Testing for Adaptive Divergence: $Q_{S T} / F_{S T}$ Comparisons in Populations with Complicated Histories

Jeremy Berg and Graham Coop
University of California, Davis

June 22, 2014

Testing for adaptive differentiation

- Having observed phenotypic differences between populations, we'd like to know if they are adaptive

Testing for adaptive differentiation

- Having observed phenotypic differences between populations, we'd like to know if they are adaptive
- Raise individuals from different populations in a common environment, measure their traits, and genotype them at a (preferably large) number of genetic markers

Testing for adaptive differentiation

- Having observed phenotypic differences between populations, we'd like to know if they are adaptive
- Raise individuals from different populations in a common environment, measure their traits, and genotype them at a (preferably large) number of genetic markers
- Compute $Q_{S T}$ and $F_{S T}$; compare them

Testing for adaptive differentiation

- Having observed phenotypic differences between populations, we'd like to know if they are adaptive
- Raise individuals from different populations in a common environment, measure their traits, and genotype them at a (preferably large) number of genetic markers
- Compute $Q_{S T}$ and $F_{S T}$; compare them
- What if the individuals in our sample can't be fit neatly into a discrete set of populations?

The Standard $Q_{S T} / F_{S T}$ Comparison

The Standard $Q_{S T} / F_{S T}$ Comparison

$$
Q_{S T}=\frac{V_{B}}{V_{B}+V_{W}}=\frac{V_{B}}{V_{T}}
$$

The Standard $Q_{S T} / F_{S T}$ Comparison

$$
Q_{S T}=\frac{V_{B}}{V_{B}+V_{W}}=\frac{V_{B}}{V_{T}}
$$

$$
\mathbb{E}\left[Q_{S T}\right]=F_{S T}
$$

The Standard $Q_{S T} / F_{S T}$ Comparison

$$
Q_{S T}=\frac{V_{B}}{V_{B}+V_{W}}=\frac{V_{B}}{V_{T}}
$$

$$
\mathbb{E}\left[Q_{S T}\right]=F_{S T}
$$

$$
\mathbb{E}\left[V_{B}\right]=V_{T} F_{S T}
$$

The Standard $Q_{S T} / F_{S T}$ Comparison

$$
\begin{aligned}
& Q_{S T}=\frac{V_{B}}{V_{B}+V_{W}}=\frac{V_{B}}{V_{T}} \\
& \mathbb{E}\left[Q_{S T}\right]=F_{S T} \\
& \mathbb{E}\left[V_{B}\right]=V_{T} F_{S T} \\
& \frac{Q_{S T}}{F_{S T}}=\frac{V_{B}}{\mathbb{E}\left[V_{B}\right]} \sim \chi^{2}
\end{aligned}
$$

Using GWAS hits to estimate genetic values

LETTER

Hundreds of variants clustered in genomic loci and biological pathways affect human height

$$
Z_{k}=\sum_{\ell=1}^{L} \alpha_{\ell} p_{k \ell}
$$

$$
\begin{aligned}
& \alpha=\text { effect size } \\
& p=\text { allele count }
\end{aligned}
$$

Using GWAS hits to estimate genetic values

Evidence of widespread selection on standing variation in Europe at height-associated SNPs

Michael C Turchin ${ }^{1-5,8}$, Charleston WK Chiang ${ }^{1-6,8}$, Cameron D Palmer ${ }^{1-5}$, Sriram Sankararaman ${ }^{5,6}$, David Reich ${ }^{5,6}$, Genetic Investigation of ANthropometric Traits (GIANT) Consortium ${ }^{7}$ \& Joel N Hirschhorn ${ }^{1-6}$

$$
Z_{k}=\sum_{\ell=1}^{L} \alpha_{\ell} p_{k \ell}
$$

$$
\begin{gathered}
\alpha=\text { effect size } \\
p=\text { allele count }
\end{gathered}
$$

What about continuously sampled populations?

$Q_{S T} / F_{S T}$ on a natural scale

Population 1

Variance Partitions

$Q_{S T}=\frac{V_{B}}{V_{B}+V_{W}}$
$F_{S T}=\mathbb{E}\left[Q_{S T}\right]$

The Kinship Matrix

$$
F=\left[\begin{array}{cc}
F_{1} & 0 \\
0 & F_{2}
\end{array}\right]
$$

$Q_{S T} / F_{S T}$ on a natural scale

Variance Partitions

$V_{B}=\left(\vec{U}_{1} \cdot \vec{Z}\right)$

The Eigenvalue Decomposition (Principal Components)

$$
\mathbf{F}=\left[\begin{array}{llll}
\vec{U}_{1} & \vec{U}_{2} & \ldots & \vec{U}_{K-1}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{K-1}
\end{array}\right]\left[\begin{array}{c}
\vec{U}_{1}^{T} \\
\vec{U}_{2}^{T} \\
\ldots \\
\vec{U}_{K-1}^{T}
\end{array}\right]
$$

$Q_{S T} / F_{S T}$ on a natural scale

Population 2

Variance Partitions

$V_{B}=\left(\vec{U}_{1} \cdot \vec{Z}\right)^{2}$

The Eigenvalue Decomposition (Principal Components)

$$
\mathbf{F}=\left[\begin{array}{llll}
\vec{U}_{1} & \vec{U}_{2} & \ldots & \vec{U}_{K-1}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{K-1}
\end{array}\right]\left[\begin{array}{c}
\vec{U}_{1}^{T} \\
\vec{U}_{2}^{T} \\
\ldots \\
\vec{U}_{K-1}^{T}
\end{array}\right]
$$

$Q_{S T} / F_{S T}$ on a natural scale

Variance Partitions

$V_{B}=\left(\vec{U}_{1} \cdot \vec{Z}\right)^{2}$

$$
V_{W}=\sum_{i=2}^{K-1}\left(\vec{U}_{i} \cdot \vec{Z}\right)^{2}
$$

The Eigenvalue Decomposition (Principal Components)

$$
\mathbf{F}=\left[\begin{array}{llll}
\vec{U}_{1} & \vec{U}_{2} & \ldots & \vec{U}_{K-1}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{K-1}
\end{array}\right]\left[\begin{array}{c}
\vec{U}_{1}^{T} \\
\vec{U}_{2}^{T} \\
\ldots \\
\vec{U}_{K-1}^{T}
\end{array}\right]
$$

$Q_{S T} / F_{S T}$ on a natural scale

Variance Partitions

$V_{B}=\left(\vec{U}_{1} \cdot \vec{Z}\right)^{2}$

$$
V_{W}=\sum_{i=2}^{K-1}\left(\vec{U}_{i} \cdot \vec{Z}\right)^{2}
$$

$$
F_{S T}=\frac{\lambda_{1}}{\sum_{i=1}^{K-1} \lambda_{i}}
$$

The Eigenvalue Decomposition (Principal Components)

$$
\mathbf{F}=\left[\begin{array}{llll}
\vec{U}_{1} & \vec{U}_{2} & \ldots & \vec{U}_{K-1}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{K-1}
\end{array}\right]\left[\begin{array}{c}
\vec{U}_{1}^{T} \\
\vec{U}_{2}^{T} \\
\ldots \\
\vec{U}_{K-1}^{T}
\end{array}\right]
$$

Positive result if PC predicts phenotype better than expected

Positive result if PC predicts phenotype better than expected

Positive result if PC predicts phenotype better than expected

$Q_{S T} / F_{S T}$ on a natural scale

Variance Partitions

$V_{B}=\left(\vec{U}_{1} \cdot \vec{Z}\right)^{2}$

$$
V_{W}=\sum_{i=2}^{K-1}\left(\vec{U}_{i} \cdot \vec{Z}\right)^{2}
$$

$$
F_{S T}=\frac{\lambda_{1}}{\sum_{i=1}^{K-1} \lambda_{i}}
$$

The Eigenvalue Decomposition (Principal Components)

$$
\mathbf{F}=\left[\begin{array}{llll}
\vec{U}_{1} & \vec{U}_{2} & \ldots & \vec{U}_{K-1}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{K-1}
\end{array}\right]\left[\begin{array}{c}
\vec{U}_{1}^{T} \\
\vec{U}_{2}^{T} \\
\ldots \\
\vec{U}_{K-1}^{T}
\end{array}\right]
$$

$Q_{S T} / F_{S T}$ on a natural scale

Variance Partitions

The Eigenvalue Decomposition (Principal Components)

$$
\mathbf{F}=\left[\begin{array}{llll}
\vec{U}_{1} & \vec{U}_{2} & \ldots & \vec{U}_{K-1}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{K-1}
\end{array}\right]\left[\begin{array}{c}
\vec{U}_{1}^{T} \\
\vec{U}_{2}^{T} \\
\ldots \\
\vec{U}_{K-1}^{T}
\end{array}\right]
$$

$Q_{S T} / F_{S T}$ on a natural scale

Variance Partitions

$V_{B}=\left(\vec{U}_{1} \cdot \vec{Z}\right)^{2}+\left(\vec{U}_{2} \cdot \vec{Z}\right)^{2}$ $V_{W}=\sum_{i=3}^{K-1}\left(\vec{U}_{i} \cdot \vec{Z}\right)^{2}$

The Eigenvalue Decomposition (Principal Components)

$$
\mathbf{F}=\left[\begin{array}{llll}
\vec{U}_{1} & \vec{U}_{2} & \ldots & \vec{U}_{K-1}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{K-1}
\end{array}\right]\left[\begin{array}{c}
\vec{U}_{1}^{T} \\
\vec{U}_{2}^{T} \\
\ldots \\
\vec{U}_{K-1}^{T}
\end{array}\right]
$$

$Q_{S T} / F_{S T}$ on a natural scale

Variance Partitions

$V_{B}=\left(\vec{U}_{1} \cdot \vec{Z}\right)^{2}+\left(\vec{U}_{2} \cdot \vec{Z}\right)^{2}$

$$
V_{W}=\sum_{i=3}^{K-1}\left(\vec{U}_{i} \cdot \vec{Z}\right)^{2}
$$

The Eigenvalue Decomposition (Principal Components)

$$
\mathbf{F}=\left[\begin{array}{llll}
\vec{U}_{1} & \vec{U}_{2} & \ldots & \vec{U}_{K-1}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{K-1}
\end{array}\right]\left[\begin{array}{c}
\vec{U}_{1}^{T} \\
\vec{U}_{2}^{T} \\
\ldots \\
\vec{U}_{K-1}^{T}
\end{array}\right]
$$

$Q_{S T} / F_{S T}$ on a natural scale

Variance Partitions

$V_{B}=\left(\vec{U}_{1} \cdot \vec{Z}\right)^{2}+\left(\vec{U}_{2} \cdot \vec{Z}\right)^{2}$

$$
V_{W}=\sum_{i=3}^{K-1}\left(\vec{U}_{i} \cdot \vec{Z}\right)^{2}
$$

$$
F_{P C 1: 2}=\frac{\lambda_{1}+\lambda_{2}}{\sum_{i=1}^{K-1} \lambda_{i}}
$$

The Eigenvalue Decomposition (Principal Components)

$$
\mathbf{F}=\left[\begin{array}{llll}
\vec{U}_{1} & \vec{U}_{2} & \ldots & \vec{U}_{K-1}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{K-1}
\end{array}\right]\left[\begin{array}{c}
\vec{U}_{1}^{T} \\
\vec{U}_{2}^{T} \\
\ldots \\
\vec{U}_{K-1}^{T}
\end{array}\right]
$$

Genetic Divergence for Height in Europe

Genetic Divergence for Height in Europe

Genetic Divergence in Height Along PC1 in Europe

Genetic Divergence in Height Along PC1 in Europe

Genetic Divergence in Height Along PC1 in Europe

Take Aways

- Significant but subtle correlation between genetic values for human height and PC1/N-S axis in Europe (but we already knew that)

Take Aways

- Significant but subtle correlation between genetic values for human height and PC1/N-S axis in Europe (but we already knew that)
- $Q_{S T} / F_{S T}$ can be formulated in terms of projections onto reduced rank factorizations of the individual-by-individual kinship matrix
- Relationship to PCA, structure, factor analysis in general
- Engelhardt and Stephens 2010
- Every word of caution applicable to PCA/structure etc. applies here as well

Things I Didn't Mention

- Builds on generalized $Q_{S T} / F_{S T}$ framework of Ovaskainen et al 2011

Things I Didn't Mention

- Builds on generalized $Q_{S T} / F_{S T}$ framework of Ovaskainen et al 2011
- Using G matrix information, can include multiple correlated traits in a single analysis, but interpretation potentially trickier
- Chenoweth and Blows (2008)
- Martin et al (2008)

Things I Didn't Mention

- Builds on generalized $Q_{S T} / F_{S T}$ framework of Ovaskainen et al 2011
- Using G matrix information, can include multiple correlated traits in a single analysis, but interpretation potentially trickier
- Chenoweth and Blows (2008)
- Martin et al (2008)
- Breeding designs easily be incorporated to help with estimation of genetic variance parameters

Thanks!

Graduate
Research Fellowship Program

- Coop Lab
- Alisa
- Gideon
- Simon
- Kristin
- Chenling
- Graham
- Annie Schmitt Lab
- Jeff Ross-Ibarra Lab
- Simon Myers

