Synthesis, Isolation and Structure Determination of Cannabidiol Derivatives and their cytotoxic potential

Yedukondalu Nalli, Suraya Jan, Gianluigi Lauro, Javeed Ur Rasool, Waseem I. Lone, Aminur R. Sarkar, Junaid Banday, Giuseppe Bifulco, Hartmut Laatsch, Sajad H. Syed and Asif Ali ABSTRACT

In a continuing effort to explore the structural diversity and pharmacological activities of natural products based scaffolds, herein, we report the isolation, synthesis, and structure determination of cannabidiol and its derivatives along with their cytotoxic activities. Treatment of cannabidiol (1) with acid catalyst POCl_{3} afforded a new derivative $\mathbf{6}$ along with six known molecules 2-5, $\mathbf{7}$ and, 8. The structure of 6 was elucidated by extensive spectroscopic analyses and DFT calculations of the NMR and ECD data. All the compounds (2-8) were evaluated for their cytotoxic potential against a panel of eight cancer cell lines. Compounds $\mathbf{4}, \mathbf{5}, \mathbf{7}$, and $\mathbf{8}$ showed pronounced in vitro cytotoxic activity with GI50 values ranging from 5.6 to $60 \mu \mathrm{M}$. Out of the active molecules, compounds $\mathbf{4}$, and 7 were found to be comparable to that of the parent molecule 1 on the inhibition of almost all the tested cancer cell lines.

TABLE OF CONTENTS

Table S1. ${ }^{1} \mathrm{H}$ NMR (400 MHz) \& ${ }^{13} \mathrm{C}$ NMR (100 MHz) NMR Spectroscopic Data for Compound 6 in CDCl_{3}
Table S2. ${ }^{13} \mathrm{C}$ experimental and calculated NMR chemical shifts for $\mathbf{6 a}$ and $\mathbf{6 b}$, with ${ }^{\mathrm{a}}|\Delta \delta|\left({ }^{13} \mathrm{C}\right)$ and ${ }^{\mathrm{c}}$ MAE values. Chemical shift data here reported were produced using benzene as reference compound for $s p^{2}$ carbons, and tetramethylsilane (TMS) for $s p^{3}$ carbons.
Table S3. ${ }^{1}$ H experimental and calculated NMR chemical shifts for $\mathbf{6 a}$ and $\mathbf{6 b}$, with ${ }^{a}|\Delta \delta|\left({ }^{1} \mathrm{H}\right)$ and ${ }^{c}$ MAE values. Chemical shift data here reported were produced using benzene as reference compound for $s p^{2}$ carbons, and tetramethylsilane (TMS) for $s p^{3}$ carbons.
Table S4. ${ }^{13} \mathrm{C}$ experimental and calculated NMR chemical shifts for $\mathbf{6 a}$ and $\mathbf{6 b}$, with ${ }^{\mathrm{a}}|\Delta \delta|\left({ }^{13} \mathrm{C}\right)$ and ${ }^{\text {b }}$ MAE values. Chemical shift data here reported were produced using tetramethylsilane (TMS) as reference compound.
Table S5. ${ }^{1} \mathrm{H}$ experimental and calculated NMR chemical shifts for $\mathbf{6 a}$ and $\mathbf{6 b}$, with ${ }^{a}|\Delta \delta|\left({ }^{1} \mathrm{H}\right)$ and ${ }^{\text {b }}$ MAE values. Chemical shift data here reported were produced using tetramethylsilane (TMS) as reference compound.
Table S6. ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ MAE values, and DP4+ probabilities computed for compounds $\mathbf{6 a}$ and $\mathbf{6 b}$.
Figure S1. ${ }^{13}$ C/ ${ }^{1}$ H MAE instagrams related to compounds $\mathbf{6 a}$ and $\mathbf{6 b}$ (values reported in Table $1)$.
Figure S2. a) Superposition of the measured ECD spectrum of 6 and that computed for compound $\mathbf{6 b}(6 S, 9 R, 10 R)$; b)Superposition of the measured ECD spectrum of $\mathbf{6}$ and that computed for compound $\mathbf{6} \mathbf{b}_{\text {enant }}(6 R, 9 S, 10 S)$.
Figure S3. (+) HR-ESI-MS of compound 6
Figure S4. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6
Figure S5. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6
Figure S6. COSY spectrum of compound 6
Figure S7. HSQC spectrum of compound 6
Figure S8. HMBC spectrum of compound 6
Figure S9. NOESY spectrum of compound 6
Figure S10. Key COSY, HMBC and NOESY correlations of compound 6
Table S7. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) \& ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) Spectroscopic Data of Compound 6

Figure S11. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) spectrum of compound 6
Figure S12. ${ }^{13} \mathrm{C}$ NMR \& DEPT-135 (100 MHz , DMSO-d6) spectrum of compound 6
Figure S13. DEPT-135 (100 MHz , DMSO-d6) spectrum of compound 6
Figure S14. COSY spectrum of compound 6 in DMSO-d6
Figure S15. HSQC spectrum of compound 6 in DMSO-d6
Figure S16. HSQC spectrum of compound 6 in DMSO-d6
Figure S17. HMBC spectrum of compound 6 in DMSO-d6
Figure S18. NOESY spectrum of compound 6 in DMSO-d6
Figure S19. NOESY spectrum of compound 6 in DMSO-d6
Figure S20. HPLC chromatogram of fraction Fr. 1
Figure S21. HPLC chromatogram of fraction Fr. 3
Table S8. In vitro Growth \%age inhibition of all screened derivatives using MTT assay

C.No	$\delta_{\mathrm{H}}(\mathrm{JHz})$	$\delta_{\text {C }}$	HMBC
1	-	157.7	
2	6.26 s	108.4	C-1, C-10a, C-4, C-1'
3	-	143.0	
4	6.06 s	105.8	C-5, C-10a, C-4, C-1'
5	-	153.5	
6	-	74.2	
7	$1.96-1.78 \mathrm{~m}$	35.5	C-6, C-8, C-9, C-15
8	1.51 m 1.34 m	28.5	C-10, C-12
9	-	76.2	
10	3.26 d (1.6)	34.4	C-6, C-9, C-1, C-5, C-10a
10a	-	109.2	
11	$2.42-2.36 \mathrm{~m}$	31.7	C-10, C-10a
	$1.48 \mathrm{~m}$		
12	$1.69 \mathrm{dt}(13.4,6.7)$	32.7	C-13, C-14, C-10
13	1.11 d (6.6)	17.2	C-14, C-9
14	0.78 d (6.8)	16.6	C-13, C-9
15	1.37 s	28.5	C-6, C-7, C-11
1^{\prime}	$2.47-2.42 \mathrm{~m}$	35.8	$\mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-2^{\prime}, \mathrm{C}-3{ }^{\prime}$
2^{\prime}	1.31 m	31.6	C-3, C-3'
$3 '$	1.58 m	30.6	C-4', C-2'
4^{\prime}	1.33 m	22.5	C-3'
5'	0.89 t (6.9)	14.0	C-3', C-4', C-2'

[^0]Table S2. ${ }^{13} \mathrm{C}$ experimental and calculated NMR chemical shifts for $\mathbf{6 a}$ and $\mathbf{6 b}$, with ${ }^{\mathrm{a}}|\Delta \delta|\left({ }^{13} \mathrm{C}\right)$ and ${ }^{c}$ MAE values. Chemical shift data here reported were produced using benzene as reference compound for $s p^{2}$ carbons, and tetramethylsilane (TMS) for $s p^{3}$ carbons.

\#	$\delta_{\text {exp }}, \mathrm{ppm}$	$\delta_{\text {calc }}\left({ }^{13} \mathrm{C}\right), \mathrm{ppm}$		$\|\Delta \delta\|\left({ }^{13} \mathrm{C}\right), \mathrm{ppm}^{\text {a }}$	
		6a	6b	6a	6b
1	157.7	$155.9^{\text {b }}$	$153.6{ }^{\text {b }}$	1.78	4.07
2	108.4	$110.3{ }^{\text {b }}$	$105.2{ }^{\text {b }}$	1.94	3.23
3	143.0	$144.5{ }^{\text {b }}$	$143.0{ }^{\text {b }}$	1.51	0.03
4	105.8	$109.1{ }^{\text {b }}$	$110.2^{\text {b }}$	3.26	4.44
5	153.5	$156.6{ }^{\text {b }}$	$158.0^{\text {b }}$	3.09	4.52
6	74.2	70.7	72.5	3.54	1.69
7	35.5	37.7	36.6	2.24	1.13
8	28.5	31.1	29.1	2.61	0.58
9	76.2	77.2	76.1	0.95	0.14
10	34.4	37.6	37.4	3.17	3.03
10a	109.2	$109.1{ }^{\text {b }}$	$109.7^{\text {b }}$	0.13	0.54
11	31.7	33.1	31.8	1.39	0.12
12	32.7	31.0	33.5	1.73	0.84
13	17.2	18.2	17.9	1.02	0.67
14	16.6	17.2	17.9	0.59	1.25
15	28.5	29.0	29.1	0.49	0.63
1^{\prime}	35.8	38.4	37.9	2.64	2.10
$2 '$	31.6	34.5	34.3	2.91	2.74
$3 '$	30.6	32.4	32.0	1.84	1.41
$4 '$	22.5	25.2	24.9	2.74	2.37
$5 '$	14.0	16.0	15.9	2.03	1.86
MAE, ppm ${ }^{\text {c }}$				1.98	1.78

${ }^{\text {a }}|\Delta \delta|\left({ }^{13} \mathbf{C}\right)=\mid \delta_{\text {exp }}-\delta_{\text {calc }}\left({ }^{13} \mathrm{C}\right)$, ppm: absolute differences for experimental versus calculated ${ }^{13} \mathrm{C}$ NMR chemical shifts ${ }^{\mathrm{b} 13} \mathrm{C}$ chemical shifts calculated using benzene as reference compound; all the remaining values calculated using TMS as reference compound.
${ }^{\mathrm{c}}$ MAE $=\left(\Sigma\left[\left|\left(\delta_{\text {exp }}-\delta_{\text {calc }}\right)\right|\right]\right) / \mathrm{n}$, summation through n of the absolute error values (difference of the absolute values between corresponding experimental and ${ }^{13} \mathrm{C}$ chemical shifts), normalized to the number of the chemical shifts

Table S3. ${ }^{1}$ H experimental and calculated NMR chemical shifts for $\mathbf{6 a}$ and $\mathbf{6 b}$, with ${ }^{a}|\Delta \delta|\left({ }^{1} \mathbf{H}\right)$ and ${ }^{c}$ MAE values. Chemical shift data here reported were produced using benzene as reference compound for sp^{2} carbons, and tetramethylsilane (TMS) for sp^{3} carbons.

\#	$\delta_{\text {exp }}, \mathbf{p p m}$	$\delta_{\text {calc }}\left({ }^{1} \mathbf{H}\right), \mathbf{p p m}$		$\|\Delta \delta\|\left({ }^{1} \mathbf{H}\right), \mathrm{ppm}^{\text {a }}$	
		6 a	6b	6 a	6b
2	6.26	$5.89{ }^{\text {b }}$	$5.27{ }^{\text {b }}$	0.37	0.99
4	6.06	$5.81{ }^{\text {b }}$	$5.81{ }^{\text {b }}$	0.25	0.25
7	1.78	1.58	1.70	0.20	0.08
7	1.96	1.81	2.02	0.15	0.06
8	1.51	1.80	1.59	0.29	0.08
8	1.34	1.28	1.37	0.06	0.03
10	3.26	3.40	3.12	0.14	0.14
11	2.42	1.87	2.51	0.55	0.09
11	1.48	1.58	1.24	0.10	0.24
12	1.69	2.20	1.85	0.51	0.16
13	1.11	1.18	1.02	0.07	0.09
14	0.78	1.07	0.81	0.29	0.03
15	1.37	1.24	1.24	0.13	0.13
$1{ }^{\prime}$	2.47	2.43	2.37	0.04	0.10
2^{\prime}	1.31	1.55	1.53	0.24	0.22
$3 '$	1.58	1.28	1.27	0.30	0.31
4^{\prime}	1.33	1.31	1.32	0.02	0.01
5'	0.89	0.90	0.90	0.01	0.01
MAE, $\mathrm{ppm}^{\text {c }}$				0.21	0.17

${ }^{\text {a }}|\boldsymbol{\delta}|\left({ }^{1} \mathbf{H}\right)=\mid \delta_{\text {exp }}-\delta_{\text {cald }}\left({ }^{1} \mathrm{H}\right)$, ppm: absolute differences for experimental versus calculated ${ }^{1} \mathrm{H}$ NMR chemical shifts
${ }^{\mathrm{bl}} \mathrm{H}$ chemical shifts calculated using benzene as reference compound; all the remaining values calculated using TMS as reference compound.

[^1]Table S4. ${ }^{13} \mathrm{C}$ experimental and calculated NMR chemical shifts for $\mathbf{6 a}$ and $\mathbf{6 b}$, with ${ }^{\text {a }}|\Delta \delta|\left({ }^{13} \mathbf{C}\right)$ and ${ }^{\text {b }}$ MAE values. Chemical shift data here reported were produced using tetramethylsilane (TMS) as reference compound.

\#	$\delta_{\text {exp }}, \mathbf{p p m}$	$\delta_{\text {calc }}\left({ }^{13} \mathrm{C}\right), \mathrm{ppm}$		$\|\Delta \delta\|\left({ }^{13} \mathrm{C}\right), \mathrm{ppm}^{\text {a }}$	
		6a	6b	6 a	6b
1	157.7	151.2	148.9	6.50	8.79
2	108.4	105.6	100.4	2.79	7.96
3	143.0	139.8	138.3	3.22	4.70
4	105.8	104.3	105.5	1.47	0.28
5	153.5	151.9	153.3	1.64	0.20
6	74.2	70.7	72.5	3.54	1.69
7	35.5	37.7	36.6	2.24	1.13
8	28.5	31.1	29.1	2.61	0.58
9	76.2	77.2	76.1	0.95	0.14
10	34.4	37.6	37.4	3.17	3.03
10a	109.2	104.3	105.0	4.86	4.19
11	31.7	33.1	31.8	1.39	0.12
12	32.7	31.0	33.5	1.73	0.84
13	17.2	18.2	17.9	1.02	0.67
14	16.6	17.2	17.9	0.59	1.25
15	28.5	29.0	29.1	0.49	0.63
$1{ }^{\prime}$	35.8	38.4	37.9	2.64	2.10
2^{\prime}	31.6	34.5	34.3	2.91	2.74
$3 '$	30.6	32.4	32.0	1.84	1.41
4^{\prime}	22.5	25.2	24.9	2.74	2.37
$5 '$	14.0	16.0	15.9	2.03	1.86
MAE, $\mathrm{ppm}^{\text {b }}$				2.40	2.22

${ }^{\text {a }}|\boldsymbol{\Delta}|\left|\left({ }^{13} \mathbf{C}\right)=\left|\delta_{\text {exp }}-\delta_{\text {calc }}\right|\left({ }^{13} \mathrm{C}\right)\right.$, ppm: absolute differences for experimental versus calculated ${ }^{13} \mathrm{C}$ NMR chemical shifts
${ }^{\mathbf{b}}$ MAE $\left.=\left(\Sigma\left[\left(\delta_{\text {exp }}-\delta_{\text {calc }}\right)\right]\right]\right) / \mathrm{n}$, summation through n of the absolute error values (difference of the absolute values between corresponding experimental and ${ }^{13} \mathrm{C}$ chemical shifts), normalized to the number of the chemical shifts

Table S5. ${ }^{1}$ H experimental and calculated NMR chemical shifts for $\mathbf{6 a}$ and $\mathbf{6 b}$, with ${ }^{a}|\Delta \delta|\left({ }^{1} \mathrm{H}\right)$ and ${ }^{\mathrm{b}}$ MAE values. Chemical shift data here reported were produced using tetramethylsilane (TMS) as reference compound.

\#	$\delta_{\text {exp }}, \mathbf{p p m}$	$\delta_{\text {calc }}\left({ }^{1} \mathbf{H}\right), \mathbf{p p m}$		$\|\Delta \delta\|\left({ }^{1} \mathrm{H}\right), \mathrm{ppm}^{\text {a }}$	
		6a	6b	6 a	6b
2	6.26	6.45	5.84	0.19	0.42
4	6.06	6.37	6.37	0.31	0.31
7	1.78	1.58	1.70	0.20	0.08
7	1.96	1.81	2.02	0.15	0.06
8	1.51	1.80	1.59	0.29	0.08
8	1.34	1.28	1.37	0.06	0.03
10	3.26	3.40	3.12	0.14	0.14
11	2.42	1.87	2.51	0.55	0.09
11	1.48	1.58	1.24	0.10	0.24
12	1.69	2.20	1.85	0.51	0.16
13	1.11	1.18	1.02	0.07	0.09
14	0.78	1.07	0.81	0.29	0.03
15	1.37	1.24	1.24	0.13	0.13
$1{ }^{\prime}$	2.47	2.43	2.37	0.04	0.10
2^{\prime}	1.31	1.55	1.53	0.24	0.22
$3 '$	1.58	1.28	1.27	0.30	0.31
$4 '$	1.33	1.31	1.32	0.02	0.01
5'	0.89	0.90	0.90	0.01	0.01
MAE, ppm ${ }^{\text {b }}$				0.20	0.14

${ }^{\text {a }}|\Delta \boldsymbol{\delta}|\left({ }^{1} \mathbf{H}\right)=\mid \delta_{\text {exp }}-\delta_{\text {calc }}\left({ }^{1} \mathrm{H}\right)$, ppm: absolute differences for experimental versus calculated ${ }^{1} \mathrm{H}$ NMR chemical shifts
${ }^{\mathbf{b}}$ MAE $=\left(\Sigma\left[\left(\left(\delta_{\text {exp }}-\delta_{\text {calc }}\right)\right]\right]\right) / \mathrm{n}$, summation through n of the absolute error values (difference of the absolute values between corresponding experimental and ${ }^{1} \mathrm{H}$ chemical shifts), normalized to the number of the chemical shifts

Table S6. ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ MAE values, and DP4+ probabilities computed for compounds $\mathbf{6 a}$ and $\mathbf{6 b}$.

Compound	${ }^{13} \mathbf{C}$ MAE, $\mathbf{p p m}$	${ }^{\mathbf{1}}$ H MAE, $\mathbf{p p m}$	DP4+ probability
$\mathbf{6 a}$	1.98	0.21	0.00%
$\mathbf{6 b}$	1.78	0.17	100.00%

Figure S1. ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ MAE instagrams related to compounds $\mathbf{6 a}$ and $\mathbf{6 b}$ (values reported in Table S6).

A QM/NMR approach (Bifulco et al. 2007, Di Micco et al. 2010) was employed to compare the sets of experimental ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR chemical shifts with those calculated for $6 \mathbf{a}$ and $6 \mathbf{b}$ isomers. Firstly, all the conformers obtained at the empirical level were submitted to a geometry and energy optimization step at the DFT (density functional theory) using the MPW1PW91/6-31G(d) functional/basis set (see computational details, experimental section). Then, ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR chemical shifts were predicted at the MPW1PW91/6-31G(d,p) level, and the mean absolute error (MAE) values were used to compare calculated and experimental values (Tables $\mathrm{S} 1-\mathrm{S} 5$) for $\mathbf{6 a}$ and $\mathbf{6 b}$. As shown in Figure S 1 , compound $\mathbf{6 b}$ showed the lowest ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ MAE values, 1.78 and 0.17 ppm , respectively. To further confirm our findings, we also employed the recently introduced DP4+ method (Grimblat et al. 2015). Again, the isomer 6b showed the highest DP4+ probabilities (100.00%) (Table S6). Interestingly, the NOESY correlations were also found to be consistent with the $\mathbf{6 b}$ isomer. Finally, the absolute configurations were established by comparison of the experimental ECD spectrum of 6 with those predicted for $\mathbf{6 b}(6 R, 9 S, 10 S)$ and for its enantiomer $\mathbf{6} \mathbf{b}_{\text {enant }}(6 S, 9 R, 10 R)$ (Cerulli et al. 2017). The results showed that the calculated ECD spectrum of $\mathbf{6 b}$ was in accordance with the experimental spectrum (Figure S2). Accordingly, the absolute configuration of 6 was confidently assigned as $6 R, 9 S, 10 S$.

Figure S2. a) Superposition of the measured ECD spectrum of 6 and that computed for compound $\mathbf{6 b}(6 S, 9 R, 10 R)$; b)Superposition of the measured ECD spectrum of $\mathbf{6}$ and that computed for compound $\mathbf{6} \mathbf{b}_{\text {enant }}(6 R, 9 S, 10 S)$.

Figure S3. (+) HR-ESI-MS of compound 6

Qualitative Compound Report

Data File	HPLC-7.d	Sample Name	HPLC-7
Sample Type	Sample	Position	Vial 6
Instrument Name	Instrument 1	User Name	
Acq Method	vishal_12-01-13.m	Acquired Time	25-09-2017 PM 3:16:21
IRM Calibration Status	Success	DA Method	Default.m
Comment Defoult.m			
Sample Group		Info.	
Acquisition SW	es TOF/6500 series		
Version	05.01 (B5125)		

Compound Table

Compound Label	RT	Mass	Formula	MFG Formula	MFG Diff (ppm)	DB Formula
Cpd 2: C21 H32 O3	0.3	332.2349	C21 H32 O3	C21 H32 O3	0.7	C21 H32 O3

Compound Label	$\boldsymbol{m} / \boldsymbol{z}$	RT	Algorithm	Mass
Cpd 2: C21 H32 O3	333.2421	0.3	Find by Molecular Feature	332.2349

MS Spectrum Peak List

$\boldsymbol{m} / \boldsymbol{z}$	\boldsymbol{z}	Abund	Formula	Ion
333.2421	1	51237.86	C21 H33 O3	$(\mathrm{M}+\mathrm{H})+$
334.2457	1	13694.37	C 21 H 33 O	$(\mathrm{M}+\mathrm{H})+$
335.2489	1	2092.32	C 21 H 33 O 3	$(\mathrm{M}+\mathrm{H})+$
336.2528	1	333.76	C 21 H 33 O 3	$(\mathrm{M}+\mathrm{H})+$

Predicted	m / z	Calc m/z	Diff (ppm)	Abund \%	Calc Abund \%	Abund Sum \%	Calc Abund Sum \%
Isotope 1	m/z 333.2421	Calc m/z	0.9	100	100	-76.07	78.92
2	334.2457	334.2458	0.25	26.73	23.21	20.33	18.31
3	335.2489	335.2487	-0.56	4.08	3.19	3.11	2.51
4	336.2528	336.2515	-3.76	0.65	0.32	0.5	0.26

[^2]Figure S4. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6

Figure S5. ${ }^{13} \mathrm{C}$ NMR \& DEPT-135 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6

Figure S6. COSY spectrum of compound 6

Figure $\mathbf{S 7}$. HSQC spectrum of compound 6

Figure S8. HMBC spectrum of compound 6

Figure S9. NOESY spectrum of compound 6

Figure S10. Key COSY, HMBC and NOESY correlations of compound $\mathbf{6}$

Table S7. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) \& ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) Spectroscopic Data of Compound 6

	C.No	δ_{H} (mult., J Hz, no. H)	$\delta_{\text {C }}$	HMBC
Q2	1		155.81	-
2	2	6.12 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$	105.96	C-1, C-10a, C-4, C-1'
Q3	3	-	141.66	-
1	4	6.04 (s, 1H)	106.53	C-1, C-10a, C-2, C-1'
	C1-OH	9.10 (s, 1H)	-	C-1, C-10a
Q1	5	-	157.62	-
Q6	6	-	74.08	-
3	7	$\begin{aligned} & 1.89(\mathrm{td}, J=13.3,5.0 \mathrm{~Hz} \\ & 1 \mathrm{H}) 1.69-1.63(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	36.11	C-8
11	8	$\begin{aligned} & 1.41-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.15 \\ & -1.09(\mathrm{~m}, 1 \mathrm{H})^{A} \end{aligned}$	28.68	C-7
Q5	9		74.87	
5	10	3.20 (brs, 1H)	33.86	C-6, C-9, C-1, C-5, C-10a
Q4	10a		110.03	
7	11	$\begin{aligned} & 2.41-2.34(1 \mathrm{H})^{B}, 1.27- \\ & 1.21(1 \mathrm{H})^{A} \end{aligned}$	32.14	C-15
6	12	$1.58-1.45(1 \mathrm{H})^{C}$	33.12	C-13, C-14, C-10
13	13	1.06 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$	18.71	C-14, C-9, C-12
14	14	0.73 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$	17.26	C-13, C-9, C-12
10	15	$1.31(\mathrm{~s}, 3 \mathrm{H})^{A}$	29.05	C-6, C-7, C-11
4	1^{\prime}	$2.41-2.34(2 \mathrm{H})^{B}$	35.44	C-2, C-3, C-4, C-2', C-3'
9	2^{\prime}	$1.58-1.45(2 \mathrm{H})^{C}$	30.71	C-3, C-1', C-3', C-4'
8	3'	$1.30-1.27(2 \mathrm{H})^{\text {A }}$	31.52	C-4'
12	4'	$1.36-1.31(2 \mathrm{H})^{\text {A }}$	22.43	C-2'
15	$5 '$	0.91 (t, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$	14.37	C-3', C-4'
All assignments were based on HSQC and HMBC experiments; A, B, C represents overlapped signals				

Figure S11. ${ }^{1}$ H NMR (400 MHz , DMSO-d6) spectrum of compound 6

Figure S12. ${ }^{13}$ C NMR \& DEPT-135 (100 MHz , DMSO-d6) spectrum of compound 6

Figure S13. DEPT-135 (100 MHz , DMSO-d6) spectrum of compound 6

Figure S14. COSY spectrum of compound 6 in DMSO-d6

Figure S14a. Expantion of COSY spectrum of compound 6 in DMSO-d6

Figure S15. HSQC spectrum of compound 6 in DMSO-d6

Figure S16a. Expantion of HSQC spectrum of compound 6 in DMSO-d6

Figure S17. HMBC spectrum of compound 6 in DMSO-d6

Figure S18. NOESY spectrum of compound 6 in DMSO-d6

Figure S19. Expantion of NOESY spectrum of compound 6 in DMSO-d6

Figure S20. HPLC chromatogram of fraction Fr. 1

Natural Product Chemistry

```
USER:YEDU
Data file:D:\Agilent
Technologies\Result\desktop\Yedu\CS-NEW\25-07-2017-1.rslt\1-Rep3
Method Name:D:\Agilent
Technologies\Result\desktop\Yedu\CS-NEW\25-07-2017-1.rslt\CS-NEW-50-6-B.met
    7/25/2017 5:54:51 PM (GMT +05:30)
Sample CS-PL-FR-1
Injection Vol.: }10\mathrm{ uL
    METHOD;
TIME \(0 \quad 100\)
FLOW RATE; 3.5 mL/min, COLOUMN;XBridge Prep C8 ODB 5 uM 19mm x 250mm
```


Figure S21. HPLC chromatogram of fraction Fr. 3

Natural Product Chemistry

```
USER: YEDU
Data file:D:\Agilent
Technologies\Result\desktop\Yedu\CS-NEW\19-07-2017.rslt\2-Rep1
Method Name:D:\Agilent
Technologies\Result\desktop\Yedu\CS-NEW\19-07-2017.rslt\CS-NEW-50-6-a.met
    7/19/2017 11:26:33 AM (GMT +05:30)
Sample CS-PL-FR-3
Injection Vol.: }10\mathrm{ uL
    METHOD;
        TIME 0 65
        C&(MeOHin WATER) 75 75
FLOW RATE; 3.5 mL/min, COLOUMN;XBridge Prep C8 ODB 5 uM 19mm x 250mm
```


Table S8. In vitro Growth \%age inhibition of all screened derivatives using MTT assay

Cells	GI50 $(\mu \mathrm{M})$				
	1	4	5	7	8
HCT-116	10.47 ± 1.58	15.11 ± 2.10	24.94 ± 3.45	24.39 ± 4.21	>60
MCF-7	13.52 ± 3.06	15.60 ± 1.82	28.06 ± 2.74	15.23 ± 3.30	54.62 ± 3.92
K562	20.03 ± 2.85	11.07 ± 3.01	28.29 ± 4.12	22.23 ± 1.87	54.62 ± 4.38
MIAPaCa-2	15.57 ± 1.95	10.22 ± 3.23	28.43 ± 2.78	27.37 ± 3.63	43.02 ± 5.03
PANC-1	9.743 ± 1.04	24.97 ± 2.21	19.95 ± 2.65	20.39 ± 5.06	44.24 ± 2.78
A549	10.41 ± 1.25	13.36 ± 1.26	39.38 ± 1.38	28.71 ± 4.27	51.12 ± 1.94
PC3	5.678 ± 1.05	15.66 ± 3.22	21.30 ± 2.81	16.51 ± 2.02	34.25 ± 3.38
SW	18.30 ± 1.86	21.69 ± 2.07	60.13 ± 3.21	33.74 ± 5.19	>60

Results are expressed as the mean value of IC50 \pm SD

Bifulco G, Dambruoso P, Gomez-Paloma L, Riccio R. 2007. Determination of relative configuration in organic compounds by NMR spectroscopy and computational methods. Chem Rev.107:3744-3779.
Cerulli A, Lauro G, Masullo M, Cantone V, Olas B, Kontek B, Nazzaro F, Bifulco G, Piacente S. 2017. Cyclic diarylheptanoids from corylus avellana green leafy covers: determination of their absolute configurations and evaluation of their antioxidant and antimicrobial activities. J Nat Prod. 80:1703-1713.

Di Micco S, Chini MG, Riccio R, Bifulco G. 2010. Quantum mechanical calculation of NMR parameters in the stereostructural determination of natural Products. Eur. J Org Chem. 2010:1411-1434.

Grimblat N, Zanardi MM, Sarotti AM. 2015. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem. 80:12526-12534.

[^0]: All assignments were based on HSQC and HMBC experiments.

[^1]: ${ }^{\mathbf{c}} \mathbf{M A E}=\left(\Sigma\left[\left|\left(\delta_{\text {exp }}-\delta_{\text {calc }}\right)\right|\right]\right) / \mathrm{n}$, summation through n of the absolute error values (difference of the absolute values between corresponding experimental and ${ }^{1} \mathrm{H}$ chemical shifts), normalized to the number of the chemical shifts

[^2]: -- End Of Report -..

