

Techniques and applications for real-time spectral imaging: from gas sensing to in vivo imaging

Professor Andy Harvey

School of Physics and Astronomy University of Glasgow E-mail: andy.harvey@glasgow.ac.uk, Tel: 0141 330 8606

Glasgow in 1848

WORLD CHANGING **CONTRIBUTIONS**

Our current staff includes four Fellows of the Royal Society, twelve Fellows of the Royal **Society of Edinburgh** and a **Royal Society Research** Professor

World-leading achievements by our staff and students have been recognised by dozens of national and international prizes, honours and awards – far too many to list in full!

Here are a few recent examples of our Physics & Astronomy World Changers receiving their awards...

Computational imaging

- R&T
 - Andy Harvey (Head)
 - Jonny Taylor
 - Caroline Müllenbroich
- Research Fellows
 - Guillem Carles
 - Chas Nelson
- PDRA
 - Miguel Preciado
 - Pavi Konda
- PhD
 - Yongzhuang Zhou
 - Stuart Wilson
 - Ross Dryesdale
 - Laura Cowan
 - Tomas Aidukas
 - Julia McFarlane
 - Jamie Foubister
 - Michael Handley
 - Uné Butaite
 - Chiara Garbelletto
 - Victor Gutierrez
 - Mohammad Pourmand
 - Daniel Olesker
 - Fernanda Alvim

Techniques and applications for realtime spectral imaging: from gas sensing to in vivo imaging

- What is spectral imaging
 - and how is it done (well)?
- Real-time spectral imaging?
- Some applications
 - Biomedical
 - Thermal infrared

(Hyper)spectral imaging

→ Accurate spectral analysis of one spatial pixel only

- → Seeing **RGB colors** of **one image** only
- → spectral signature images revealing 1 objects chemical composition

Colour imaging

The Mantis shrimp: polarimetric, multi-spectral

- 12 spectral bands plus polarisation
- Spectral recognition rather than 'colour'
 - Lower acuity than trichromatic humans
- More like a pushbroom scan than a matrix filter
- Optimal spectral imaging architectures are application specific

Thoen, H. H., How, M. J., Chiou, T.-H. & Marshall, Science (80-.). 343, 411–413 (2014) Osorio, D. & Vorobyev, M. *Proc. Biol. Sci.* **272**, 1745–1752 (2005)

What is scientific *spectral imaging* ?

- Equivalent to scanning a spectrophotometer across the scene
- Synergistic combination of imaging and spectrometry
 - eg detection of targets improved by combining both shape and spectral information
 - 'chemical imaging'

Spectral Imaging: The Restriction of Traditional instrumentation

And Fourier-transform equivalents

LCTF Spectral Imaging for classification: Cervico-vaginal smear: moderate dysplasia

Typical VIS-10 VariSpec Filter

Coregistration necessary
Cannot record time-resolved images
Low optical throughput

Courtesy CRI

Spectral imaging in colour monitoring and matching

17 Mar 09 Barcelona U

a.r.harvey@hw.a

Spectral Unmixing

• Linear mixing model

$$x = a_1 S_1 + a_2 S_2 + a_3 S_3 + \dots + a_M S_M + w$$
$$= \sum_{i=1}^{M} a_i S_i + w$$

- $\mathbf{X} = \mathbf{A}\mathbf{S} + \mathbf{W}$
- Solve for A
 need S!

- Non-linear mixing model
 - X =f(A,S) and depends on how S is mixed
 - Employ physical model to calculate abundances, A
 - Note S often not important

Identification overlapping dyes

What can be done with spectrum?

- Quantification
 - Spectral unmixing
 - Fluorophore concentration
 - molecular imaging
 - Blood oxygenation

– Agriculture

Classification

How to record multispectral 'video'

Hagen, N. & Kudenov, M. W. Opt. Eng. 52, 90901 (2013).

Johnson, W. R., Wilson, D. W., Fink, W., Humayun, M. & Bearman, G J. Biomed. Opt. 12, 014036 (2007).

Image Slicing: spectral retinal imaging

1. Gao, L., Smith, R. T. & Tkaczyk, T. S Biomed. Opt. Express 3, 48 (2012).

Real-time spectral imaging: Surveillance and Biomedicine

Foveal Hyperspectral

Tracking Random Access Hyperspectral

Multi aperture

An example snapshot spectral imager: Image Replication Imaging Spectrometer:

Transmission functions for the Generalised Lyot Filter

IRIS improvements

- Issues:
 - Sidelobes in the spectral transmission
 - Dispersion of the
 Wollaston prisms
 - Longitudinal chromatic aberration for lenses

Sidelobe elimination

• Image-plane mosaic filter cleans sidelobes

Chromatic aberration correction

• Introduction of corrective glass tiles to the narrowband filters to modify the pathlength of the different wavebands

Video-rate single RBC oximetry

Video rate oximetry of red blood cells

Single RBC

33

- Quantitative imaging in the eye: challenges
 - PSF
 - Optical: ~8µm
 - Tissue : 30µm-1mm
 - Heterogeneous; birefringent cornea, lens, nerves
 - Eye Contrast (Ocular media scatter): ~0.2-0.9
 - Optically fragile
 - Saccades

Complex light paths: PCA/ICA useless: quantification requires physical model

- Requires optical
- efficiency
- F Requires (?) snapshot

Characterizing and understanding: Time-sequential hyperspectral imaging of the retina

Mordant, D. et al., 2011. Eye, 25(3), pp.309–320.

Retinal vessel oximetry with multi-spectral fundus camera measurements

Mordant, D. et al., 2011. *Eye*, 25(3), pp.309–320.

Andy.harvey@glasgow.ac.uk

Cimalla, P., et al. J. Biomed. Opt. 16, 116020 (2011).

52, 2851 (2011).

Note: *higher* venular OS in more glaucoma damaged eye

Light paths in retina

- Recorded light intensity is due to the sum of many light paths. Dominant paths:
 - Double pass
 - Specular
 - Backscatter
 - Single pass
- Physical model required to derive accurate oximetry algorithms

Imaging in turbid media

- Scattering: dominant limitation in biological imaging

• imaging underwater, atmospheric obscurants, remote sensing of clouds. aerosols etc.

Monte-Carlo modelling of light propagation in tissue and optical instruments: the slow way

Rodmell, P. I. et al.. J. Biomed. Opt. 19, 36008 (2014) G. Carles, et al , J. Biomed Opt. **22**, 1–11 (2017).

Ray tracing & Monte Carlo: What's the difference?

- Ray-tracing
 - Deterministic
 - Reflection, Refraction, Absorption

- Monte-Carlo propagation
 - Stochastic

L = 0

Reflection, Refraction,
 Absorption,
 Bulk (multiple) Scattering

L = 1

- We extend Zemax to simulate complete systems; integrating:
 - Ray-tracing, *Monte-Carlo* light propagation
 - Using The Zemax user-friendly interface
 - Polarisation-sensitive Mie scattering

L = 0.5

Monte Carlo modelling of scattering

 Mueller matrices from backscattering (validation)

https://github.com/gcarles/RayPolMieScattering

Experimental polarisation & speckle scattering: Laser illumination of a slab of blood

Molar extinction coefficients of oxyand deoxyhaemoglobin PSF scale, pupil-plane speckle vary with absorption (oxygenation)

Slab Blood PSF for 83% sO2 horse blood (cross-polarization)

Monte-Carlo modelling of light propagation in tissue and optical instruments using Zemax®

Brewer et al. in preparation Carles et al. submitted

Optical modelling of complete optical systems

- Ray-tracing
 - Deterministic
 - Reflection, Refraction, Absorption

- Monte-Carlo propagation
 - Stochastic
 - Reflection, Refraction, Absorption, Bulk (multiple) Scattering

Differential oximetry: dye-free angiography

Fluorescein angiogram

Oximetric angiogram

Back to Hyperspectral instrumentation:

Hyperspectral imaging technologies are big and slow and expensive

Sensor array

Space.spectrum ~4 Mvoxel Single integration time

Objective Lens(es)

Full-band achromatisation!

Long optical track

Single perspective/channel

Microscopy etc

Spectral Coverage

Contiguous/restricted

Cost

10,000s \$

Why?

50 Mvoxel →600Mvoxel Per-band integration time (HDR)

No achromatisation necessary

~10mm Multi-perspective

Arbitrary (optimal, sparse) bands

100s \$

Spectral mage reconstruction

Perspective-corrected coregistration

Multispectral LWIR system

• 6x multiaperture multispectral system.

Based on low-cost FLIR LEPTON LWIR uncool detector

FLIR LEPTON LWIR uncool detector Dimension: 10.6 x 11.7 x 5.9 mm HFOV: 25 deg (50 deg also available) LWIR: 8 to 14 μm 80 x 60 pixels Thermal sensitivity <50 mK Frame Rate 9 Hz (actual Frame rate 27Hz limited by firmware due to US export reg.) ~**150 pounds**

2 k£ system vs 100k£ systems!!

Multispectral Imaging detector

6 cameras6 infrared interference filters6 channels of LWIR

(1) FLIR LEPTON® based 6x LWIR detectors and filters
 (2) 6x Raspberry-pi ® based CPU rack.
 (3) Ethernet switch-hub for networking
 4) USB hub for power supply.

Gas imaging results

Detection of propane in 7.2 μ m, overlapped with visible channel.

Gas imaging of hydrocarbons

Thin plastics classification

PVC: Polyvinyl chloride PP: Polypropylene PE: Polyethylene

Clear potential in recycling processes!

Conclusions

- Video-rate spectral imaging
 - Image Replication Imaging Spectrometer
 - Highest SNR
 - Single aperture
 - Multiple apertures
 - It's really cheap and high performance
 - And now in the infrared
- What's your application?

Thank you for listening

Professor Andy Harvey

School of Physics and Astronomy University of Glasgow E-mail: andy.harvey@glasgow.ac.uk, Tel: 0141 330 8606

#UofGWorldChangers

@UofGlasgow