 0.5 0 0.25 0
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6000 0.1 0.1 0.1 0.1 0.6 0

6000 0 0.25 0 0.5 0.25 0

6000 0.75 0 0 0.25 0 0

6000 0.25 0 0.25 0.5 0 0

6000 0 0 0 0.75 0.25 0

6000 0.5 0.25 0 0.25 0 0

6000 0.25 0.25 0.5 0 0 0

6000 0.5 0 0 0.5 0 0

6000 0 0.5 0.5 0 0 0

6000 0 0 0.25 0.25 0.5 0

6000 0 0 0 1 0 0

6000 0 0.5 0.25 0 0.25 0

6000 0 0 0.5 0.25 0.25 0

6000 0.75 0.25 0 0 0 0

6000 0 1 0 0 0 0

6000 0.25 0.25 0 0 0.5 0

6000 0.25 0.5 0 0.25 0 0

6000 0 0 0.25 0.75 0 0

6000 0.25 0 0 0.75 0 0

6000 0.25 0.25 0.25 0.25 0 0

4000 0.25 0.25 0 0 0.5 1

4000 0.25 0 0.25 0 0.5 1

4000 0.25 0.5 0 0.25 0 1
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4000 0.5 0 0.25 0.25 0 1

4000 0.5 0 0.25 0 0.25 1

4000 0 0 0 0.75 0.25 1

4000 0.25 0.25 0.5 0 0 1

4000 0 0.5 0.25 0.25 0 1

4000 0.5 0.5 0 0 0 1

4000 0.25 0.25 0 0.25 0.25 1

4000 0.25 0.5 0.25 0 0 1

4000 0.5 0.25 0 0.25 0 1

4000 0 0.5 0 0.25 0.25 1

4000 0 0.25 0 0 0.75 1

4000 1 0 0 0 0 1

4000 0.75 0.25 0 0 0 1

4000 0.25 0 0 0.25 0.5 1

4000 0 0.25 0.25 0 0.5 1

4000 0.5 0 0 0.25 0.25 1

4000 0.75 0 0 0 0.25 1

4000 0 1 0 0 0 1

4000 0 0.25 0.5 0.25 0 1

4000 0.1 0.1 0.1 0.6 0.1 1

4000 0 0 0 0 1 1

4000 0.25 0.25 0 0.5 0 1

4000 0 0 0.25 0.25 0.5 1
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4000 0 0.5 0 0 0.5 1

4000 0.6 0.1 0.1 0.1 0.1 1

4000 0.25 0 0.25 0.5 0 1

4000 0.5 0 0.5 0 0 1

4000 0 0.5 0.25 0 0.25 1

4000 0 0 1 0 0 1

4000 0.25 0.5 0 0 0.25 1

4000 0.2 0.2 0.2 0.2 0.2 1

4000 0 0 0.25 0.5 0.25 1

4000 0 0.25 0 0.75 0 1

4000 0.25 0 0.25 0.25 0.25 1

4000 0.75 0 0.25 0 0 1

4000 0 0.25 0.25 0.25 0.25 1

4000 0 0.5 0.5 0 0 1

4000 0.25 0 0 0.75 0 1

4000 0.25 0.25 0.25 0 0.25 1

4000 0 0 0 0.5 0.5 1

4000 0 0.75 0 0 0.25 1

4000 0.5 0.25 0.25 0 0 1

4000 0 0 0.25 0 0.75 1

4000 0 0.25 0 0.25 0.5 1

4000 0 0.75 0 0.25 0 1

4000 0 0 0 1 0 1
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4000 0.25 0 0.5 0 0.25 1

4000 0.1 0.1 0.6 0.1 0.1 1

4000 0 0.75 0.25 0 0 1

4000 0 0.25 0.25 0.5 0 1

4000 0.5 0 0 0 0.5 1

4000 0 0 0.75 0.25 0 1

4000 0.25 0 0.75 0 0 1

4000 0 0 0.5 0 0.5 1

4000 0.25 0.75 0 0 0 1

4000 0 0 0.5 0.25 0.25 1

4000 0.5 0 0 0.5 0 1

4000 0 0 0.5 0.5 0 1

4000 0 0.5 0 0.5 0 1

4000 0 0 0 0.25 0.75 1

4000 0 0.25 0 0.5 0.25 1

4000 0.25 0.25 0.25 0.25 0 1

4000 0.25 0 0 0.5 0.25 1

4000 0.1 0.1 0.1 0.1 0.6 1

4000 0.25 0 0.5 0.25 0 1

4000 0 0 0.75 0 0.25 1

4000 0.75 0 0 0.25 0 1

4000 0.1 0.6 0.1 0.1 0.1 1

4000 0.5 0.25 0 0 0.25 1



284

Table D.1 continued from previous page

fleetSize riderTypes1 riderTypes2 riderTypes3 riderTypes4 riderTypes5 dtMode

4000 0 0.25 0.75 0 0 1

4000 0.25 0 0 0 0.75 1

4000 0 0.25 0.5 0 0.25 1

4000 0 0 0.25 0.75 0 1

4000 0 0 0.25 0.75 0 0

4000 0.1 0.1 0.6 0.1 0.1 0

4000 0.25 0.25 0 0.5 0 0

4000 0 0 0.5 0.25 0.25 0

4000 0.25 0 0.25 0.25 0.25 0

4000 0 0.5 0 0.25 0.25 0

4000 0 0.5 0 0 0.5 0

4000 0 0.25 0.25 0.25 0.25 0

4000 0.25 0.25 0 0 0.5 0

4000 0 0.25 0 0 0.75 0

4000 0 0 0.25 0.5 0.25 0

4000 0 0.25 0 0.75 0 0

4000 0.75 0 0.25 0 0 0

4000 0 0 0 1 0 0

4000 0.5 0.5 0 0 0 0

4000 0.1 0.6 0.1 0.1 0.1 0

4000 0.25 0.75 0 0 0 0

4000 0 0 0 0.5 0.5 0

4000 0.5 0 0.25 0.25 0 0
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Table D.1 continued from previous page

fleetSize riderTypes1 riderTypes2 riderTypes3 riderTypes4 riderTypes5 dtMode

4000 0.2 0.2 0.2 0.2 0.2 0

4000 0 0 0.5 0.5 0 0

4000 0.25 0 0 0.25 0.5 0

4000 0 0 0.5 0 0.5 0

4000 0.5 0 0 0.5 0 0

4000 0.5 0 0.5 0 0 0

4000 0 0 0.25 0.25 0.5 0

4000 0 0.75 0 0.25 0 0

4000 0 0.25 0.5 0.25 0 0

4000 0.5 0.25 0 0.25 0 0

4000 0 0 0 0.75 0.25 0

4000 0 0.5 0.25 0.25 0 0

4000 0.25 0.25 0.25 0.25 0 0

4000 0.75 0 0 0.25 0 0

4000 0 0.5 0 0.5 0 0

4000 0 0.25 0 0.5 0.25 0

4000 0.25 0 0 0 0.75 0

4000 0.25 0 0.5 0.25 0 0

4000 0.1 0.1 0.1 0.1 0.6 0

4000 0 0 0.75 0 0.25 0

4000 0.6 0.1 0.1 0.1 0.1 0

4000 0.25 0.5 0.25 0 0 0

4000 1 0 0 0 0 0



286

Table D.1 continued from previous page

fleetSize riderTypes1 riderTypes2 riderTypes3 riderTypes4 riderTypes5 dtMode

4000 0 0 0.25 0 0.75 0

4000 0 0 0 0.25 0.75 0

4000 0 1 0 0 0 0

4000 0.25 0 0.5 0 0.25 0

4000 0.25 0 0.75 0 0 0

4000 0 0.25 0.75 0 0 0

4000 0 0 0 0 1 0

4000 0.75 0.25 0 0 0 0

4000 0 0 0.75 0.25 0 0

4000 0.25 0.5 0 0.25 0 0

4000 0.75 0 0 0 0.25 0

4000 0 0.5 0.25 0 0.25 0

4000 0.25 0.5 0 0 0.25 0

4000 0.1 0.1 0.1 0.6 0.1 0

4000 0.5 0 0.25 0 0.25 0

4000 0.25 0 0 0.5 0.25 0

4000 0 0.25 0.5 0 0.25 0

4000 0 0.5 0.5 0 0 0

4000 0.5 0.25 0 0 0.25 0

4000 0.25 0.25 0.5 0 0 0

4000 0.5 0 0 0 0.5 0

4000 0 0.25 0.25 0 0.5 0

4000 0 0.25 0.25 0.5 0 0
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Table D.1 continued from previous page

fleetSize riderTypes1 riderTypes2 riderTypes3 riderTypes4 riderTypes5 dtMode

4000 0.25 0 0.25 0 0.5 0

4000 0.25 0.25 0.25 0 0.25 0

4000 0 0.75 0.25 0 0 0

4000 0.25 0.25 0 0.25 0.25 0

4000 0 0 1 0 0 0

4000 0 0.25 0 0.25 0.5 0

4000 0.5 0 0 0.25 0.25 0

4000 0.25 0 0.25 0.5 0 0

4000 0.5 0.25 0.25 0 0 0

4000 0.25 0 0 0.75 0 0

4000 0 0.75 0 0 0.25 0
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APPENDIX E

REGRESSION MODELS FOR MIXTURE

EXPERIMENTS

Table E.6.: Significant terms in the least squares regres-

sion

Term Coef SE Coef T-Value P-Value

x1 0.8853 0.04964 17.833 ¡ 2e-16

x2 0.4634 0.04964 9.335 0.000000000000000287

x3 0.1906 0.04964 3.84 0.000189

x4 -0.08693 0.03384 -2.569 0.011298

x5 0.8641 0.04964 17.407 ¡ 2e-16

x1 : fleetSize -0.000002498 0.000009115 -0.274 0.784457

x2 : fleetSize 0.00008297 0.000009115 9.103 0.00000000000000108

x3 : fleetSize 0.0001236 0.000009115 13.558 ¡ 2e-16

x4 : fleetSize 0.0001586 0.000006526 24.297 ¡ 2e-16

x5 : fleetSize 0.00003731 0.000009115 4.093 0.0000732

x1 : dtMode 0.1907 0.06573 2.902 0.004341

x2 : dtMode -0.3285 0.06573 -4.998 0.00000178

x3 : dtMode -0.04346 0.06573 -0.661 0.509649

x4 : dtMode 0.1266 0.04706 2.689 0.008074

continued on next page
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Table E.6.: continued

Term Coef SE Coef T-Value P-Value

x5 : dtMode -0.1573 0.06573 -2.393 0.01809

x1 : x2 -0.03211 0.05985 -0.536 0.592511

x1 : x3 0.008988 0.05985 0.15 0.880858

x1 : x4 0.06819 0.05172 1.318 0.18963

x1 : x5 -0.303 0.05985 -5.062 0.00000134

x2 : x3 -0.06213 0.05985 -1.038 0.301069

x2 : x4 -0.1225 0.05172 -2.368 0.019289

x2 : x5 -0.1841 0.05985 -3.075 0.002549

x3 : x4 -0.2617 0.05172 -5.059 0.00000136

x3 : x5 -0.1697 0.05985 -2.835 0.005294

x4 : x5 -0.4489 0.05172 -8.678 0.0000000000000119

x1 : fleetSize :

dtMode

-0.0000287 0.00001289 -2.226 0.027659

x2 : fleetSize :

dtMode

0.00005156 0.00001289 4 0.000104

x3 : fleetSize :

dtMode

0.000008136 0.00001289 0.631 0.529005

x4 : fleetSize :

dtMode

-0.00001759 0.00000923 -1.906 0.058853

x5 : fleetSize :

dtMode

0.00002446 0.00001289 1.897 0.059926
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Table E.1.
Regression model for percent shared rides RMSE = 0.055 and R2 = 0.92

term β Std. Error t value p value

x1 9.66E-02 6.00E-02 1.611 1.08E − 01

x2 6.07E-01 5.76E-02 10.542 < 2e− 16

x3 1.13E-01 5.76E-02 1.954 0.051654

x4 -1.29E-02 5.76E-02 -0.224 0.822868

x5 -7.44E-02 5.91E-02 -1.258 0.209434

dtMode 8.75E-02 8.29E-03 10.555 < 2e− 16

x1 : x5 1.48E-01 8.07E-02 1.833 6.78E − 02

x2 : x5 5.23E-01 7.89E-02 6.634 1.64E − 10

x3 : x5 1.34E+00 7.89E-02 16.998 < 2e− 16

x4 : x5 1.30E+00 7.89E-02 16.52 < 2e− 16

x1 : x4 2.70E-01 7.89E-02 3.428 0.000699

x1 : x3 2.18E-01 7.89E-02 2.761 0.006145

x1 : x2 1.44E-01 7.89E-02 1.827 0.068678

x1 : fleetSize -2.76E-05 1.11E-05 -2.49 0.013347

x2 : fleetSize -3.36E-05 1.11E-05 -3.036 0.002616

x3 : fleetSize 8.54E-05 1.11E-05 7.719 2.00E − 13

x4 : fleetSize 1.17E-04 1.11E-05 10.581 < 2e− 16

x5 : fleetSize 2.27E-05 1.11E-05 2.052 0.041062

x1 : dtMode -7.02E-02 2.65E-02 -2.647 0.008569

Table E.10.: Significant terms in the least squares regres-

sion

Term Coef SE Coef T-Value P-Value

x1 435.929322 15.837079 27.526 < 2e− 16

continued on next page
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Table E.10.: continued

Term Coef SE Coef T-Value P-Value

x2 616.451413 15.837079 38.925 < 2e− 16

x3 609.632324 10.796164 56.467 < 2e− 16

x4 337.813236 15.837079 21.331 < 2e− 16

x5 597.731992 15.837079 37.743 < 2e− 16

x1 : fleetSize -0.037512 0.002908 -12.899 < 2e− 16

x2 : fleetSize -0.070801 0.002908 -24.347 < 2e− 16

x3 : fleetSize -0.062999 0.002082 -30.257 < 2e− 16

x4 : fleetSize -0.022487 0.002908 -7.733 0.00000000000224

x5 : fleetSize -0.067013 0.002908 -23.044 < 2e− 16

x1 : dtMode 35.606955 20.970065 1.698 0.091831

x2 : dtMode 109.357914 20.970065 5.215 0.00000068

x3 : dtMode 129.807213 15.014415 8.646 0.0000000000000143

x4 : dtMode 115.618317 20.970065 5.513 0.000000175

x5 : dtMode 171.997821 20.970065 8.202 0.00000000000017

x1 : x2 90.039926 19.09422 4.716 0.00000597

x1 : x3 65.446292 16.501312 3.966 0.000118

x1 : x4 -62.542581 19.09422 -3.275 0.001343

x1 : x5 340.904307 19.09422 17.854 < 2e− 16

x2 : x3 11.234398 16.501312 0.681 0.497161

x2 : x4 55.40913 19.09422 2.902 0.004338

x2 : x5 94.65239 19.09422 4.957 0.00000212

x3 : x4 35.926 16.501312 2.177 0.03122

continued on next page
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Table E.10.: continued

Term Coef SE Coef T-Value P-Value

x3 : x5 18.573285 16.501312 1.126 0.262362

x4 : x5 130.140414 19.09422 6.816 0.00000000029

x1 : fleetSize :

dtMode

-0.00262 0.004113 -0.637 0.525231

x2 : fleetSize :

dtMode

-0.015205 0.004113 -3.697 0.000317

x3 : fleetSize :

dtMode

-0.019804 0.002945 -6.726 0.000000000462

x4 : fleetSize :

dtMode

-0.008156 0.004113 -1.983 0.049384

x5 : fleetSize :

dtMode

-0.021435 0.004113 -5.212 0.000000689
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Table E.2.
Regression model for average taxi capacity RMSE = 0.095 and R2 =
0.91

term β Std. Error t value p value

x1 1.36E+00 5.34E-02 25.502 < 2e− 16

x2 2.98E+00 9.85E-02 30.248 < 2e− 16

x3 2.33E+00 4.48E-02 52.022 < 2e− 16

x4 2.33E+00 4.48E-02 51.846 < 2e− 16

x5 1.94E+00 6.28E-02 30.924 < 2e− 16

dtMode 2.16E-01 1.43E-02 15.106 < 2e− 16

fleetSize -3.75E-05 7.16E-06 -5.231 3.28E − 07

x1 : x5 -4.56E-01 1.56E-01 -2.922 0.003756

x2 : x5 5.29E-01 1.54E-01 3.444 0.00066

x3 : x5 1.45E+00 1.54E-01 9.42 < 2e− 16

x4 : x5 1.59E+00 1.54E-01 10.338 < 2e− 16

x1 : x4 6.41E-01 1.35E-01 4.757 3.13E − 06

x1 : x3 5.62E-01 1.35E-01 4.167 4.10E − 05

x1 : x2 3.82E-01 1.35E-01 2.837 0.004886

x2 : fleetSize -1.43E-04 2.27E-05 -6.266 1.37E − 09

x1 : dtMode -1.66E-01 4.55E-02 -3.657 0.000304
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Table E.3.
Regression model for served fraction for rider type 1 RMSE = 0.039 and
R2 = 0.96

term β Std. Error t value p value

x1 1.46E-01 5.20E-02 2.805 0.00571

x2 -4.24E-01 7.14E-02 -5.936 1.99E − 08

x3 -4.69E-01 7.14E-02 -6.568 8.12E − 10

x4 -8.98E-01 7.14E-02 -12.574 < 2e− 16

x5 8.16E-01 7.27E-02 11.228 < 2e− 16

dtMode -1.57E-01 3.13E-02 -5.019 1.47E − 06

dtMode : fleetSize 2.82E-05 6.22E-06 4.539 1.16E − 05

x1 : fleetSize 9.18E-05 1.02E-05 8.995 1.05E − 15

x2 : fleetSize 2.32E-04 1.41E-05 16.407 < 2e− 16

x3 : fleetSize 1.98E-04 1.39E-05 14.194 < 2e− 16

x4 : fleetSize 2.62E-04 1.39E-05 18.804 < 2e− 16

x5 : fleetSize 5.17E-05 1.39E-05 3.714 0.000289

x2 : x5 -3.18E-01 1.19E-01 -2.666 0.008538

x3 : x5 -3.31E-01 1.19E-01 -2.769 0.006334

x4 : x5 -8.01E-01 1.19E-01 -6.709 3.90E − 10

x2 : dtMode : fleetSize -2.35E-05 6.08E-06 -3.866 0.000165
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Table E.4.
Regression model for Served fraction for rider type 2 RMSE = 0.020 and
R2 = 0.96

term β Std. Error t value p value

x1 5.55E-01 3.79E-02 14.656 0.00571

x2 1.91E-01 2.73E-02 7.013 1.99E − 08

x3 7.92E-02 3.81E-02 2.077 8.12E − 10

x4 3.32E-01 4.14E-02 8.014 < 2e− 16

x5 6.46E-01 4.23E-02 15.265 < 2e− 16

x1 : dtMode 1.64E-01 1.45E-02 11.346 1.47E − 06

x2 : dtMode 4.81E-02 1.04E-02 4.643 1.16E − 05

x3 : dtMode 1.06E-01 1.45E-02 7.336 1.05E − 15

x4 : dtMode 7.98E-02 1.45E-02 5.521 < 2e− 16

x5 : dtMode 2.03E-02 1.45E-02 1.406 < 2e− 16

x1 : fleetSize 2.38E-05 7.23E-06 3.297 < 2e− 16

x2 : fleetSize 1.02E-04 5.17E-06 19.653 0.000289

x3 : fleetSize 1.11E-04 7.23E-06 15.298 0.008538

x4 : fleetSize 7.97E-05 7.23E-06 11.029 0.006334

x5 : fleetSize 6.72E-05 7.23E-06 9.297 3.90E − 10

x1 : x5 -4.38E-01 6.50E-02 -6.737 0.000165
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Table E.5.
Regression model for served fraction for rider type 3 RMSE = 0.016 and
R2 = 0.97

term β Std. Error t value p value

x1 0.7407 0.03236 22.888 < 2e− 16

x2 0.3814 0.03236 11.786 < 2e− 16

x3 0.0994 0.02118 4.694 0.00000621

x4 0.5673 0.03236 17.529 < 2e− 16

x5 0.5015 0.03236 15.497 < 2e− 16

dtMode 0.01431 0.002538 5.638 0.0000000888

x1 : fleetSize 0.000008273 0.000005602 1.477 0.141968

x2 : fleetSize 0.00008612 0.000005602 15.372 < 2e− 16

x3 : fleetSize 0.000125 0.000004011 31.162 < 2e− 16

x4 : fleetSize 0.00005772 0.000005602 10.303 < 2e− 16

x5 : fleetSize 0.00006981 0.000005602 12.46 < 2e− 16

x1 : x2 0.1111 0.05202 2.136 0.034365

x1 : x3 0.08255 0.04496 1.836 0.06842

x1 : x4 0.3092 0.05202 5.943 0.0000000204

x1 : x5 -0.3018 0.05202 -5.802 0.0000000405

x2 : x3 -0.03064 0.04496 -0.682 0.49665

x2 : x4 -0.1189 0.05202 -2.286 0.023707

x2 : x5 -0.1162 0.05202 -2.234 0.027051

x3 : x4 -0.1565 0.04496 -3.481 0.000663

x3 : x5 -0.07512 0.04496 -1.671 0.096925

x4 : x5 -0.2916 0.05202 -5.605 0.000000104
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Table E.7.
Regression model for served fraction for rider type 5 RMSE = 0.015 and
R2 = 0.60

term β Std. Error t value p value

x1 0.02976 0.07977 0.373 0.7096

x2 0.5131 0.07977 6.432 0.00000000144

x3 0.5769 0.07977 7.232 0.0000000000196

x4 0.6858 0.07977 8.597 0.0000000000000078

x5 -0.1471 0.07095 -2.073 0.0398

fleetSize 0.00006797 0.00001183 5.747 0.0000000459

dtMode 0.04417 0.02365 1.867 0.0637
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Table E.8.
Regression model for waiting time for rider type 1 RMSE = 13.4 and
R2 = 0.95

term β Std. Error t value p value

x1 368.675913 17.188815 21.449 < 2e− 16

x2 542.972282 25.528429 21.269 < 2e− 16

x3 483.382099 23.717387 20.381 < 2e− 16

x4 412.129855 25.528429 16.144 < 2e− 16

x5 298.754537 26.566712 11.245 < 2e− 16

x2 : fleetSize -0.06146 0.004603 -13.351 < 2e− 16

x3 : fleetSize -0.045669 0.004603 -9.921 < 2e− 16

x4 : fleetSize -0.032078 0.004603 -6.968 0.0000000000983

x5 : fleetSize -0.059095 0.004603 -12.837 < 2e− 16

x1 : fleetSize -0.0233 0.003296 -7.069 0.0000000000573

x1 : x2 71.748569 35.237472 2.036 0.04352

x1 : x4 97.957933 35.237472 2.78 0.00614

x1 : x5 102.962685 36.607174 2.813 0.00558

x2 : x5 359.871633 41.95543 8.577 0.000000000000012

x3 : x5 436.975141 41.338472 10.571 < 2e− 16

x4 : x5 543.36072 41.95543 12.951 < 2e− 16
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Table E.9.
Regression model for waiting time for rider type 2 RMSE = 24.17 and
R2 = 0.99

term β Std. Error t value p value

x1 579.5 51.2 11.318 < 2e− 16

x2 800.4 32.91 24.319 < 2e− 16

x3 758.1 44.67 16.969 < 2e− 16

x4 504.9 44.67 11.302 < 2e− 16

x5 588.6 55.69 10.569 < 2e− 16

x1 : dtMode 167.7 25.18 6.658 0.000000000553

x2 : dtMode 174.1 22.33 7.797 0.0000000000012

x3 : dtMode 177.2 25.18 7.036 0.0000000000758

x4 : dtMode 183.6 25.18 7.292 0.0000000000192

x5 : dtMode 218.2 25.18 8.665 0.00000000000000881

x1 : fleetSize -0.018 0.009912 -1.816 0.07148

x2 : fleetSize -0.06303 0.006324 -9.967 < 2e− 16

x3 : fleetSize -0.05422 0.008556 -6.337 0.00000000287

x4 : fleetSize -0.01013 0.008556 -1.184 0.23849

x5 : fleetSize -0.1108 0.009912 -11.181 < 2e− 16

dtMode : fleetSize -0.01827 0.003775 -4.84 0.00000332

x1 : x5 1720 370.7 4.638 0.00000786

x2 : x5 508.8 65.43 7.775 0.00000000000135

x3 : x5 817.8 74.84 10.927 < 2e− 16

x4 : x5 782.2 74.84 10.452 < 2e− 16

x1 : x5 : fleetSize -0.2015 0.07262 -2.775 0.00626
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Table E.11.
Regression model for waiting time for rider type 4 RMSE = 8.38 and
R2 = 0.99

term β Std. Error t value p value

x1 424.028391 16.894699 25.098 < 2e-16

x2 885.065534 16.894699 52.387 < 2e-16

x3 955.623022 21.256672 44.956 < 2e-16

x4 358.990568 11.076043 32.411 < 2e-16

x5 886.077558 16.894699 52.447 < 2e-16

x1 : fleetSize -0.029655 0.002884 -10.283 < 2e-16

x2 : fleetSize -0.110817 0.002884 -38.425 < 2e-16

x3 : fleetSize -0.105888 0.00387 -27.364 < 2e-16

x4 : fleetSize -0.015634 0.002065 -7.571 0.00000000000479

x5 : fleetSize -0.111885 0.002884 -38.795 < 2e-16

x1 : dtMode 49.296442 5.767953 8.547 0.0000000000000212

x2 : dtMode 21.688875 5.767953 3.76 0.00025

x3 : dtMode 118.154321 26.437289 4.469 0.0000162

x4 : dtMode 60.977457 4.129812 14.765 < 2e-16

x5 : dtMode 110.130221 5.767953 19.093 < 2e-16

x1 : x2 142.272316 26.779996 5.313 0.000000423

x1 : x3 23.759709 26.779996 0.887 0.3765

x1 : x4 4.308384 23.143395 0.186 0.85259

x1 : x5 450.825826 26.779996 16.834 < 2e-16

x2 : x3 -4.57097 26.779996 -0.171 0.86472

x2 : x4 52.318398 23.143395 2.261 0.02535

x2 : x5 82.353885 26.779996 3.075 0.00254

x3 : x4 -33.039489 23.143395 -1.428 0.15567

x3 : x5 -7.070741 26.779996 -0.264 0.79215

x4 : x5 140.152036 23.143395 6.056 0.0000000125

x3 : fleetSize : dtMode -0.021259 0.00516 -4.12 0.000065
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Table E.12.
Regression model for waiting time for rider type 5 RMSE = 19.09 and
R2 = 0.90

term β Std. Error t value p value

x1 352.6 45.33 7.779 0.00000000000205

x2 556.8 36.05 15.448 < 2e-16

x3 838.1 38.78 21.609 < 2e-16

x4 471.5 38.78 12.158 < 2e-16

x5 469.9 32.26 14.565 < 2e-16

x1 : fleetSize -0.01589 0.008079 -1.967 0.051347

x2 : fleetSize -0.06104 0.006876 -8.877 0.00000000000000496

x3 : fleetSize -0.09667 0.006876 -14.059 < 2e-16

x4 : fleetSize -0.0436 0.006876 -6.341 0.00000000353

x5 : fleetSize -0.003335 0.005965 -0.559 0.577007

x1 : dtMode 33.01 16.16 2.043 0.043092

x2 : dtMode 24.67 13.75 1.793 0.075241

x3 : dtMode 29.6 13.75 2.152 0.033264

x4 : dtMode 88.41 13.75 6.428 0.00000000229

x5 : dtMode 45.03 11.93 3.775 0.000243

x1 : x5 161.2 72.82 2.214 0.028569

x3 : x4 98.65 59.28 1.664 0.098487

x3 : x5 -524.4 58.7 -8.933 0.00000000000000363

x4 : x5 -241.6 58.7 -4.115 0.0000685
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APPENDIX F

GENETIC ALGORITHM TO SITE EV CHARGING

STATIONS

F.1 Genetic Algorithm - Details

In this Section, we expand on some of the details of the genetic algorithm which we

discussed briefly in Section 6.3.3.1. The following sub-sections will explain the initial

solution selection, the filtering procedure, and all of the genetic operators (selection,

crossover, mutation, perturbation, fission, fusion, and correction) in detail.

F.1.1 Generate initial solutions (parents)

We use algorithm 10 to generate the set of initial parents. The algorithm gener-

ates multiple starting solutions as initial parents used in the the genetic algorithm.

In order to explore the possible number of new locations, we generate parents for

1 new location till reps new locations. The algorithm does this nRand times to

generate multiple starting solutions with the same number of new locations. This is

done to explore starting points with a different number of sites (controlled by reps),

different site locations and different number of ports (controlled by nRand). For

each randomization (outer for loop controlled by i) and each number of new loca-

tions (inner for loop controlled by j) we cluster the demand into j clusters. Then,

since the cluster centers are unlikely to be exactly at a charging station location, we
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snap then randomly to a candidate charging station (we snap the cluster center ran-

domly to increase the diversity in the locations of the charging stations between each

iteration of the outer loop). The probability with which a particular cluster center is

snapped to a particular charging station is proportional to the distance between the

two. Then, we assign the number of ports to each charging station to generate vector

N (chromosome). The probability of having more charging ports on a charging sta-

tion is proportional to the number of demands associated with the cluster center to

which that charging station has been snapped to. Figure F.1 represents this process

pictorially.

Below we describe the variables that we have used in algorithm 10.

• nRand = 50 : The number of randomizations.

• reps = 30 : The maximum number of charging stations included in the initial

population. Both, nRand and reps are tuning parameters and they control the

size of the initial population (nRand× reps).

• i : Variable controlling the outer for loop and the randomization number

• j : Variable controlling the inner for loop. j also determines the number of

charging stations in the chromosome generated by a single iteration of the two

loops.

• c.old : The number of charging stations currently existing in the system.

• curBudget : The budget remaining for use in the current generation.

• centers : Set of cluster centers. Its size will depend upon the value of j
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• freq : a vector of the same size of centers. An element of freq refers to

the number of demand that are associated with the corresponding element of

centers.

• k : Variable controlling the innermost for loop. At each iteration it refers to

an element in centers

• dist : A vector of distances from k to each potential site in L.

• p : A probability vector that is proportional to 1/dist. It is set such that∑
p = 1

• X : A set of charging station locations selected

• Disc(v, p) : The empirical discrete probability distribution where each element

of v has probability p. This is used to randomly select the charging station

which a cluster center in centers is snapped to.

• c : the charging station that is associated with the center k

• n : A vector that generates the number of charging stations.

• Cvec : A vector of available charging station locations. Each selected charging

station site c and existing charging station sites c.old is repeated K times where

K is the remaining capacity at the charging station location.

• Kc : The maximum number of vehicles a charging site c can hold. K =

{K1, . . . , Klength(L)}
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Figure F.1. Steps to generate initial population for nRand = 2 and
reps = 3 : cluster the demand (dots) into j = 1, 2, 3 centers (stars). The
color represents the associated cluster center; Snap the cluster centers
to potential charging station (triangle) locations with probability pro-
portional to inverse of distance; Assign charging stations at the spots
snapped in and generate the chromosome with all other potential charg-
ing station locations set to 0 and those selected set to the number of
ports at the station randomly. The number of ports in the station are
set randomly with probability proportional to the number of demands
associated with that cluster.
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Algorithm 10 Initial Parents

procedure Initial Parents(riderGroup)

Get nRand, reps, and L as input

for i ∈ 1 . . . nRand do

for j ∈ 0 . . . reps do

Set c.old =
∑

k∈L IN̂j>0

curBudget = B

Set X set of current charging stations

if j > 0 then

Use k-means clustering to find j cluster centers (centers) and clus-

tering vector counts freq for demand . We use k-means to find locations where

the demand would most likely benefit from additional charging station sites

for k ∈ centers do . Snap clusters with probability in inverse

proportion to distance

find vector dist = distance from k to each potential charging

location L which has Kc > freq

Compute probability vector p ∝ 1/dist

Select c ∼ Disc(L, p) as the charging location and add to C (set

of charging stations)
. Set the number of ports on each station randomly

Generate vector n of length floor( curBudget−Cni
Cu

) by picking without re-

placement from vector Cvec of available charging station locations.

Set vector of charging ports N from the frequency of n
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F.1.2 Filter initial candidate set

Potentially in a big city such as New York City, there could be a large number

of candidate charging stations. In such cases, in order to find potentially better

solutions in shorter time, we can remove those candidate solutions that are unlikely

to be chosen in the final solution. We define a few new variables that we will use in

this section:

• D = 5 : The number of divisions that we divide Lfull into.

• Ld : The d ∈ 1 . . . D division for the divided set Lfull.

1. Divide the number of potential charging locations Lfull into D divisions ran-

domly. We randomize the divisions so that each replication of the procedure

that we run will have a different set of candidate charging stations.

2. Run algorithm 10 for each of the D divisions to generate initial parents (chro-

mosomes) from each of the Ld subsets of charging stations.

3. For each of the Ld subsets of charging stations, evaluate the objective function

using the method in section 6.3.4 and rank in decreasing order of objective

function value

4. In each set, from the best 100 chromosomes, select the genes (locations) which

had a charging station and add to the reduced location set L.

The reduced location set L will contain the genes that are most likely to be included

in the final solution.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure F.2. Operations used in our genetic algorithm. The chromosomes
here have a target budget of B = 20 for illustration: (a) Rank Selection:
The nbest = 4 highlighted chromosomes are selected by the rank selection
algorithm; (b) Crossover: The yellow genes from the first chromosome are
interchanged with the green in the second; (c) Mutation: Two instances
of mutation where the genes in yellow are switched; (d) Perturbation:
The highlighted genes are randomly moved to a new location (e) Fission:
The one highlighted gene is split into 2 (f) Fusion: The two highlighted
genes are merged into one; (g) Correction: The non zero genes are edited
to meet the budget requirements B = 20 while preserving the number of
sites
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F.1.3 Genetic operators

In this section we introduce the genetic operators rank selection, crossover, mu-

tation, perturbation, fission, and fission (figure F.2).

F.1.3.1 Rank Selection

The purpose of selection in a genetic algorithm is to select a good set of chromo-

somes that will be used as parents to produce off-springs in the genetic algorithm.

We use rank selection as described in Sivanandam (2007) to perform selection from

our chromosome set L. We introduce the variables and parameters that impact the

selection of chromosomes below:

• L1 : The set of chromosomes which will be used as parents to which genetic op-

erations will be applied. The set L1 will be transformed via genetic operations

to create the next generation of chromosomes.

• nbest = 20 : A parameter of the genetic algorithm which determines the number

of parents that will be selected from set L

• pchoice = 0.3 : A parameter of the genetic algorithm that determines how likely

a chromosome is to be picked as a parent. A higher value means that the

genetic algorithm will include a larger proportion of chromosomes which have

higher objective function values (fitter) as parents and increase the probability

of the algorithm finding a local minimum (exploitation).

The algorithm for the rank selection is below:

1. Rank the chromosomes L in increasing order of the objective function R.
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2. Set i = 1

3. Repeat while length(Lp) = nbest or length(L) = i

4. Add L[i] to set Lp with probability pchoice

5. i = i+ 1

6. Report Lp as the set of parents to perform genetic operators

F.1.3.2 Crossover

The purpose of the crossover operator is to generate new chromosomes from two

parents. The intuition behind crossover is that a child composed of a cross between

two good parents would share some of the qualities of both and hence may be fitter

(lower wasted time) than both (Sivanandam, 2007). The crossover operator is shown

in Figure F.2(b). We generate Nbest × (Nbest − 1) children using all of Nbest parents

by selecting 2 at a time.

Since our chromosomes are potentially very sparse (lots of potential charging

stations with 0 ports), we choose a crossover gene pcrossover between the first and

last non zero gene. This increases the probability of generating an offspring that is

different from the parent. Then, we generate the new children by interchanging all

the genes that appear after pcrossover.

Specifically, the Algorithm 11 details the steps used for crossover.

F.1.3.3 Mutation

The purpose of the mutate operator is to have the algorithm generate chromo-

somes that differ in a single gene from the parents. This encourages the algorithm to
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Algorithm 11 Crossover

1: procedure Crossover(riderGroup)

2: Get Lp as input from selection

3: k=1

4: for i ∈ 1 . . . length(L) do

5: for j ∈ 1 . . . length(L) do

6: if i 6= j then Select with uniform probability a point pcrossover between

the first and last non zero genes in L[i] and L[j] Swap all genes after point

pcrossover to create two new genes L1[k] and L1[k + 1] k = k + 1

seek solutions that are different from the current set of accepted chromosomes (en-

courages exploration). The mutation operator has a single parameter pmutate = 0.2

which controls the mutation probability. All the Nbest×(Nbest−1) children go through

the below mutation procedure:

1. With probability pmutate, randomly select a non zero gene in the chromozome

and set it to 0

2. With probability pmutate, randomly select a zero gene in the chromozome and

set it to min(max(N), capacity)

F.1.3.4 Perturbation

Often in our problem the GA tends to find good solutions using the crossover

and mutate operators. The purpose of the perturbation operator is to move the

gene to another location randomly so that it can seek potentially better solutions
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while making local moves. We use perturbation to move a non-zero gene by a small

distance to test if a better location for a set number of charging stations exists.

The perturbation operator has two parameters:

All the Nbest× (Nbest− 1) children go through the below perturbation procedure:

• pperturb = 0.3 : The probability of perturbation

• D : The distance (in number of genes) for perturbation.

• G : The gene selected for perturbation

1. With probability pperturb select a non zero gene (G) randomly and displace it

by a random distance between [max(0, G−D),min(G+D,N)]

F.1.3.5 Fission and Fusion

In our problem of charging station siting considering the budget restriction rep-

resented by Equation 6.2, one of the main trade-offs is to place 2 separate charging

stations with less ports vs siting a single charging station with more ports. While the

2 charging stations would reduce the travel time if properly sited, a single charging

station would be able to reduce the waiting time on account of it having an extra

port. In order to explore these tradeoffs, we introduce the fission (Figure F.2(e)) and

fusion (figure F.2(f)) operators.

The fission operator selects a single gene and splits it into two new genes, while the

fusion operator selects two genes and joins them into a single gene. A chromosome is

selected to either undergo fission or fusion (50% probability of each) .The algorithm

for these operators is below:

1. With probability pff
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2. With probability 0.5 (fusion), select two non zero genes from the chromo-

some (a and b) with inverse probability of distance from each other

3. Set gene Na = Na +Nb + 1 and Nb = 0

4. else Select one non-zero gene c with probability proportional to its total

distance from other genes1

5. Select two genes a and b such that Na = 0 and Nb = 0 and set

Na = Nb = floor(Nc/2) and Nc = 0

F.1.3.6 Correction

The budget constraint 6.2 is an equality constraint. After applying the genetic

operators crossover, mutation, perturbation, fission, and fusion it is highly likely that

the resulting chromosome would not satisfy constraint 6.2. Instead of discarding

these chromosomes (as is the practise in traditional genetic algorithms (Sivanandam,

2007)) and reduce the efficiency of the genetic algorithm, we apply a correction

step to force the chromosome N to adhere to the constraint 6.2. While performing

correction we take care to preserve the number of locations as we noticed that in

our case changing the number of locations results in a large change in objective

function value. Additionally, all the genetic operators serve primarily to modify the

number of new locations in the charging station configuration, and we wanted to

preserve these changes while having the correction step modify the number of ports.

We first compute the budget utilized (curBudget) by the chromosome. In-case the

resulting chromosome is under-budget, we add charging ports to the non-zero genes.

1We prefer genes that are isolated as it will be more likely that splitting an isolated gene would
help reduce the travel distance for demands
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On the other hand if the resulting chromosome is over-budget, we remove charging

ports from the non zero gene without decreasing the number of charging ports at

any charging station to zero. In both cases, we attempt to preserve the proportion

of ports across the charging stations, since the number of ports have already been

randomized earlier by the other genetic operators. The algorithm for this correction

step is below:

1. Compute curBudget = Cn

∑L
i=1 INi>0 + Cu

∑L
i=1(Ni − INi>0)

2. If curBudget < B (Underbudget)

3. Add floor curBudget−B
Cu

additional charging ports to genes randomly in the

proportion of Kc −Nc ∀c ∈ n : N > 0

4. else If curBudget > B (Overbudget)

5. Remove floor curBudget
Cu

charging stations from the non zero genes with

probability proportional to Nc ∀c ∈ n : N > 0
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APPENDIX G

PROGRESSION OF OBJECTIVE FUNCTION IN

GENETIC ALGORITHM

In each of the 3 cases mentioned in Section 6.4, we ran the genetic algorithm to site

charging stations for I = 80 iterations as we believed that this number was large

enough for the genetic algorithm to reach to a “good” solution. We kept the value of

I fixed for all cases so that each case was comparable with each other. Additionally,

since GA’s do not have any guarantees of decrease in objective function at each

stage, we did not set our stopping criterion based on difference in objective function

values. In each case, we plotted the progress of the best site selection at each iteration

(Figure G.1, G.2 & G.3).
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(a) (b)

(c) (d)

Figure G.1. Objective function progression for case F



317

(a) (b)

(c) (d)

Figure G.2. Objective function progression for case P



318

(a) (b)

Figure G.3. Objective function progression for case M
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APPENDIX H

SENSITIVITY ANALYSIS

H.1 Budget Sensitivity

In order to understand how the budget influences the objective function evalua-

tion we evaluated the F and the P cases with different budgets as mentioned below:

• Case A1 : A10 (B = 100) → A40 (B = 300) → A70 (B = 400) → A100

(B = 800)

• Case A2 : A10 (B = 150) → A40 (B = 350) → A70 (B = 500) → A100

(B = 1000)

• Case A3 : A10 (B = 200) → A40 (B = 400) → A70 (B = 600) → A100

(B = 1200)

• Case O1 : O10 (B = 100) → O40 (B = 300) → O70 (B = 400) → O100

(B = 800)

• Case O2 : O10 (B = 150) → O40 (B = 350) → O70 (B = 500) → O100

(B = 1000)

• Case O3 : O10 (B = 200) → O40 (B = 400) → O70 (B = 600) → O100

(B = 1200)

Figure H.1 shows the objective function T (unscaled and scaled) along with its

two components (waiting time Tw and travel time Tt). From Figure H.1 we see that
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for the A scenarios, the additional budget is mainly used to reduce travel time by

placing new charging stations, while in the O scenarios, the algorithm needs to find

a balance between waiting time and travel time to lower the total objective function

by co-locating charging stations and by placing new ones.

H.2 Sensitivity of CN for Cu = 1

If we fix the cost of an additional port to be 1, the optimal charging station

configuration could be influenced by varying values of CN . For higher values of CN ,

the model will prefer to add ports to existing charging stations, since adding an

additional charging station is expensive, thus potentially increasing the total travel

time. Also, as Cn increases, the total number of ports that the model can place is

lower (because, by adding an additional charging station, the model uses a larger part

of the budget). Hence it is important to understand how sensitive is the total wasted

time to different values of CN So we found optimal charging station configurations

for case F and Case P when Cu = 1 and Cn = {1.5, 2, 3} in Figure H.2.

We see from Figure H.2 that in all the cases, the total wasted time is higher for

larger values of CN , by a small amount (either due to a higher waiting time or a

higher travel time)
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(a) (b)

(c) (d)

(e) (f)

Figure H.1. Sensitivity of the (a) objective function (b) scaled objective
function (c) waiting time (d) scaled waiting time (e) traveling time (f)
scaled travel time for cases which defer by budget as per Section H.1
(color and line-type)
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(a) (b)

(c) (d)

(e) (f)

Figure H.2. Sensitivity of the (a)objective function (b) scaled objective
function (c) waiting time (d) scaled waiting time (e) traveling time (f)
scaled travel time for cases which defer by CN as per Section H.2 (color
and line-type)


