

Draft document generated by the IDEAS xSDK project.

We are actively soliciting suggestions from the community at https://xsdk.info/policies.

xSDK Community Installation Policies:
GNU Autoconf and CMake Options

Version 0.5.0, June 27, 2019
 https://xsdk.info/policies

Background: What is software configuration? and How to configure software.

Motivation: Combinations of multiple software packages developed by different groups have become

essential for large-scale computational science, where the capabilities needed for modeling,

simulation, and analysis are broader than any single team has resources to address. The often-

tedious trial-and-error process of obtaining, configuring, and installing any single tool may arguably be

manageable. From the perspective of an end-user application scientist, however, handling each

tool’s installation idiosyncrasies can easily become overwhelming when dealing with several

packages in combination. Worse, such problems are compounded by the need for consistency

among packages to be used within the same application in terms of compiler, compiler version, exotic

compiler optimization options, and common third-party packages such as BLAS and HDF5.

Goal: A key aspect of work in the IDEAS software productivity project is developing an Extreme-

scale Scientific Software Development Kit (xSDK). As an initial step in this work, our goal is to define

and implement a standard subset1 of configure and CMake2 options for xSDK and other HPC

packages in order to make the configuration and installation process as efficient as possible on

standard Linux distributions and Mac OS, as well as on target machines at DOE computing facilities

(ALCF, NERSC, OLCF). Note that we are not requiring that all packages use the same installation

software, merely that they follow the same standard procedure with the same option names for

installation. This approach provides maximum flexibility for each package to select the most suitable

toolchain to use for its package.

Impact: Development of a standard xSDK package installation interface is a foundational step

toward the seamless combined use of multiple xSDK libraries. The impact of this work is that all

xSDK packages will have standard configuration and build instructions, as well as a tester to ensure

that all functionality works properly. In addition, because new packages in the xSDK will follow the

same standard, it is possible to make the installations “scriptable,” that is, to write tools to install many

packages automatically. This work is part of the xSDK Community Package Policies.

1 Packages are free to support their own additional options, but using the standard options should be all that is
needed to get correct builds.
2 A subset of these standard behaviors is implemented in the XSDKDefaults.cmake module and is
demonstrated and tested in the CMake project https://github.com/bartlettroscoe/XSDKCMakeProj .

https://xsdk.info/policies
https://xsdk.info/policies
https://ideas-productivity.org/wordpress/wp-content/uploads/2016/04/IDEAS-ConfigurationWhatIsSoftwareConfiguration-V0.2.pdf
https://ideas-productivity.org/wordpress/wp-content/uploads/2016/12/IDEAS-ConfigurationHowToConfigureSoftware-V0.2.pdf
https://ideas-productivity.org/wordpress/wp-content/uploads/2016/12/IDEAS-ConfigurationHowToConfigureSoftware-V0.2.pdf
http://www.ideas-productivity.org/
http://xsdk.info/
http://dx.doi.org/10.6084/m9.figshare.4495136
https://github.com/bartlettroscoe/XSDKCMakeProj

Draft document generated by the IDEAS xSDK project.

We are actively soliciting suggestions from the community at https://xsdk.info/policies.

2

xSDK Standard Configure and CMake Options3

1. Implement the default behavior described below. Each package can decide whether XSDK

mode is the default mode.4

a. --dis/enable-xsdk-defaults

b. USE_XSDK_DEFAULTS=[YES,NO]

2. Identify location to install package. Multiple “versions” of packages, such as debug and

release, can be installed by using different prefix directories.

a. --prefix=directory

b. CMAKE_INSTALL_PREFIX=directory

3. Select compilers5 and compiler flags.

a. If the compilers (and or flags) are explicitly set on input, use those:

i. CC=<cc>, CXX=<cxx>, FC=<fc>, CPP, FFLAGS, FCFLAGS, CFLAGS,

CXXFLAGS, CPPFLAGS, LDFLAGS

ii. CMAKE_C_COMPILER=<cc>, CMAKE_CXX_COMPILER=<cxx>,

CMAKE_Fortran_COMPILER=<fc>, CMAKE_C_FLAGS=”<flag1> <flag2> ...”,

CMAKE_CXX_FLAGS=”...”, CMAKE_Fortran_FLAGS=”...”

b. If the compilers and/or flags are not explicitly set on input but are set in the

environment variables FC, CC, CXX, CPP6, FFLAGS, FCFLAGS, CFLAGS,

CXXFLAGS, CPPFLAGS7, LDFLAGS, then the compilers and flags must be set to

these. If both FFLAGS and FCFLAGS are set, then they need to be the same or it is

an error.

c. If the compilers and/or compiler flags are not explicitly passed in or defined in the

environment variables listed above, then the package is free to try to find compilers on

the system and set the compiler flags consistent with the other settings defined below

(e.g., shared libraries vs. static libraries, debug vs. non-debug).8

3 This standard is related only to arguments to CMake and GNU Autoconf; there is no requirement regarding

the make system used (for example, that it be GNU make) nor that the make system accepts any particular
arguments, such as make LIBS+=-lz.
4 For packages like Trilinos that need to maintain backward compatibility over consecutive releases,

USE_XSDK_DEFAULTS may be FALSE by default.
5 Packages must support using the MPI compiler wrappers for these arguments.
6 The environment variable CPP is not supported by raw CMake.
7 The environmental variable CPPFLAGS is not supported by raw CMake.
8 All CMake projects should use the same built-in CMake algorithm to find the default compilers, so even when
no explicit compilers or flags are set they should use the same compilers and flags. Also, raw CMake projects
will append compiler flags based on the build type. See “Selecting compiler and linker options”.

https://xsdk.info/policies
https://tribits.org/doc/TribitsBuildReference.html#selecting-compiler-and-linker-options

Draft document generated by the IDEAS xSDK project.

We are actively soliciting suggestions from the community at https://xsdk.info/policies.

3

4. Create libraries with debugging information and possible additional error checking (default is

debug in XSDK mode).

a. --dis/enable-debug

b. CMAKE_BUILD_TYPE=[Debug,Release]

5. Select option used for indicating whether to build shared libraries (default is shared in XSDK

mode).

a. --dis/enable-shared (configure)

b. BUILD_SHARED_LIBS=[YES,NO]

6. Build interface for a particular additional language.

a. --dis/enable-<language>

b. XSDK_ENABLE_<language>=[YES,NO]

7. Determine precision for packages that build only for one precision (default is double).

Packages that handle all precisions automatically are free to ignore this option.

a. --with-precision=[single,double,quad]

b. XSDK_PRECISION=[SINGLE,DOUBLE,QUAD]

8. Determine index size for packages that build only for one index size (default is 32). Packages

that handle all index sizes automatically are free to ignore this option.

a. --with-index-size=[32,64]

b. XSDK_INDEX_SIZE=[32,64]

9. Set location of BLAS and LAPACK libraries (default is to locate one on the system

automatically).

a. --with-blas-lib=”linkable list of libraries” --with-lapack-lib=”linkable list of libraries” It is

fine to use -L and -l flags in the lists

i. TPL_BLAS_LIBRARIES=”linkable list of libraries”,

TPL_LAPACK_LIBRARIES=”linkable list of libraries” (Should not use -L or -l

flags in the lists)

10. Determine other package libraries and include directories.

a. --with-<package> --with-<package>-lib=”linkable list of libraries” --with-package-

include=”-I list of include directories”

b. TPL_ENABLE_<package>=[YES,NO]

Packages must provide a way for a user to specify a dependent package to use. Packages

are free to locate a package on the file system if none is specifically provided by the user. If

the user does provide one, however, it must be used; if it is not able to be used, then an error

must be generated. A package cannot silently substitute a different installation.

https://xsdk.info/policies

Draft document generated by the IDEAS xSDK project.

We are actively soliciting suggestions from the community at https://xsdk.info/policies.

4

11. In the XSDK mode, XSDK projects should not rely on users providing any library path
information in environmental variables such as LD_LIBRARY_PATH.

12. After packages are configured, they can be compiled, installed and “smoke” tested with the
following commands: make ; [sudo] make install ; make test_install.

13. After an install the package should provide a machine-readable output to show provenance,
that is, what compilers were used and what libraries were linked with, as well as other build
configuration information, so that users with problems can send the information directly to
developers.

Discussion and Examples

For configure we are trying to match as closely as possible the GNU autoconf and CMake standards

and conventions.

1. --prefix=/usr/local/; cmake -DCMAKE_INSTALL_PREFIX=/usr/local

2. CC=/usr/local/bin/mpicc ./configure

○ The reason to support environmental variables is that Linux package managers use

environmental variables to set the compiler options, not command line arguments.

○ When reading environmental variables, the configure output should clearly show which

variables are being used.

3. ./configure CC=/usr/bin/mpicc; cmake -DCMAKE_C_COMPILER=/usr/bin/mpicc -

DCMAKE_CXX_FLAGS=”-O3 -Wall”

o With CMake projects, compiler flags are passed to the compiler as follows:

${CMAKE_<LANG>_COMPILER> ${CMAKE_<LANG>_FLAGS}

${CMAKE_<LANG>_FLAGS_<CMAKE_BUILD_TYPE>}

Therefore, CMAKE_<LANG>_FLAGS never overrides the build type (e.g., DEBUG,

RELEASE) specific compiler flags.

4. ./configure --disable-debug; cmake -DCMAKE_BUILD_TYPE=RELEASE

https://xsdk.info/policies

Draft document generated by the IDEAS xSDK project.

We are actively soliciting suggestions from the community at https://xsdk.info/policies.

5

○ Debug is the default because it helps users while developing (writing) their code, which

is most of the time.

○ The optimized/release version may or may not contain debug symbols. Although the

consensus is that including debug symbols is a good idea for deeply templated C++

libraries, the object size can become very large. Therefore, we do not require such

symbols.

5. ./configure --disable-shared; cmake -DBUILD_SHARED_LIBS=FALSE

○ Shared is the default because linking against the libraries is dramatically faster.

6. ./configure --disable-cxx --enable-fc ; cmake -DXSDK_ENABLE_CXX=FALSE

○ The default is to have C and C++ enabled and Fortran disabled. Packages that do not

use Fortran (or C++) are free to ignore that flag.

7. ./configure --with-precision=single

○ If a package automatically supports multiple versions, it can ignore this option.

8. ./configure --with-index-size=64

○ If a package automatically supports multiple versions, it can ignore this option.

9. ./configure --with-lapack-lib=”-llapack -lblas”

○ Packages are free to locate a BLAS/LAPACK installation on the file system if none is

specifically provided by the user. If the user does provide one, however, it must be

used; if it is not able to be used, then an error must be generated. A package cannot

silently substitute a different installation.

10. ./configure --with-x --with-metis-lib=/usr/local/lib/libmetis.a

--with-metis-include=-I/usr/local/include

o In CMake, the analogous approach would be cmake -DTPL_ENABLE_METIS=ON

-DTPL_Metis_INCLUDE_DIRS=/usr/local/include

-DTPL_Metis_LIBRARIES=/usr/local/lib/libmetis.a

However , a package may use CMake's find_package() command to load a dependent

library as long as the package provides a way for a user to specify an installation of the

dependent library to use, and the package guarantees that the specified installation is

not substituted.

○ Packages are free to locate a package on the file system if none is specifically

provided by the user. If the user does provide one, however, it must be used; if it is not

able to be used, then an error must be generated. A package cannot silently substitute

a different installation.

https://xsdk.info/policies

Draft document generated by the IDEAS xSDK project.

We are actively soliciting suggestions from the community at https://xsdk.info/policies.

6

○ There does not exist any CMake standard allowing an external user to set what

external package dependencies should be enabled or disabled when configuring.

Therefore, this is a TriBITS/Trilinos standard is which calls external packages “TPL”s

and therefore the name “TPL_ENABLE_<package>”.

○ MPI is never considered a <package>, and xSDK packages do not need to support --

with-mpi-lib and --with-mpi-include. In fact, we recommend against it.

11. In order for linking of applications with a multitude of libraries without users needing to set

LD_LIBRARY_PATH, each package likely needs to manage how it handles the rpath linker

options when building its libraries.

○ Packages are also free to have configure modes that require setting
LD_LIBRARY_PATH.

12. Note that the “make test_install” is run after the “make install” and utilizes the installed
versions of of the library. This type of test is often called a smoke test, as it verifies that at
least something can be built and run using the installed library. It can consist of one or several
distinct tests but should not require parallelism nor take more than a couple of minutes.

13. This information is useful for debugging; it can, for example, be emailed to the package
developer when problems arise.

○ The “pkgconfig” format and the “module” are two examples of such representations.
Both are unfortunately neither complete nor fully standard.

○ We may want to develop an extension of the pkgconfig standard

Changes:

● Changes in version 0.5.0, June 27, 2019:

○ Changed installation policies 8, 13, and 10 and examples in 10

This document was prepared by Roscoe Bartlett, Jason Sarich, and Barry Smith, with key input from Todd
Gamblin. We thank xSDK software developers and the IDEAS team for insightful discussion about issues and
approaches.

This material is based upon work supported by the U.S. Department of Energy Office of Science, Advanced Scientific

Computing Research and Biological and Environmental Research programs.

https://xsdk.info/policies

