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Testing for adaptive differentiation

I Having observed phenotypic differences between populations,
we’d like to know if they are adaptive

I Raise individuals from different populations in a common
environment, measure their traits, and genotype them at a
(preferably large) number of genetic markers

I Compute QST and FST ; compare them
I What if the individuals in our sample can’t be fit neatly
into a discrete set of populations?
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Using GWAS hits to estimate genetic values

Zk =

L∑
`=1

α`pk`
α = effect size

p = allele count
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What about continuously sampled populations?



QST/FST on a natural scale
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F =

[
F1 0
0 F2
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Positive result if PC predicts phenotype better than expected
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Positive result if PC predicts phenotype better than expected
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Positive result if PC predicts phenotype better than expected
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QST/FST on a natural scale
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Genetic Divergence for Height in Europe
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Genetic Divergence for Height in Europe
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Genetic Divergence in Height Along PC1 in Europe
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Genetic Divergence in Height Along PC1 in Europe
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Take Aways

I Significant but subtle correlation between genetic values for
human height and PC1/N-S axis in Europe (but we already
knew that)

I QST /FST can be formulated in terms of projections onto
reduced rank factorizations of the individual-by-individual
kinship matrix

I Relationship to PCA, structure, factor analysis in general
I Engelhardt and Stephens 2010

I Every word of caution applicable to PCA/structure etc. applies
here as well
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Things I Didn’t Mention

I Builds on generalized QST /FST framework of Ovaskainen et al
2011

I Using G matrix information, can include multiple correlated
traits in a single analysis, but interpretation potentially trickier

I Chenoweth and Blows (2008)
I Martin et al (2008)

I Breeding designs easily be incorporated to help with estimation
of genetic variance parameters
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