Defining Sustainability through Developers’ Eyes:
Recommendations from an Interview Study

Mairio Rosado de Souza; Robert Haines & Caroline Jay
School of Computer Science, University of Manchester, UK

July 21,2014

Abstract

Defining ‘software sustainability’ in the context of re-
search, and determining how best to support it, remains
a considerable challenge. The research reported here ap-
proaches the question from a new direction by asking re-
search software developers to provide their own experience
of and opinions about sustainability. Two main themes
emerged from the study: intrinsic sustainability — con-
cerned with aspects of the software itself — and extrinsic
sustainability — concerned with the environment in which
it is developed. A key finding is that developers consider
sustainability is less at the level of the research project that
funds it, and more at the level of the software artefact it-
self, and ensuring that the functionality it represents can be
re-used in some capacity in the future. We propose recom-
mendations to improve sustainability, focusing in particular
on community building, improving software quality and in-
creasing motivation.

1 Introduction

Research software engineering projects are conducted in
unusual development environments, particularly in terms of
the way that they are funded: it is a period of time, rather
than a set of features, that is resourced; software is often
bespoke, and therefore constructed from scratch; and whilst
there is an increasing expectation that it will continue to
function after initial funding has ceased, it is difficult to de-
fine precisely how this will occur.

According to Raturi et al. (2014) ‘“Work at the intersec-
tion of information technology and sustainability often ap-
pears in the form of the “greening” of IT itself. This area,
often called “Green IT”, is “the study and practice of de-
signing, manufacturing, using, and disposing of comput-
ers, servers, and associated subsystems ...efficiently and ef-
fectively with minimal or no impact on the environment”.
However, the software subsystem is often neglected.” [3]

Due to the experimental nature of research, much of the
software produced is discarded, however there is a drive to
ensure the software developed during this costly process has
some additional value that may extend its life, by making it
sustainable. But what exactly does this term mean to devel-
opers, and what processes are required to make it a reality?

The Software Sustainability Institute (SSI) defines sus-
tainable software as follows: ‘software you use today will

*mariorosadul@gmail.com

be available — and continue to be improved and supported —
in the future’!. We can therefore consider sustainable soft-
ware as that which has longevity. However, ‘there still is no
concrete guidance for the different aspects of sustainabil-
ity that are observable from the point of view of software
engineering’ [2].

This work aims to build a better understanding of what
sustainability means in the context of research software en-
gineering by interviewing developers and examining the ex-
tent to which they share a common understanding of sus-
tainability. The results demonstrate that whilst there is some
consensus as to the general meaning of the term, there are
a variety of opinions about the best way of achieving it. By
pooling and analysing the the interview data, we are able
to provide a broad and comprehensive set of recommen-
dations for how to improve the sustainability of software,
based solely on the views of developers.

2 Study

Nine research software engineers (one female, eight
male) from a large UK University were recruited for the
study through purposive sampling. The participants work
on a variety of projects within the same research group and
have between 18 months and 20 years of software engineer-
ing experience. The semi-structured interviews, which were
conducted either face-to-face or via video-conferencing,
asked the following (with probing questions in italics):

1. From your point of view, what is sustainability in terms
of software?
What are the attributes or features of the software that
lead you to believe that it is sustainable?

2. Regarding the software you’ve developed: was sus-
tainability a consideration?
If yes, at what point in time did it become a considera-
tion? If no, why not?

3. Have you worked on any projects that were not sus-
tainable?
Were there any consequences of it not being sustain-
able?

The mean interview time was ten minutes and 12 sec-
onds. The interviews were recorded, transcribed, and up-
loaded to the qualitative data analysis software, Dedoose

lywww.software.ac.uk/about



4.12%. Transcripts were thematically analysed in an open
coding fashion following established analysis methods: (1)
familiarisation with the data; (2) generating the initial
codes; (3) searching for themes; and (4) iteratively review-
ing themes.

3 Results

The majority of the participants’ definitions of sustain-
ability approached that of the SSI, in the sense that soft-
ware would continue to be both maintained and usable: ‘I
think it’s keeping it well packaged and maintainable, docu-
mented.” (P2). “...it’s sustainable if somebody else can pick
itup...’ (P1). ‘sustainable software is software that someone
can use now and can use going forward in the future’ (P4).

Four participants said they had considered it at the begin-
ning of a project, and the remaining five said it was con-
sidered after some time with that time ranging from two
months to two years. ‘I don’t think it was a consideration at
the start, I think at the start it was more about getting things
done, getting things ready, so yeah it’s more of a thing that’s
come about as the project has come along.” (P3). T've
worked here for quite a few years so I’'m used to this whole
funding cycle and, you know you’re paid for three years
and then after two and a half years. Things start getting a
bit hairy and you’re hoping for more funding, so you know,
with that in mind, we try and keep the software sustainable’
(P2). The majority of participants (seven) had worked on
software that was not sustainable for various reasons.

The precise way that developers considered sustainability
varied. Whilst P4 and P8 viewed software as sustainable
if it continued to be used by, or work for, the initial user
group (the project is sustainable), other developers took a
broader view, considering the possibility that it may be used
in a different capacity by other developers, and potentially
another user group (the software artefact is sustainable). In
all cases the developers agreed that the codebase must be
actively maintained. The results suggest that to achieve this,
it is necessary to break the concept down into two forms:
Intrinsic Sustainability and Extrinsic Sustainability.

3.1 Intrinsic Sustainability

This theme categorises characteristics of the software
artefact itself that were perceived to be important to sustain-
ability. These characteristics are listed in categories below,
but it should be noted that they are often interrelated:

Documented (8 participants)

Participants largely agree that the code must be well doc-
umented. For sustainability to be possible: ‘...there are
some additional steps that you have to do, like you make
sure you have documentation, you make sure that the source
code is in one place and things like that’ (P8). ‘It needs to
be well-documented’ (P5).

Tested and testable (5 participants)

Several of the developers felt that including tests is im-
portant. ‘It’s a lot of test automation and continuous inte-
gration testing, and I think that helps a lot with keeping it

2yww.dedoose . com

sustainable’ (P2). ‘Software tests as well. Yes, absolutely’
P7).

Easy to read and understand (5 participants)

Developers spend a lot of time refactoring and making
their code readable, hoping this will make it more sustain-
able in the future. There was a general belief that if code is
easy to read it will be more sustainable, because it will be
more straightforward for someone else to pick up:

*...if he finds my code, and found that the effort of learn-
ing to use my code is going to be more difficult than the
actual benefit it gave him, he’d probably throw away and
write his own stuff’ (P1).

Modular (2 participants)

Modularity is a very powerful feature as it reduces the
complexity of the software, and makes it easier to reuse:
‘...so obviously you need to write nice modular code. Well
I think that’s a given in any kind of software development.’
(P3). ‘It turned out that the software was impossible for
anyone to actually deploy in full, and it would only work
if all the pieces were deployed. Funny, that didn’t work.
(P4).

Uses third party libraries (2 participants)

Two developers made it clear that reinventing the wheel
should be avoided, particularly when support is often good
for libraries that have a large user base. It’s important
to ‘[use] technologies that people generally understand,
reusing as much as you can, so don’t write your own things,
[when] there’s good solutions already.” (P6).

Useful (2 participants)

If the software is fulfilling its purpose in an effective way,
people will be motivated to sustain it. ‘...it’s coupled to the
software doing something useful, which either there isn’t an
alternative for, or that it is much better in its niche than the
alternatives.” (P4). Usefulness could also be thought of at a
broader level. If the code itself isn’t quite right, ‘they think,
“OK, I will take the idea, but I will write my own stuff”’
(P3).

Scalable (1 participant)

Making code scalable was thought to help future-proof
it. This ensures ‘...it’s also going to be usable long term,
“cause if it’s just the simple cases, people go, “yeah that’s
a really nice idea”, and then as soon as they start using it
in anger, a lot blows up because it doesn’t scale or anything
like that.” (P1).

3.2 Extrinsic Sustainability

This second theme considers the environment in which
the software is developed and/or used, as opposed to the
software artefact itself. The factors can be separated into the
following broad categories, which are again interrelated:

Openly available (6 participants)

If research software is for use in a distributed project then
sharing it in an open repository during the initial develop-
ment stages is of great value. This is also a key factor for
sustainability after the project end, as it increases the chance



it will be found and re-activated or reused. ‘Usually I would
look online in a repository for libraries and I would see
when it was last updated... if it’s in version control then
it’s a good start — it’s in GitHub or [a] social coding web-
site — and that’s usually a sign that it’s at least accessible by
everyone and it’s open and it’s not going to be [a] closed
book.” (P9).

Shared/co-owned (3 participants)

If the software is developed by a team, this increases the
chances of it remaining active. ‘[It’s important] that there
is some community around it. You need to have more than
one person involved, right? If it’s a one man project and
that guy is hit by a bus or just decided to do something else,
work at google or something, then it just dies. And then by
that point even if it’s all open source then it’s a bit too late
to get involved because you don’t know the inside workings
and anything like that.” (P8).

Resourced (6 participants)

This is one of the aspects that developers were most con-
cerned about. There needs to be a motivation to keep soft-
ware active. Employment is the most common. °...a lot of
our projects are coming to an end and we need to make a
plan for them to be maintained in the future.” (P3). ‘Some-
body writes it and then when their funding runs out they just
kind of abandon it and if someone else finds it, fine. And
then it’s a take it as you want it kind of thing. You see it in a
lot of research, I mean the [removed for anonymity] stuff I
did — completely just gone. The minute I left it, still sitting
on GitHub but no one even looked at it. So that’s it.” (P1).

Actively maintained (6 participants)

Developers are wary of software that isn’t in current us-
age, due to the potential for out-of-date dependencies and
modules that don’t work any more because the platform has
evolved. Support is less likely to be available. ‘Physically
the software lies there... you find software to do something,
[you think] OK that looks good, and then you look — last
updated three years ago. Most people won’t touch it.” (P1).
‘So it’s about having this kind of momentum to the project,
so that it keeps moving. That you have further development,
even if you have maintenance mode — that is, not many new
buttons being added — but at least there is someone [keep-
ing] it alive. That could be out of self interest, because there
is another organisation that depends on it, could be because
they like having it as a hobby’ (P2).

Independence from infrastructure (1 participant)

Sustainability can be related to where the software runs;
if the infrastructure is not maintained, is the software ca-
pable of running outside that environment? ‘[Removed for
anonymity] did most of that, and it’s one of these things that
will probably stay alive for as long as the server that it’s on
stays alive, and if that server crashes they will probably not
bother rebuilding it into another machine.” (P1).

Supported (4 participants)

Sustainable software usually has some sort of user facing
support from the team who is developing or maintaining it,
which is helpful to both external developers and end-users.

This is directly related to the project being active. ‘So this
tends to mean things like e-support, or automated tools of
various kinds.” (P4).

4 Discussion

Evidence from the developers in this study indicates that
the SSI’s view that sustainable software ‘will be available
— and continue to be improved and supported — in the fu-
ture’ is, to a large extent, understood by developers, and
considered to be meaningful. It is not clear that the working
definition used by most developers is an exact match, how-
ever. To end users, the SSI’s definition essentially means a
software application that they can continue to use, but most
developers considered sustainability to be a much broader
concept. In particular, there is a significant focus for many
developers on trying to ensure some aspect of the code itself
is usable in the future, regardless of whether that use occurs
in the same application, or contributes to a different one.

Although there is no concrete guidance on how to achieve
sustainability in terms of software engineering [3], or in-
deed, not a concrete definition of research software sus-
tainability itself [5], many of the factors that developers
consider to be important for sustaining research software
(particularly those relating to quality) are also important
for both sustaining software products [4] and successful
FLOSS development [1]. We therefore suggest that from
the perspective of research software, a broad view is help-
ful. In simple terms sustainability can be considered at the
level of a software product delivered by a particular project.
In the absence of infinite resources, however, projects — and
the software they produce — are going to remain of a fixed
term nature. In this case, the route to sustainability there-
fore becomes reuse of the software, or aspects of it, in future
projects.

5 Recommendations

Based on this broad understanding of sustainability, we
can articulate developer-defined recommendations for im-
proving it as follows:

Follow good development practices

If software is to be sustained over the long-term, it has to
be learnable, readable and usable by more than one person
—and preferably by anyone. Developers were clear that pro-
ducing tested/testable, well-documented software and shar-
ing ownership of code were key to achieving this. Given
the importance of software quality, it may be possible to
use tool-based measures of this as a proxy for intrinsic sus-
tainability at the time of development.

Actively maintain the software

Writing good software is only the first step towards sus-
tainability; at any given point, software only remains sus-
tainable if it is being actively sustained. This applies to
many software products, but is particularly an issue for re-
search software which, due to its continuously evolving na-
ture, often has dependencies that are continuously evolving
themselves; software that is not updated decays when its



dependencies are updated. The technologies used for de-
velopment in particular evolve rapidly: ‘mainly because I
don’t think the technologies are that mature, you know, I
think we’re still learning. I mean the web moves at what
kind of pace? The web changes constantly so it’s hard to
keep up.” (P6).

Use third-party libraries and embrace standards

If software is intended for reuse, it should be built on a
solid foundation of well-tested, well-documented software
itself. Technologies evolve rapidly, but where standards ex-
ist, using them will make it easier for others to extend or
repurpose software in the future.

Make software available and discoverable

Ensuring that software is high quality does not in itself
guarantee it will continue to be used. Software must be
made available in open-source repositories, and it must be
discoverable. Academic knowledge is promoted through
publications, which are available in searchable digital li-
braries. ‘So in some ways, I hate writing papers. But... Pa-
pers are probably around longer than the software is.” (P1).
Whilst papers provide one means of publicising software,
they are produced over a relatively long timescale, and do
not evolve with the software. They also tend to focus on a
scientific project, rather than software features, which may
be useful to developers working in an entirely different do-
main. Promoting the functionality of the software itself will
help to address this gap.

Rethink resourcing

Building and maintaining software requires resources. At
present, funding is focused on resourcing scientific projects
for finite periods of time, rather than developing scientific
software. Historically, this made sense: software developed
for a particular study was often prototypical or uni-purpose,
with no requirement for it beyond the project end. The re-
lationship between science and software is now changing,
however, and researchers are coming to rely on software
tools. In the same way that businesses employ developers
to work on open source software that serves a purpose for
them, research funding may need to go into supporting soft-
ware, as a form of facility or equipment maintenance. One
suggestion for measuring the value is the size of the user
base: ‘Well it needs to have a reasonably large user base.
Well that could be anything from 50 to 1000 people. [Then]
there is some community around it.” (PS8).

Build a community around the software

In order for software to remain active, it requires a com-
munity of current users and developers able to maintain
it (who may in some circumstances be the same people).
Building a community of interested parties is important to
demonstrate the value of the software, and ensure there is a
critical mass of people willing and able to continue devel-
opment.

Build a research software engineering community

The life of research software can continue beyond the
project in which it was developed, and beyond the purpose
for which it was originally built. Libraries, features, al-

gorithms, operations and user interface design can all be
reused, reducing waste and spreading good practice. To
achieve this, software needs to start being visible beyond its
immediate user and development group. A key goal should
be sharing not just within the application domain, but within
the discipline of research software engineering. The UK
Community of Research Software Engineers® is one such
example of a community being built to specifically support
research software engineering practitioners.

6 Future work

The results of this study provide interesting insights into
research software developers’ views on sustainability, and
how, as a community, we should move forward to consider
sustainability in broad terms. A limitation of this study is
that it spoke to a single group of developers within a sin-
gle institution. The next step in this work is to widen the
sample to include further institutions, both to validate the
findings of this study, and to build a more comprehensive
set of recommendations with a firm grounding in the ex-
perience of people who actually engineer research software
themselves.

Acknowledgements

Mairio Rosado de Souza is a visiting student from the
Federal University of Lavras (UFLA), funded by Brazil’s
Science without Borders programme.

References

[1] K. Crowston, K. Wei, J. Howison, and A. Wiggins.
Free/libre open-source software development: What we
know and what we do not know. ACM Comput. Surv.,
44(2):7:1-7:35, Mar. 2008.

B. Penzenstadler and H. Femmer. Towards a definition
of sustainability in and for software engineering. In
Proceedings of the 28th Annual ACM Symposium on
Applied Computing.

A. Raturi, B. Penzenstadler, B. Tomlinson, and
D. Richardson. Developing a sustainability non-
functional requirements framework. In Proceedings of
the 3rd International Workshop on Green and Sustain-
able Software, 2014.

[4] R. C. Seacord, J. Elm, W. Goethert, G. A. Lewis,
D. Plakosh, J. Robert, L. Wrage, and M. Lindvall.
Measuring software sustainability. In Proceedings of
the International Conference on Software Maintenance,

ICSM °03, 2003.

C. Venters, L. Lau, M. Griffiths, V. Holmes, R. Ward,
C. Jay, C. Dibsdale, and J. Xu. The blind men and the
elephant: Towards an empirical evaluation framework
for software sustainability. Journal of Open Research
Software, 2(1), 2014.

3www.rse.ac.uk



