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The Universe HPC System
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What can we actually see?

• Mass resolution 

• Spatial resolution 

• Processes on smaller scales 
than these included in 'sub-grid' 
models 

• Galaxies resolved by 100'000 
particles, despite there being 100 
billion particles integrated

Mg = M* ≈ 106 M⊙

ℓg ≈ 1 kpc

MW mass spiral galaxy 
post-processed with SKIRT (Trayford, McAlpine)



What are the challenges?

• Computational: how do we scale our 
calculation to tens of thousands of cores? 

• Physical: how do we model the gas 
dynamics and sub-grid physics? 

• Astrophysical: how do we calibrate our 
model?

Grand design spiral from SWIFT/EAGLE tests

Multiple time-stepping Variable h



Cosmological hydrodynamics

• Smoothed Particle Hydrodynamics 
(SPH / ANARCHY) - EAGLE, FIRE 

• SPH-Arbitrary Lagrange-Euler (SPH-
ALE / GIZMO) - FIRE-II, SIMBA 

• Moving mesh (AREPO) - Illustris, 
Illustris-TNG

Accuracy 
(per part) Cost Number 

of parts
Sub-grid 
precision



Possible Schemes

"Traditional SPH" SPH-ALE (Finite Mass) ANARCHY-SPH

Basic Density-Energy SPH

ρi = ∑
j

mjWij

Fixed artificial viscosity (Monaghan 1992)

dv
dt

visc

∝ α∑
j

∇Wij

dv
dt

sph

∝ ∑
j

Pi

ρ2
i

∇Wij

Variable artificial viscosity

α ∼ ·∇ ⋅ v

Artificial diffusion/conduction

αD ∼ ∇2u
du
dt

diff

∝ ∑
j

αD,i(ui − uj)

No Riemann solver!HLLC Riemann Solver

Volume estimate from SPH

Vi =
1

∑j Wij

Primitive interface moves with the velocity 
of the contact discontinuity

Gradient-based slope-limiter



How do you decide on a scheme?

• Selection of hydrodynamics test problems that are relevant 

• Important to study these at the relevant resolutions to your problem (here 
we mean that to have a number of particles comparable to the number of 
particles in a Milky-Way galaxy) 

• Lots of schemes are shown to converge at high resolution but we are 
fundamentally in a low resolution regime. 

• Need to fix everything else - neighbour search, gravity, etc. - use SWIFT!



Realistic ICs

• Generate glass files, instead of using 
perfect BCC ICs 

• In a real simulation, this is the best 
feasible situation 

• We then 'mess around' with particles, 
changing their internal energies and 
removing/adding particles as part of 
our sub-grid modelling.



Sedov-Taylor Blastwave

• Very high mach shock;  

• Created by injection of energy into 
a handful of particles 

• Relevance: 

• Shock handling 

• This is exactly how supernovae 
are implemented in our sub-grid 
model

ℳ = 1000



Density-Energy SPH

Sedov-Taylor Blastwave
ANARCHY SPHSPH-ALE (MFM)

Radius from centre of blastwave
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Binned with 
scatter

Norm calculated in this range 

Agertz+ 2007, Price+ 2008, Hopkins 2013, Price+ 2018Moussa+ 1999, Villa+ 2012, Hopkins 2015Monaghan 1992, Agertz+ 2007 for deficiencies



Sedov-Taylor Blastwave

• SPH-ALE gives a lower L1 norm in 
this regime 

• We see from the previous images, 
though, that this doesn't necessarily 
mean a 'better' answer 

• Note how traditional SPH gives a 
longer time-to-solution on this 
problem; it takes more steps
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Evrard Collapse

• Self-gravitating sphere of gas 

• Shock that propagates outwards 

• Eventually settles into an 
equilibrium state 

• Relevance: 

• Shock handling 

• Coupling to gravity



Traditional SPH

Evrard Collapse
Modern SPHGIZMO
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Evrard Collapse

• All schemes give approximately 
the same result here 

• Leads to very similar norms and 
convergence 

• For the same cost as GIZMO, we 
can integrate 8x more particles 
with SPH
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Gresho Vortex

• Twirling vortex of gas 

• Constant density everywhere 

• Relevance: 

• Conservation of angular 
momentum 

• Numerical stability



Gresho Vortex
Traditional SPH Modern SPHGIZMO
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Gresho Vortex

• GIZMO performs extremely well 
here, but at 8x the cost again! 

• SPH is never as stable as GIZMO 
at late times; the vortex always 
collapses 

• Realistic simulations are nowhere 
near this idealised case.
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Mini-Summary

• The major gains in the past ~12 years for SPH have allowed it to perform 
similarly to SPH-ALE at the resolutions we run at. 

• This makes it a great choice for large-scale simulations like EAGLE 

• What are these advancements? 

• Artificial viscosity (shock handling) 

• Numerical diffusion/conduction (energy transport)



Traditional SPH Modern SPH



Traditional SPH Modern SPH



Traditional SPH Modern SPH



Conclusions

• 'Modern' SPH is still a useful alternative to SPH-ALE 

• Our ANARCHY scheme prevents excess diffusion in the very low 
resolution, high mach number flows that we simulate 

• Choosing the scheme to use is non-trivial and is very problem-dependent: 
more complex may not be better! 

• SWIFT is publicly available and ready for general use



@JBorrow joshua.borrow@durham.ac.uk

With SPH!

Agertz+ 2007's takedown of SPH


