Supplementary Information 1 Generation of active Mn(III)_(aq) by a novel heterogeneous Electro-permanganate 2 (E-PM) process with manganese(II) as promoter and stabilizer 3 Yunhua Zhu^{a, b}, Xuxu Wang^{a, b}, Jing Zhang^b, Lei Ding^d, Junfeng Li^c, Huaili Zheng 4 a, b, Chun Zhao a, b, c* 5 ^aState Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing 6 University, Chongqing 400044, PR China 7 ^bKey Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry 8 of Education, Chongqing University, Chongqing 400045, PR China 9 ^cCollege of Water & Architectural Engineering, Shihezi University, Shihezi 832000, 10 PR China 11 12 ^dSchool of Civil Engineering and Architecture, Anhui University of Technology, 59 Hudong Road, Maanshan 243002, PR China 13 *Corresponding author 14 Email: pureson@163.com; pureson@cqu.edu.cn 15

17	Text S1 Reagents and chemicals
18	Text S2 The analytical method of the intermediate products
19	Text S3 Effect of adding time of Mn^{2+} on the degradation of DCF by E-PM-Mn ²⁺
20	process in the presence of PP
21	Text S4 The calculation formula of synergetic effect
22	Table S1. Water quality parameters of the electrolyte solution, tap water, and surface
23	water10
24	Table S2. Details for contaminants analyses by HPLC-UV11
25	Table S3. The comparison of the E-PM-Mn ²⁺ process with the other methods for the
26	degradation of DCF
27	Table S4. Kinetic parameters (k_1) and the correlation coefficients (R^2) of pseudo-first-
28	order kinetics for DCF degradation in MnO ₂ , MnO ₂ -Mn ²⁺ , E-MnO ₂ , and E-MnO ₂ -Mn ²⁺
29	processes
30	Figure S1. The degradation of DCF by electrolysis, PM oxidation, E-PM, E-Mn ²⁺ , PM-
31	Mn ²⁺ , and E-PM-Mn ²⁺ processes14
32	Figure S2. pH variations of solution on the removal of DCF by E-PM and E-PM-Mn ²⁺
33	processes15
34	Figure S3. Effect of Methanol and TBA on DCF degradation by E-PM-Mn ²⁺ process.16
35	Figure S4. UV-vis spectra of E-PM-Mn ²⁺ process without contaminants17
36	Figure S5. Comparative removal of DCF by MnO ₂ , MnO ₂ -Mn ²⁺ , E-MnO ₂ , E-MnO ₂ -
37	Mn ²⁺ , PM, and E-PM-Mn ²⁺ processes
38	Figure S6. Effect of 1-hexanol on DCF degradation by E-PM-Mn ²⁺ process
39	Figure S7. Effect of pyrophosphate (PP) on DCF degradation in E-PM-Mn ²⁺ process.20
40	Figure S8. UV-vis spectra of Mn(III)-PP in PM-Mn ²⁺ (a), E-PM (b) and E-PM-Mn ²⁺ (c)
41	processes for DCF removal
42	Figure S9. pH variations of solution on the removal of DCF by E-PM-Mn ²⁺ process
43	with and without PP
44	Figure S10. UV-vis spectra in Mn ²⁺ solution with and without PP24

Contents

45	Figure S11. Effect of adding time of Mn ²⁺ on the degradation of DCF by E-PM-Mn ²⁺
46	process in the presence of PP
47	Figure S12. UV-vis spectra of Mn(III)-PP at 30 min in PM-Mn ²⁺ , E-PM, and E-PM-
48	Mn ²⁺ processes for the degradation of phenol (a) and NB (b) (the insets showed the
49	degradation of phenol and NB in PM-Mn ²⁺ , E-PM, and E-PM-Mn ²⁺ processes)26
50	Figure S13. Effect of Mn ²⁺ dosage on the PM decomposition by E-PM-Mn ²⁺ process 27
51	Figure S14. Influence of Mn ²⁺ and the addition time on the removal of DCF by E-PM
52	and E-PM-Mn ²⁺ processes (adding MnSO ₄ at the beginning and at 1 min, respectively).
53	
54	Figure S15. The product ion spectra (a) and the corresponding fragment ion spectra (b)
55	for DCF and its degradation products (P1-P8) detected by UPLC-Vion IMS QTOF-MS.
56	
57	Figure S16. Effect of applied current on the DCF degradation (a), TOC removal (b) and
58	the Mn(III)-PP generation (c) in E-PM-Mn ²⁺ process
59	Figure S17. Effect of applied current on the decomposition of PM for DCF degradation
60	in E-PM-Mn ²⁺ process
61	Figure S18. Effect of initial pH and the corresponding k_1 on the removal of DCF in E-
62	PM-Mn ²⁺ process
63	Figure S19. The effect of buffers on the removal of DCF in E-PM-Mn ²⁺ process at pH
64	4 and 5
65	Figure S20. Effect of PM dosage on the degradation ratio (a) and reaction kinetics (b)
66	of DCF by E-PM-Mn ²⁺ process
67	Figure S21. Effect of DCF concentration on the removal of DCF in E-PM-Mn ²⁺ process
68	
69	Figure S22. Removal of CBZ, phenol, SMX, NB, and MB in E-PM-Mn ²⁺ process39
70	Figure S23. Degradation kinetics constants (k1) of phenol, SMX, NB, MB in
71	electrolysis (E), PM, E-PM, and E-PM-Mn ²⁺ processes40
72	Figure S24. Effect of water matrices on the removal of DCF in E-PM-Mn ²⁺ process.41
73	Figure S25. Effect of Cl ⁻ (a), HCO_3^- (b), $H_2PO_4^-$ (c), and HA (d) on the degradation of

75	Figure S26. Effect of HA on the degradation of phenol (a), SMX (b) and NB (c) in E-
76	PM-Mn ²⁺ process

78 Text S1 Reagents and chemicals

79	DCF ($C_{14}H_{10}Cl_2NNaO_2$, purity 99.0%) was purchased from the Chengdu Micxy
80	Chemical Co., Ltd. (China). Sulfamethoxazole (SMX, $C_{10}H_{11}N_3O_3S$, 99.0%) and
81	methyl blue (MB, C ₃₇ H ₂₇ N ₃ Na ₂ O ₉ S ₃) were supplied by Aladdin Chemical Co., Ltd.
82	(China). Carbamazepine (CBZ) and HA were purchased from Sigma-Aldrich Chemical
83	Co., Ltd. (USA). Phenol (C ₆ H ₆ O, purity 99.5%), nitrobenzene (NB, C ₆ H ₅ NO ₂),
84	potassium permanganate (KMnO ₄ , purity 99.5%), manganese sulphate (MnSO ₄ •H ₂ O,
85	purity 99.0%), tert-butanol (TBA, C ₄ H ₁₀ O, purity 99.0%), formic acid (HPLC grade),
86	and acetic acid (HPLC grade), were obtained from Chengdu Kelong Chemical Co., Ltd.
87	(China). Methanol (MA) and acetonitrile (HPLC grade) were supplied by Honeywell
88	Burdick & Jackson Inc. (USA). Sulfuric acid (H ₂ SO ₄ , 98.0%), sodium hydroxide
89	(NaOH, purity 98.0%), hydroxylammonium chloride (NH ₂ OH•HCl, purity 98.5%), and
90	sodium pyrophosphate decahydrate (Na ₄ P ₂ O ₇ •10H ₂ O, purity 99%), were obtained from
91	Chongqing Chuandong Chemical Co., Ltd. (China). All sample solutions and mobile
92	phase were prepared with ultrapure water (resistivity of 18.2 $M\Omega$ cm) obtained from
93	Millipore Super-Q plus water purification system.

94 Text S2 The analytical method of the intermediate products

95	Considering the high detection limit, the intermediates samples were concentrated by
96	solid phase extraction (SPE) prior to UPLC-Vion IMS QTOF-MS analysis. 20 mL
97	solution sample was introduced into Oasis HLB cartridge (Waters, America), and eluted
98	by 2mL pure methanol. Then the chromatographic separation was carried out on a BEH
99	$C_{18}(100\ mM\times2.1\ mM\times1.7\ \mu M)$ maintained at 45 °C. The mobile phase consisted of
100	A (0.1% formic acid in ultrapure water) and B (0.1% formic acid in acetonitrile) at a
101	flow rate of 0.4 mL min ⁻¹ . The gradient was 95% A and 5% B at initial, then increasing
102	to 100% B for 8 min and 12.5 min, changed to 5% A and 95% B for 15 min and 20
103	min. The injection volume was set to 1 μ L. The mass spectrometer (m/z 50-1000) was
104	operated with negative electrospray ionization. The MS operation parameters were set
105	as follows: acquisition mode MS ^E ; capillary voltage 2 KV; cone voltage 40V;
106	desolvation temperature 450 °C; desolvation gas 900 L h ⁻¹ ; cone gas 50 L h ⁻¹ ; source
107	temperature 115 °C; Scan rate 0.2 s; Collision energy 6 eV/20-45 eV.

Text S3 Effect of adding time of Mn²⁺ on the degradation of DCF by E-PM-Mn²⁺
process in the presence of PP

To explore whether PP affects the reaction involving Mn(II) in the E-PM- Mn^{2+} process, UV-vis spectra of Mn^{2+} solution with and without PP and the comparative experiments according to the different adding time of Mn^{2+} were carried out.

As illustrated in Figure S10, UV-vis spectra of Mn^{2+} solution with and without PP (PP 10mM) had no obvious absorption peaks, although the concentration of Mn^{2+} had increased to 10 to 100 folds. However, an obvious absorbance peak of Mn(III)-PP at 258 nm was observed in E-PM-Mn²⁺ process (Figure S7(c)). The phenomena indicated that the complex had little effect on the generation of Mn(III) and the UV-vis spectra of Mn(III)-PP, even if Mn²⁺ complexed with PP.

The comparative experiments according to the different adding time of Mn²⁺ in E-119 PM-Mn²⁺ process were explored. In the experiment A, the solution including PP, DCF 120 and Na₂SO₄ (the supporting electrolyte) was adjusted using H₂SO₄ or NaOH to 5, and 121 then as the DC power supply was turned on, PM and Mn²⁺ were immediately spiked 122 into the solution simultaneously, which was the experiment order in the manuscript. In 123 the experiment B, Mn²⁺ was first added into the solution containing PP, DCF, and 124 Na₂SO₄, and initial pH of solution was adjusted using H₂SO₄ or NaOH to 5, and then 125 as the DC power supply was turned on, PM was immediately spiked into the solution 126 simultaneously. Mn²⁺ and PP were sufficiently in contact with each other. 127

128 The conditions of the two experiments were same, except for the adding time of Mn^{2+} .

As shown in Figure S10, different adding time of Mn^{2+} had negligible effect on DCF

- degradation by E-PM- Mn^{2+} process in the presence of PP. Therefore, these results
- indicated that the influence of PP on the degradation reaction involving Mn(II) in the
- 132 E-PM- Mn^{2+} was negligible in this study.

133 Text S4 The calculation formula of synergetic effect

134
$$SE = \frac{k_1(E - PM - Mn^{2+})}{k_1(E - Mn^{2+}) + k_1(PM)}$$
(S1)

where SE is the synergetic index, $k(E-PM-Mn^{2+})$, $k(E-Mn^{2+})$, and k(PM) are the

136 pseudo-first-order rate constants of E-PM- Mn^{2+} , E- Mn^{2+} , and PM processes,

respectively (obtained in Figure 1(a) and the inset of Figure 4(d), s^{-1}).

Constituent	electrolyte solution	Tap water	Surface water
рН	7.00	7.78	7.44
DOC(mg/L)	0	1.08	10.5
$UV_{254}(cm^{-1})$	-	0.043	0.182
CO ₃ ²⁻ (mg/L)	-	0.83	1.89
HCO ₃ -(mg/L)	-	104	150
Cl ⁻ (mg/L)	-	6.6	13.1
SO ₄ ²⁻ (mg/L)	0	104.1	150.1
$PO_4^{3-}(mg/L)$	-	1.63	4.35
NO ₃ -(mg/L)	-	2.03	1.54
Ammonia (mg-N/L)	-	-	1.84

138Table S1. Water quality parameters of the electrolyte solution, tap water, and surface

139 water.

		Mobil	Mobile phase (v)				
Contaminants	Column temperature	water	methanol	acetonitrile	0.1%	3%	waveleng
Contaminants					formic	acetic	th
	(°C)	(%)	(%)	(%)	acid	acid	(nm)
Diclofenac	30			80		20	276
(DCF)	50			00		20	210
Carbamazepine	35	40		60			286
(CBZ)	55	40		00			200
Sulfamethoxa							
zole	35			38	62		265
(SMX)							
Nitrobenzene	25	25	50	15			262
(NB)	35	35	50	15			262
phenol	30	20	80				270

141 Table S2. Details for contaminants analyses by HPLC-UV

System	DCF	solution	Degradatio	Kinetic	Reference
	concentration	pН	n rate	constant	
CoFe ₂ O ₄ /oxone	10 mg L ⁻¹	5.0	99 % in 30	13.8 s ⁻¹	1
system			min		
Photoelectrocat	5 mg L ⁻¹	6.23	71.9% in 6	0.0036 s ⁻¹	2
alytic system			h		
Pyrite	25 mg L ⁻¹	3.0	100% in 3	0.461 s ⁻¹	3
nanoparticles			min		
hydrodynamic					
cavitation in					
conjunction	20 mg L ⁻¹	4.0	94.78% in	1.56 s ⁻¹	4
with			120 min		
UV/TiO ₂ /H ₂ O ₂					
UV-activated	8.88 mg L ⁻¹	6.0	83% in 60	5.0×10 ⁻⁴	5
persulfate			min	s ⁻¹	
process					
pulsed corona	5 mg L ⁻¹	6.0	100% in 10	-	6
discharge			min		
system					
Fenton reaction	5 mg L ⁻¹	4.0	95% in 180	0.164 s ⁻¹	7
system			S		
ultrasonic	14.81 mg L ⁻¹	7.0	67% in 80	1.79 s ⁻¹	8
irradiation			min		
Ozone and	29.62 mg L ⁻¹	5.0	90% in 10	-	9
photolytic TiO ₂	-		min		
catalysed					
processes					
Activated	30 mg L ⁻¹	7.0	100% in 15	-	10
carbon-free	C		min		
ozonation					
US/ZnO	10 mg L ⁻¹	2.0	85% in 15	-	11
	5		min		
Photoelectro-	10 mg L ⁻¹	5.6	85% in 2h	0.0191 s ⁻¹	12
oxidation	- 0				
E-PM-Mn ²⁺	6 mg L ⁻¹	5.0	99.3% in 30	9.7314 s ⁻¹	This work
	- 3-	- • •	min		

Table S3. The comparison of the E-PM- Mn^{2+} process with the other methods for the

144 degradation of DCF

constant	MnO ₂	MnO ₂ -Mn ²⁺	E-MnO ₂	E-MnO ₂ -Mn ²⁺
k ₁ (s ⁻¹)	0.1032	0.1098	0.3342	0.6594
R ²	0.8579	0.8272	0.8610	0.9352

146 Table S4. Kinetic parameters (k_1) and the correlation coefficients (R^2) of pseudo-first-

order kinetics for DCF degradation in MnO₂, MnO₂-Mn²⁺, E-MnO₂, and E-MnO₂-Mn²⁺

148 processes

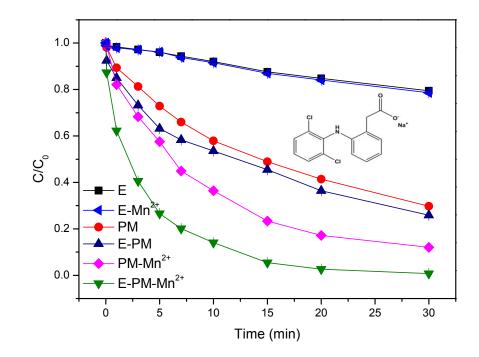


Figure S1. The degradation of DCF by electrolysis, PM oxidation, E-PM, E-Mn²⁺, PM-Mn²⁺, and E-PM-Mn²⁺ processes (Reaction conditions: initial DCF concentration=20 μ M; initial pH=5; T=298±1 K; current=57 A m⁻²; stirring speed=800 rpm; Mn²⁺ dosage=10 μ M; PM dosage=100 μ M).

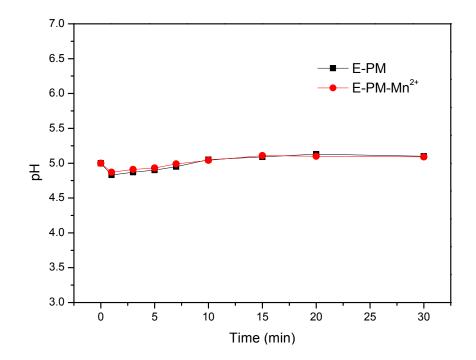
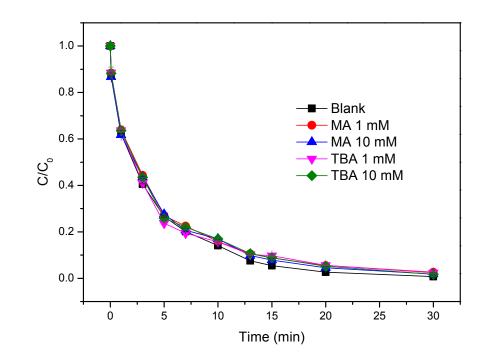
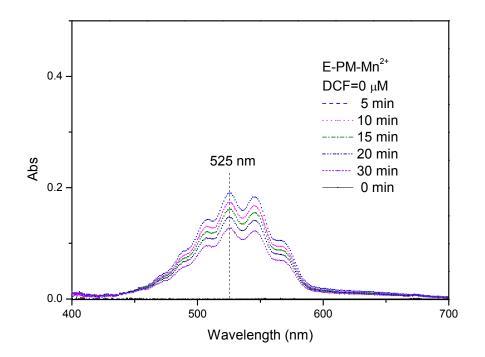



Figure S2. pH variations of solution on the removal of DCF by E-PM and E-PM- Mn^{2+}


processes (Reaction conditions: initial DCF concentration=
$$20 \mu$$
M; T= 298 ± 1 K; stirring

speed=800 rpm; PM dosage=100 μ M; initial pH=5; Mn²⁺ dosage=10 μ M)

159

Figure S3. Effect of Methanol and TBA on DCF degradation by E-PM-Mn²⁺ process (Reaction conditions: initial DCF concentration=20 μ M; initial pH=5; T=298±1 K; stirring speed=800 rpm; current=57 A m⁻²; Mn²⁺ dosage=10 μ M; PM dosage=100 μ M).

164 Figure S4. UV-vis spectra of E-PM- Mn^{2+} process without contaminants (Reaction

- 165 conditions: initial pH=5; T=298±1 K; current=57 A m⁻²; stirring speed=800 rpm; PM
- 166 dosage=100 μ M; Mn²⁺ dosage=10 μ M).

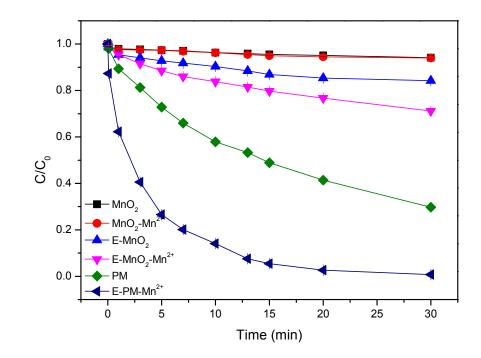
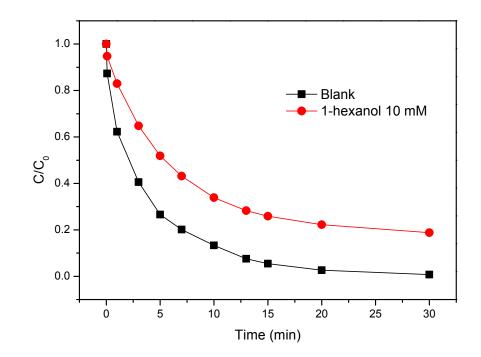



Figure S5. Comparative removal of DCF by MnO_2 , MnO_2-Mn^{2+} , E-MnO₂, E-MnO₂-Mn²⁺, PM, and E-PM-Mn²⁺ processes (Reaction conditions: initial DCF concentration=20 μ M; initial pH=5; T=298±1 K; current=57 A m⁻²; stirring speed=800 rpm; PM dosage=100 μ M; MnO₂ dosage=100 μ M, Mn²⁺ dosage=10 μ M).

172

Figure S6. Effect of 1-hexanol on DCF degradation by E-PM-Mn²⁺ process (Reaction conditions: initial DCF concentration=20 μ M; initial pH=5; T=298±1 K; stirring speed=800 rpm; current=57 A m⁻²; Mn²⁺ dosage=10 μ M; PM dosage=100 μ M).

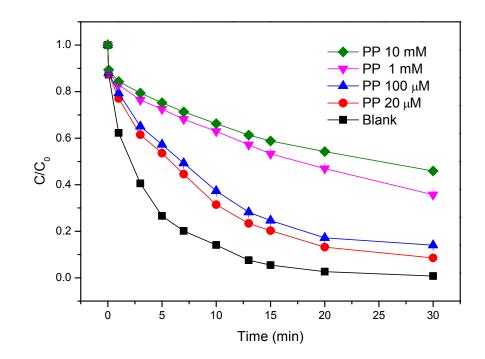
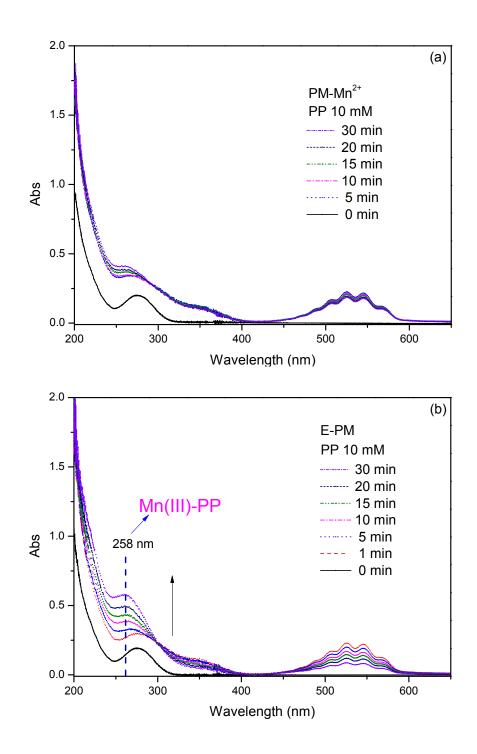



Figure S7. Effect of pyrophosphate (PP) on DCF degradation in E-PM-Mn²⁺ process (Reaction conditions: initial DCF concentration=20 μ M; initial pH=5; T=298±1 K; stirring speed=800 rpm; current=57 A m⁻²; Mn²⁺ dosage=10 μ M; PM dosage=100 μ M).

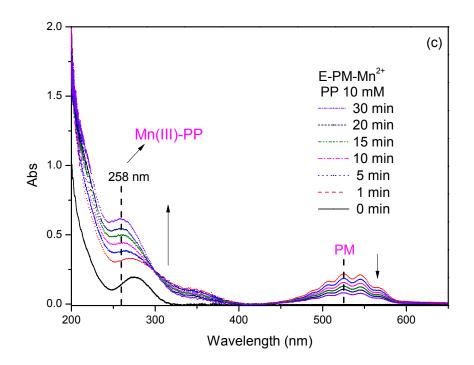


Figure S8. UV-vis spectra of Mn(III)-PP in PM-Mn²⁺(a), E-PM (b) and E-PM-Mn²⁺(c)

processes for DCF removal (Reaction conditions: initial DCF concentration=20 μ M;

initial pH=5; T=298±1 K; current=57 A m⁻²; stirring speed=800 rpm; PM dosage=100

186
$$\mu$$
M; Mn²⁺ dosage=10 μ M; PP dosage=10 mM).

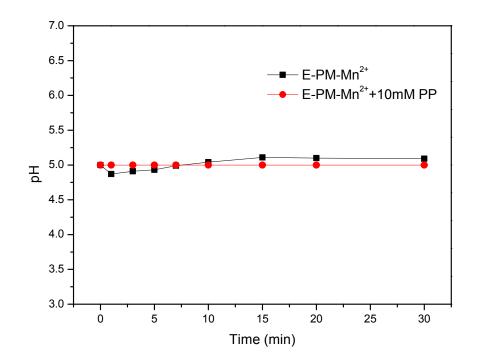


Figure S9. pH variations of solution on the removal of DCF by E-PM-Mn²⁺ process with and without PP (Reaction conditions: initial DCF concentration=20 μ M; T=298±1 K; stirring speed=800 rpm; PM dosage=100 μ M; Mn²⁺ dosage=10 μ M; initial pH=5; PP dosage=10 mM)

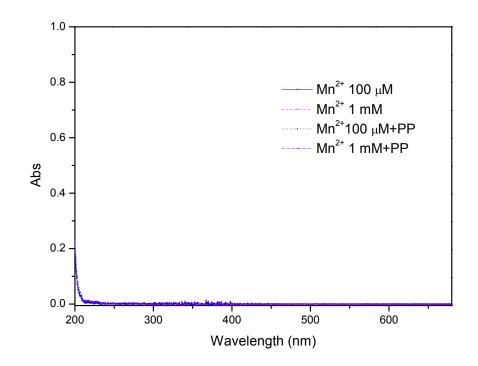
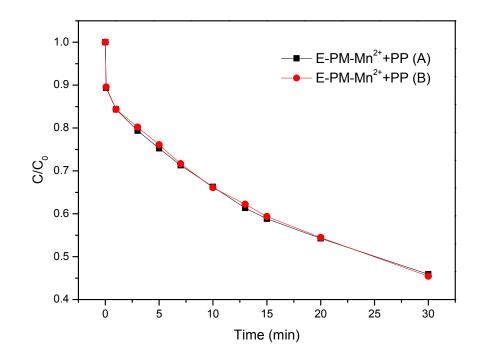



Figure S10. UV-vis spectra in Mn^{2+} solution with and without PP (Reaction conditions:

initial pH=5; T=298±1 K; PP dosage=10 mM).

196

Figure S11. Effect of adding time of Mn^{2+} on the degradation of DCF by E-PM-Mn²⁺ process in the presence of PP (Reaction conditions: initial DCF concentration=20 μ M; initial pH=5; T=298±1 K; current=57 A m⁻²; stirring speed=800 rpm; PM dosage=100 μ M; Mn²⁺ dosage=10 μ M; PP dosage=10 mM).

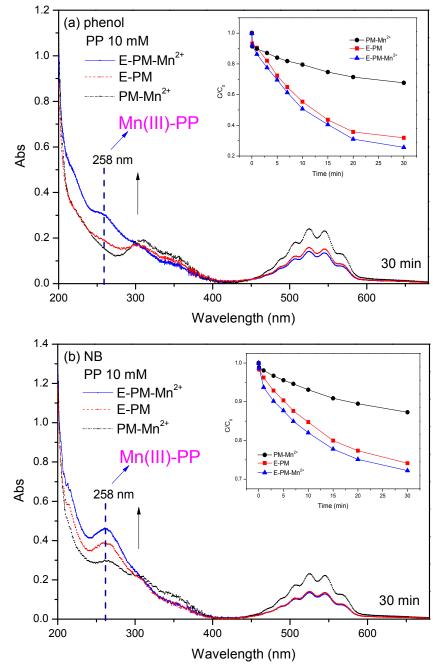
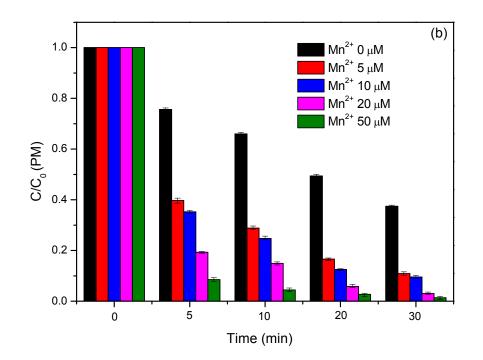



Figure S12. UV-vis spectra of Mn(III)-PP at 30 min in PM-Mn²⁺, E-PM, and E-PM-203 Mn²⁺ processes for the degradation of phenol (a) and NB (b) (the insets showed the 204 degradation of phenol and NB in PM-Mn²⁺, E-PM, and E-PM-Mn²⁺ processes) 205 (Reaction conditions: initial contaminant concentration=20 µM; initial pH=5; T=298±1 206 K; current=57 A m⁻²; stirring speed=800 rpm; PM dosage=100 µM; Mn²⁺ dosage=10 207 μM; PP dosage=10 mM). 208

209

Figure S13. Effect of Mn^{2+} dosage on the PM decomposition by E-PM- Mn^{2+} process

- 211 (Reaction conditions: initial DCF concentration=20 µM; initial pH=5; T=298±1 K;
- current=57 A m⁻²; stirring speed=800 rpm; PM dosage=100 μM)

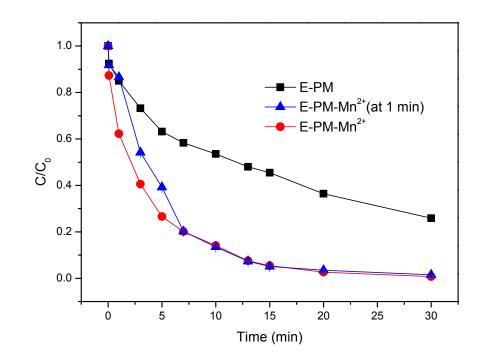
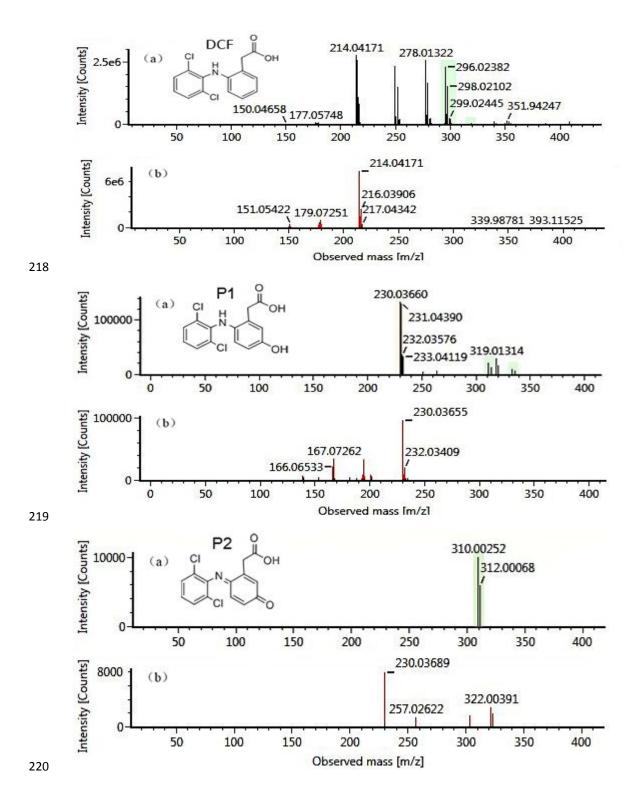
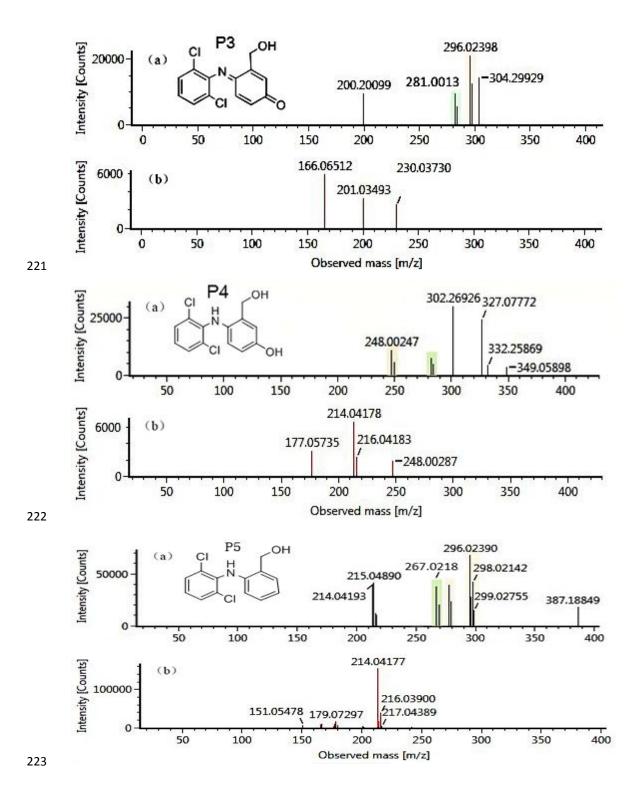




Figure S14. Influence of Mn^{2+} and the addition time on the removal of DCF by E-PM and E-PM-Mn²⁺ processes (adding MnSO₄ at the beginning and at 1 min, respectively) (Reaction conditions: initial DCF concentration=20 μ M; initial pH=5; T=298±1 K; stirring speed=800 rpm; current=57 A m⁻²; PM dosage=100 μ M; Mn²⁺ dosage=10 μ M).

S29

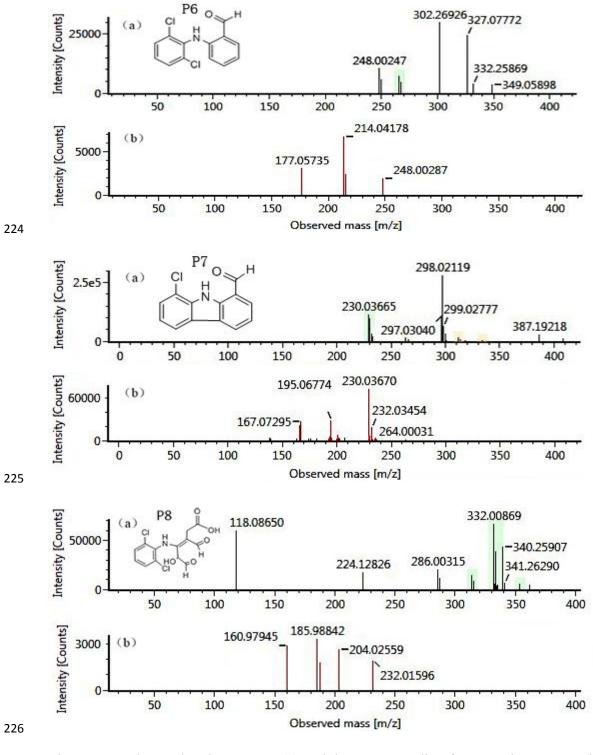
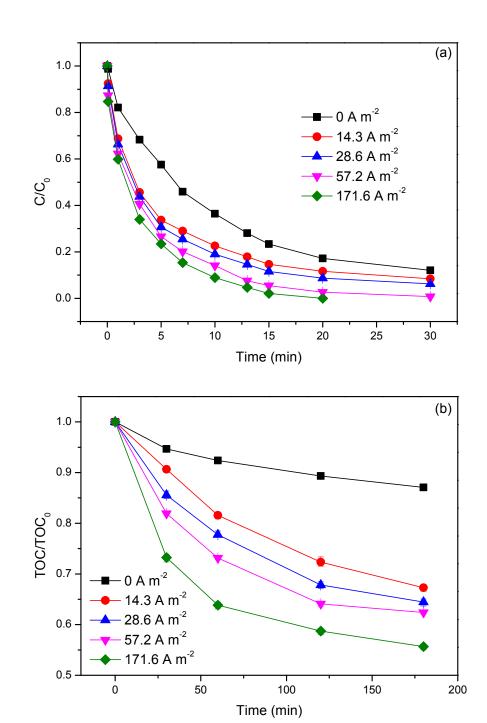



Figure S15. The product ion spectra (a) and the corresponding fragment ion spectra (b) for DCF and its degradation products (P1-P8) detected by UPLC-Vion IMS QTOF-MS (Reaction conditions: initial DCF concentration=20 μ M; initial pH=5; T=298±1 K; current=57 A m⁻²; stirring speed=800 rpm; PM dosage=100 μ M; Mn²⁺ dosage=10 μ M; reaction time=0-30 min).

232

S32

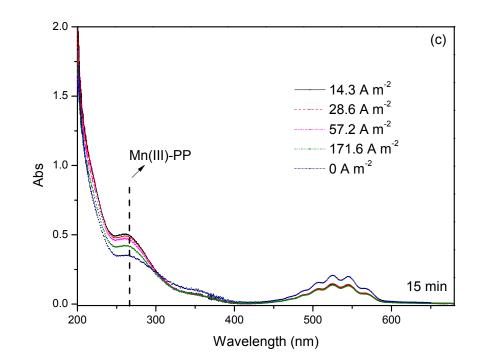
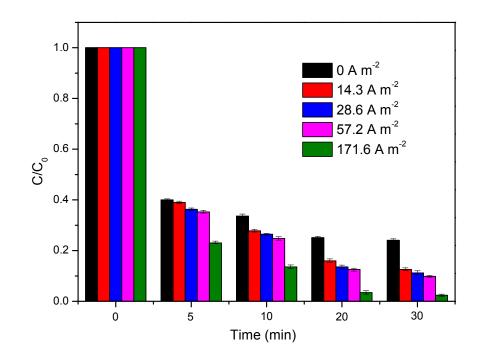



Figure S16. Effect of applied current on the DCF degradation (a), TOC removal (b) and the Mn(III)-PP generation (c) in E-PM-Mn²⁺ process (Reaction conditions: initial DCF concentration=20 μ M; initial pH=5; T=298±1 K; stirring speed=800 rpm; PM dosage=100 μ M; Mn²⁺ dosage=10 μ M; PP dosage=10 mM)

239

Figure S17. Effect of applied current on the decomposition of PM for DCF degradation in E-PM-Mn²⁺ process (Reaction conditions: initial DCF concentration=20 μ M; initial pH=5; T=298±1 K; stirring speed=800 rpm; PM dosage=100 μ M; Mn²⁺ dosage=10 μ M)

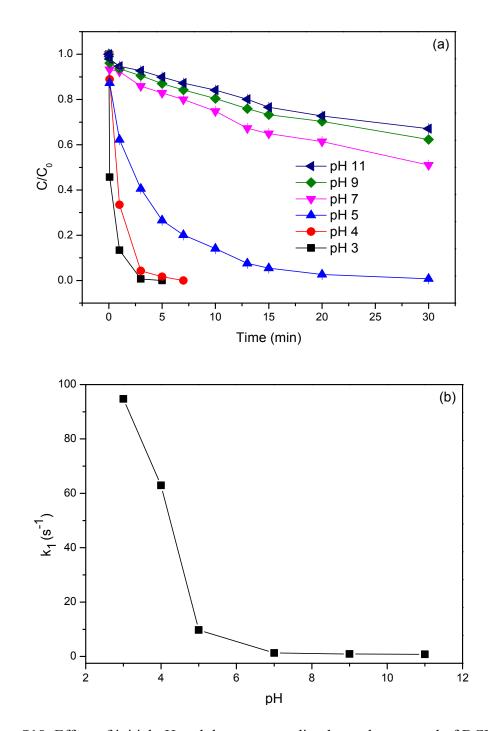
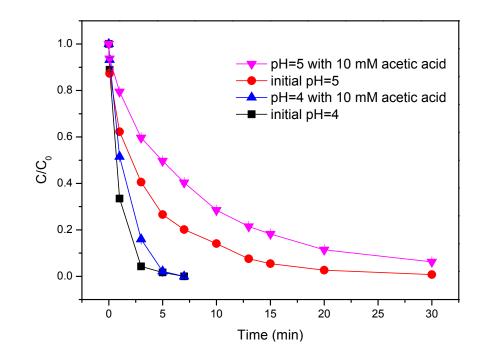



Figure S18. Effect of initial pH and the corresponding k_1 on the removal of DCF in E-PM-Mn²⁺ process (Reaction conditions: initial DCF concentration=20 μ M; T=298±1 K; current=57 A m⁻²; stirring speed=800 rpm; PM dosage=100 μ M; Mn²⁺ dosage=10 μ M)

250

Figure S19. The effect of buffers on the removal of DCF in E-PM-Mn²⁺ process at pH 4 and 5 (Reaction conditions: initial DCF concentration=20 μ M; T=298±1 K; stirring speed=800 rpm; PM dosage=100 μ M; Mn²⁺ dosage=10 μ M; constant pH 4 and 5 adjusted by 10 mM acetic acid dosage; initial pH adjusted using 0.1 M or 1 M H₂SO₄ and NaOH).

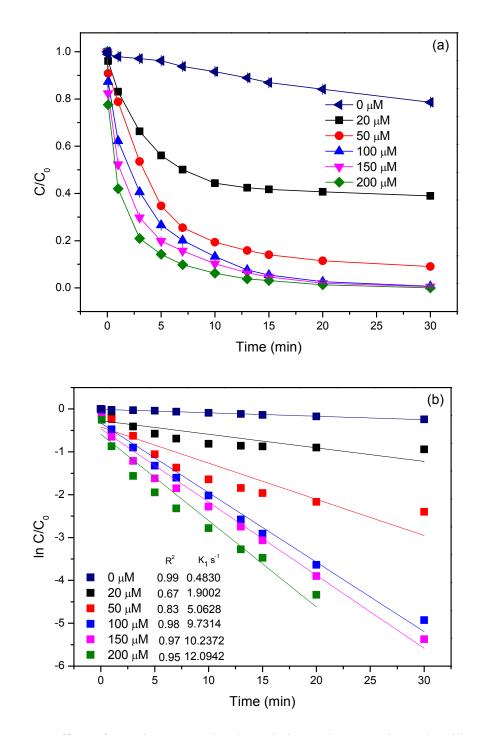


Figure S20. Effect of PM dosage on the degradation ratio (a) and reaction kinetics (b) of DCF by E-PM-Mn²⁺ process (Reaction conditions: initial DCF concentration=20 μ M; initial pH=5; T=298±1 K; current=57 A m⁻²; stirring speed=800 rpm; Mn²⁺ dosage=10 μ M).

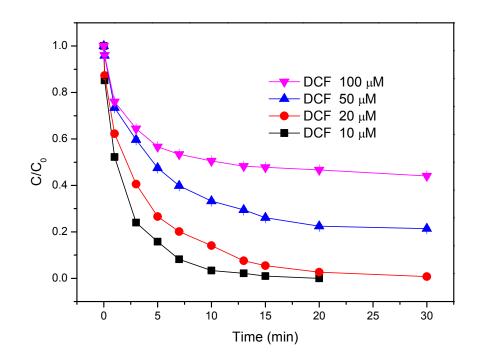
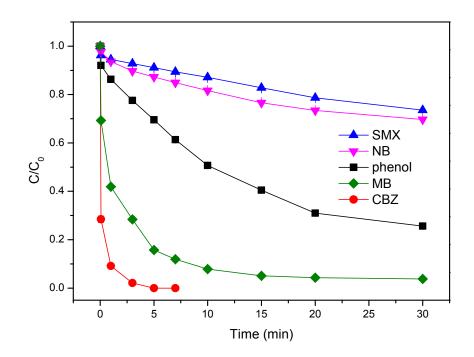
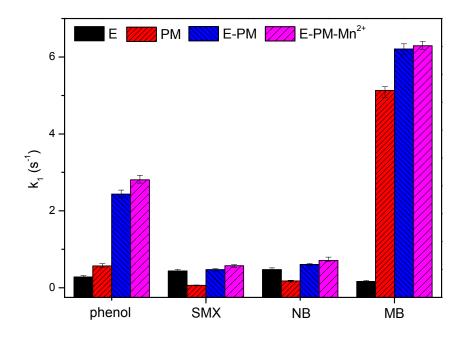



Figure S21. Effect of DCF concentration on the removal of DCF in E-PM- Mn^{2+} process


264 (Reaction conditions: T=298±1 K; stirring speed=800 rpm; current=57 A m⁻²; initial

265 pH=5; PM dosage=100 μ M; Mn²⁺ dosage=10 μ M)

266

Figure S22. Removal of CBZ, phenol, SMX, NB, and MB in E-PM-Mn²⁺ process (Reaction conditions: initial contaminants concentration=20 μ M; initial pH=5; T=298±1 K; current=57 A m⁻²; stirring speed=800 rpm; PM dosage=100 μ M; Mn²⁺ dosage=10 μ M)

271

Figure S23. Degradation kinetics constants (k_1) of phenol, SMX, NB, MB in electrolysis (E), PM, E-PM, and E-PM-Mn²⁺ processes (Reaction conditions: initial contaminants concentration=20 μ M; initial pH=5; T=298±1 K; current=57 A m⁻²; stirring speed=800 rpm; PM dosage=100 μ M; Mn²⁺ dosage=10 μ M)

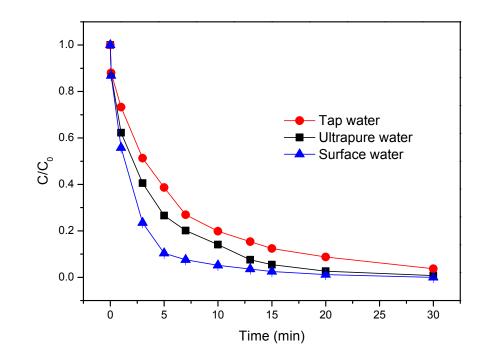
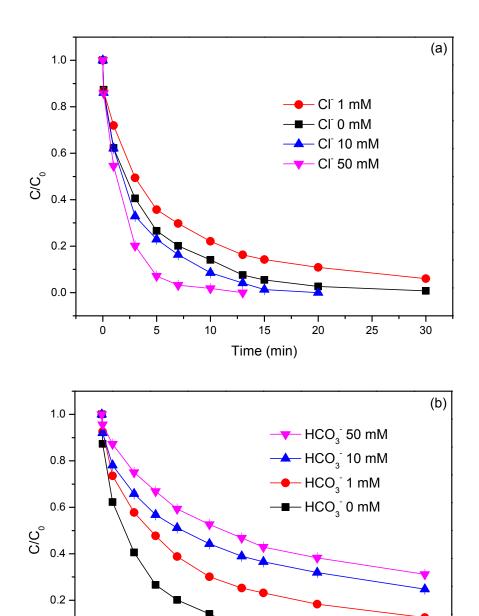



Figure S24. Effect of water matrices on the removal of DCF in E-PM-Mn²⁺ process (Reaction conditions: initial DCF concentration=20 μ M; initial pH=5; T=298±1 K; current=57 A m⁻²; stirring speed=800 rpm; PM dosage=100 μ M; Mn²⁺ dosage=10 μ M).

0.0 -

Time (min)

-

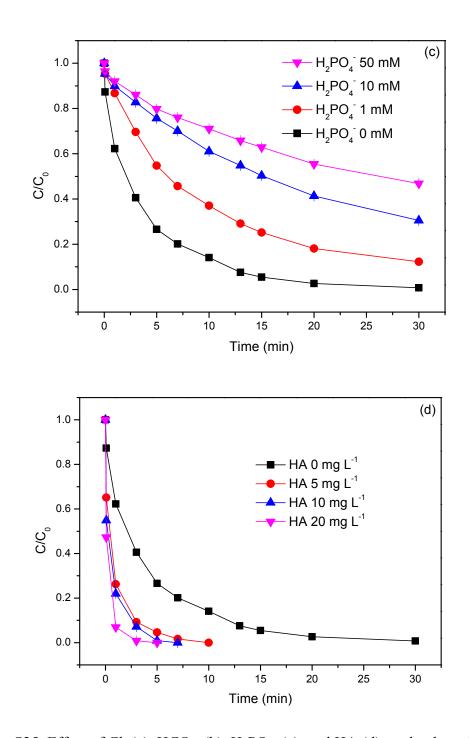
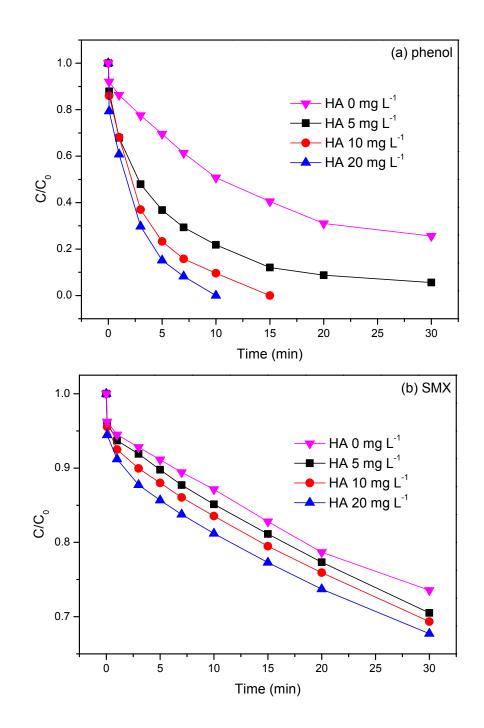



Figure S25. Effect of Cl⁻ (a), HCO₃⁻ (b), H₂PO₄⁻ (c), and HA (d) on the degradation of DCF in E-PM-Mn²⁺ process (Reaction conditions: initial DCF concentration=20 μ M; initial pH=5; T=298±1 K; current=57 A m⁻²; stirring speed=800 rpm; PM dosage=100 μ M; Mn²⁺ dosage=10 μ M).

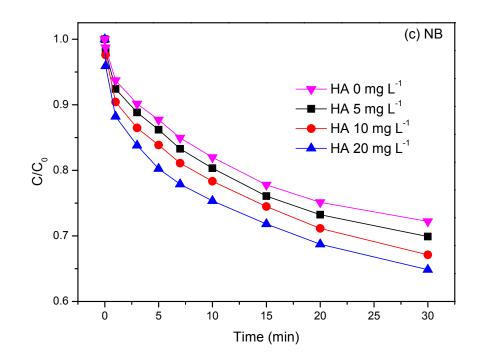


Figure S26. Effect of HA on the degradation of phenol (a), SMX (b) and NB (c) in E-PM-Mn²⁺ process (Reaction conditions: initial contaminant concentration=20 μ M; initial pH=5; T=298±1 K; current=57 A m⁻²; stirring speed=800 rpm; PM dosage=100 μ M; Mn²⁺ dosage=10 μ M; initial HA concentration=0, 5, 10, 20 mg L⁻¹).

296

297 **REFERENCES**

298 (1) Deng, J.; Shao, Y.; Gao, N.; Tan, C.; Zhou, S.; Hu, X. CoFe₂O₄ magnetic nanoparticles as a highly

active heterogeneous catalyst of Oxone for the degradation of diclofenac in water. J. Hazard. Mater.

2013, *262*, 836-844.

301 (2) Hua, Z.; Dai, Z.; Bai, X.; Ye, Z.; Wang, P.; Gu, H.; Huang, X. Copper nanoparticles sensitized

 TiO_2 nanotube arrays electrode with enhanced photoelectrocatalytic activity for diclofenac degradation.

303 Chem. Eng. J. 2016, 283, 514-523.

304 (3) Khabbaz, M.; Entezari, M. H. Degradation of diclofenac by sonosynthesis of pyrite nanoparticles.

305 J. Environ. Manage. 2017, 187, 416-423.

- 306 (4) Bagal, M. V.; Gogate, P. R. Degradation of diclofenac sodium using combined processes based on
- 307 hydrodynamic cavitation and heterogeneous photocatalysis. *Ultrason. Sonochem.* 2014, 21(3), 1035308 1043.
- 309 (5) Lu, X.; Shao, Y.; Gao, N.; Chen, J.; Zhang, Y.; Xiang, H.; Guo, Y. Degradation of diclofenac by
- 310 UV-activated persulfate process: kinetic studies, degradation pathways and toxicity assessments. *Ecotox*.
- 311 Environ. Safe. 2017, 141, 139-147.
- 312 (6) Dobrin, D.; Bradu, C.; Magureanu, M.; Mandache, N. B.; Parvulescu, V. I. Degradation of
- diclofenac in water using a pulsed corona discharge. Chem. Eng. J. 2013, 234, 389-396.
- 314 (7) Bae, S.; Kim, D.; Lee, W. Degradation of diclofenac by pyrite catalyzed Fenton oxidation. *Appl.*
- 315 *Catal. B-Environ.* **2013**, *134*, 93-102.
- 316 (8) Nie, E.; Yang, M.; Wang, D.; Yang, X.; Luo, X.; Zheng, Z. Degradation of diclofenac by ultrasonic
- 317 irradiation: kinetic studies and degradation pathways. *Chemosphere* **2014**, *113*, 165-170.
- 318 (9) Garcia-Araya, J. F.; Beltran, F. J.; Aguinaco, A. Diclofenac removal from water by ozone and
- 319 photolytic TiO₂ catalysed processes. J. Chem. Technol. Biot. 2010, 85(6), 798-804.
- 320 (10) Beltran, F. J.; Pocostales, P.; Alvarez, P.; Oropesa, A. L. Diclofenac removal from water with
- 321 ozone and activated carbon. J. Hazard. Mater. 2009, 163(2-3), 768-776.
- 322 (11) Huang, T.; Zhang, G.; Chong, S.; Liu, Y.; Zhang, N.; Fang, S.; Zhu, J. Effects and mechanism of
- diclofenac degradation in aqueous solution by US/Zn-0. Ultrason. Sonochem. 2017, 37, 676-685.
- 324 (12) Liu, S.; Zhao, X.; Zeng, H.; Wang, Y.; Qiao, M.; Guan, W. Enhancement of photoelectrocatalytic
- degradation of diclofenac with persulfate activated by Cu cathode. *Chem. Eng. J.* 2017, 320, 168-177.
- 326