Testing for Adaptive Divergence: Q_{ST}/F_{ST} Comparisons in Populations with Complicated Histories

Jeremy Berg and Graham Coop

University of California, Davis

June 22, 2014

► Having observed phenotypic differences between populations, we'd like to know if they are adaptive

- ► Having observed phenotypic differences between populations, we'd like to know if they are adaptive
- Raise individuals from different populations in a common environment, measure their traits, and genotype them at a (preferably large) number of genetic markers

- ► Having observed phenotypic differences between populations, we'd like to know if they are adaptive
- Raise individuals from different populations in a common environment, measure their traits, and genotype them at a (preferably large) number of genetic markers
- ▶ Compute Q_{ST} and F_{ST} ; compare them

- ► Having observed phenotypic differences between populations, we'd like to know if they are adaptive
- Raise individuals from different populations in a common environment, measure their traits, and genotype them at a (preferably large) number of genetic markers
- ▶ Compute Q_{ST} and F_{ST} ; compare them
- What if the individuals in our sample can't be fit neatly into a discrete set of populations?

$$Q_{ST} = \frac{V_B}{V_B + V_W} = \frac{V_B}{V_T}$$

$$Q_{ST} = \frac{V_B}{V_B + V_W} = \frac{V_B}{V_T}$$

$$\mathbb{E}\left[Q_{ST}\right] = F_{ST}$$

$$Q_{ST} = rac{V_B}{V_B + V_W} = rac{V_B}{V_T}$$

$$\mathbb{E}\left[Q_{ST}\right] = F_{ST}$$

$$\mathbb{E}[V_B] = V_T F_{ST}$$

$$Q_{ST} = rac{V_B}{V_B + V_W} = rac{V_B}{V_T}$$

$$\mathbb{E}\left[Q_{ST}\right] = F_{ST}$$

$$\mathbb{E}[V_B] = V_T F_{ST}$$

$$\frac{Q_{ST}}{F_{ST}} = \frac{V_B}{\mathbb{E}[V_B]} \sim \chi^2$$

Using GWAS hits to estimate genetic values

LETTER

doi:10.1038/nature09410

Hundreds of variants clustered in genomic loci and biological pathways affect human height

$$Z_k = \sum_{\ell=1}^{L} \alpha_{\ell} p_{k\ell}$$

$$\alpha = \mathsf{effect} \,\, \mathsf{size}$$

$$p =$$
allele count

Using GWAS hits to estimate genetic values

Evidence of widespread selection on standing variation in Europe at height-associated SNPs

Michael C Turchin^{1–5,8}, Charleston WK Chiang^{1–6,8}, Cameron D Palmer^{1–5}, Sriram Sankararaman^{5,6}, David Reich^{5,6}, Genetic Investigation of ANthropometric Traits (GIANT) Consortium⁷ & Joel N Hirschhorn^{1–6}

$$Z_k = \sum_{\ell=1}^L \alpha_\ell p_{k\ell}$$

$$\alpha = \text{effect size}$$
 $p = \text{allele count}$

What about continuously sampled populations?

Variance Partitions

$$Q_{ST} = \frac{V_B}{V_B + V_W}$$

$$F_{ST} = \mathbb{E}\left[Q_{ST}\right]$$

The Kinship Matrix

$$\mathbf{F} = egin{bmatrix} \mathbf{F_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{F_2} \end{bmatrix}$$

Variance Partitions

$$V_B = \left(\vec{U}_1 \cdot \vec{Z}\right)^2$$

$$V_W = \sum_{i=2}^{K-1} \left(\vec{U}_i \cdot \vec{Z}\right)^2$$

$$F_{ST} = \frac{\lambda_1}{\sum_{i=1}^{K-1} \lambda_i}$$

$$\mathbf{F} = \begin{bmatrix} \vec{U}_1 & \vec{U}_2 & \dots & \vec{U}_{K-1} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{K-1} \end{bmatrix} \begin{bmatrix} U_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}_{K-1}^T \end{bmatrix}$$

Variance Partitions

$$V_B = \left(\vec{U}_1 \cdot \vec{Z}\right)^2$$

$$V_W = \sum_{i=2}^{K-1} \left(\vec{U}_i \cdot \vec{Z}\right)^2$$

$$F_{ST} = \frac{\lambda_1}{\sum_{i=1}^{K-1} \lambda_i}$$

$$\mathbf{F} = \begin{bmatrix} \vec{U}_1 & \vec{U}_2 & \dots & \vec{U}_{K-1} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{K-1} \end{bmatrix} \begin{bmatrix} U_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}_{K-1}^T \end{bmatrix}$$

Variance Partitions

$$V_B = \left(\vec{U}_1 \cdot \vec{Z}\right)^2$$

$$V_W = \sum_{i=2}^{K-1} \left(\vec{U}_i \cdot \vec{Z}\right)^2$$

$$F_{ST} = \frac{\lambda_1}{\sum_{i=1}^{K-1} \lambda_i}$$

$$\mathbf{F} = \begin{bmatrix} \vec{U}_1 & \vec{U}_2 & \dots & \vec{U}_{K-1} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{K-1} \end{bmatrix} \begin{bmatrix} \vec{U}_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}_{K-1}^T \end{bmatrix}$$

Variance Partitions

$$V_B = \left(\vec{U}_1 \cdot \vec{Z}\right)^2$$

$$V_W = \sum_{i=2}^{K-1} \left(\vec{U}_i \cdot \vec{Z}\right)^2$$

$$F_{ST} = \frac{\lambda_1}{\sum_{i=1}^{K-1} \lambda_i}$$

$$\mathbf{F} = \begin{bmatrix} \vec{U}_1 & \vec{U}_2 & \dots & \vec{U}_{K-1} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{K-1} \end{bmatrix} \begin{bmatrix} \vec{U}_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}_{K-1}^T \end{bmatrix}$$

Positive result if PC predicts phenotype better than expected

Positive result if PC predicts phenotype better than expected

Positive result if PC predicts phenotype better than expected

Variance Partitions

$$V_B = \left(\vec{U}_1 \cdot \vec{Z}\right)^2$$

$$V_W = \sum_{i=2}^{K-1} \left(\vec{U}_i \cdot \vec{Z}\right)^2$$

$$F_{ST} = \frac{\lambda_1}{\sum_{i=1}^{K-1} \lambda_i}$$

$$\mathbf{F} = \begin{bmatrix} \vec{U}_1 & \vec{U}_2 & \dots & \vec{U}_{K-1} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{K-1} \end{bmatrix} \begin{bmatrix} \vec{U}_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}_{K-1}^T \end{bmatrix}$$

Variance Partitions

$$V_B = \left(\vec{U}_1 \cdot \vec{Z}\right)^2 + \left(\vec{U}_2 \cdot \vec{Z}\right)^2$$

$$V_W = \sum_{i=3}^{K-1} \left(\vec{U}_i \cdot \vec{Z} \right)^2$$

$$F_{PC1:2} = \frac{\lambda_1 + \lambda_2}{\sum_{i=1}^{K-1} \lambda_i}$$

$$\mathbf{F} = \begin{bmatrix} \vec{U}_1 & \vec{U}_2 & \dots & \vec{U}_{K-1} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{K-1} \end{bmatrix} \begin{bmatrix} \vec{U}_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}_{K-1}^T \end{bmatrix}$$

Variance Partitions

$$V_B = \left(ec{U}_1 \cdot ec{Z}
ight)^2 + \left(ec{U}_2 \cdot ec{Z}
ight)^2$$

$$V_W = \sum_{i=3}^{K-1} \left(\vec{U}_i \cdot \vec{Z} \right)^2$$

$$F_{PC1:2} = \frac{\lambda_1 + \lambda_2}{\sum_{i=1}^{K-1} \lambda_i}$$

$$\mathbf{F} = \begin{bmatrix} \vec{U}_1 & \vec{U}_2 & \dots & \vec{U}_{K-1} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{K-1} \end{bmatrix} \begin{bmatrix} \vec{U}_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}_{K-1}^T \end{bmatrix}$$

Variance Partitions

$$V_B = \left(ec{U}_1 \cdot ec{Z}
ight)^2 + \left(ec{U}_2 \cdot ec{Z}
ight)^2$$

$$V_W = \sum_{i=3}^{K-1} \left(\vec{U}_i \cdot \vec{Z} \right)^2$$

$$F_{PC1:2} = \frac{\lambda_1 + \lambda_2}{\sum_{i=1}^{K-1} \lambda_i}$$

$$\mathbf{F} = \begin{bmatrix} \vec{U}_1 & \vec{U}_2 & \dots & \vec{U}_{K-1} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{K-1} \end{bmatrix} \begin{bmatrix} \vec{U}_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}_{K-1}^T \end{bmatrix}$$

Variance Partitions

$$V_B = \left(ec{U}_1 \cdot ec{Z}
ight)^2 + \left(ec{U}_2 \cdot ec{Z}
ight)^2$$

$$V_W = \sum_{i=3}^{K-1} \left(\vec{U}_i \cdot \vec{Z} \right)^2$$

$$F_{PC1:2} = \frac{\lambda_1 + \lambda_2}{\sum_{i=1}^{K-1} \lambda_i}$$

$$\mathbf{F} = \begin{bmatrix} \vec{U}_1 & \vec{U}_2 & \dots & \vec{U}_{K-1} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{K-1} \end{bmatrix} \begin{bmatrix} U_1^T \\ \vec{U}_2^T \\ \dots \\ \vec{U}_{K-1}^T \end{bmatrix}$$

Genetic Divergence for Height in Europe

Genetic Divergence for Height in Europe

Genetic Divergence in Height Along PC1 in Europe

Genetic Divergence in Height Along PC1 in Europe

Genetic Divergence in Height Along PC1 in Europe

Take Aways

 Significant but subtle correlation between genetic values for human height and PC1/N-S axis in Europe (but we already knew that)

Take Aways

- Significant but subtle correlation between genetic values for human height and PC1/N-S axis in Europe (but we already knew that)
- $ightharpoonup Q_{ST}/F_{ST}$ can be formulated in terms of projections onto reduced rank factorizations of the individual-by-individual kinship matrix
 - ▶ Relationship to PCA, *structure*, factor analysis in general
 - ► Engelhardt and Stephens 2010
 - Every word of caution applicable to PCA/structure etc. applies here as well

Things I Didn't Mention

lacktriangle Builds on generalized Q_{ST}/F_{ST} framework of Ovaskainen et al 2011

Things I Didn't Mention

- \blacktriangleright Builds on generalized Q_{ST}/F_{ST} framework of Ovaskainen et al 2011
- Using G matrix information, can include multiple correlated traits in a single analysis, but interpretation potentially trickier
 - ► Chenoweth and Blows (2008)
 - Martin et al (2008)

Things I Didn't Mention

- lacktriangle Builds on generalized Q_{ST}/F_{ST} framework of Ovaskainen et al 2011
- Using G matrix information, can include multiple correlated traits in a single analysis, but interpretation potentially trickier
 - ► Chenoweth and Blows (2008)
 - Martin et al (2008)
- Breeding designs easily be incorporated to help with estimation of genetic variance parameters

Thanks!

Graduate Research Fellowship Program

- Coop Lab
 - Alisa
 - ► Gideon
 - Simon
 - Kristin
 - ► Chenling
 - Graham
- Annie Schmitt Lab
- Jeff Ross-Ibarra Lab
- Simon Myers