
	

	

Additional file 1: Detailed description of some of the miRkwood steps 

1 Alignment filtering 

When annotation of the reference genome is available (in a GFF file), we offer the possibility 

to discard reads whose alignment overlaps an annotated element. For that, we use the 

BEDtools intersect function and remove each read that overlaps a feature by at least 1 nt. 

Selected features are “CDS” for coding regions, “tRNA” for transfer RNA, “rRNA” for ribosomal 

RNA, “snoRNA” for small nucleolar RNA.  

As for the “known miRNAs”, we use genome coordinates of miRBase precursor sequences 

and we select any read that is entirely included in a precursor (miRNA_primary_transcript in 

miRBAse file). 

2 Peak calling  

To locate expression signals into the set of reads, we have developed a method that is both 

scalable and takes advantage of the secondary structure of the precursors.  

● First, we scan the set of reads to detect regions with high read coverage (twice the 

average).  

● Second, we identify statistically significant peaks within these regions using K-means 

approach.  

● Finally, for each peak we test if the sequence can bind to a neighboring sequence, 

which is a necessary condition to belong to a hairpin. The goal is to eliminate peaks 

that are not likely to occur in a hairpin loop. This step is performed by dynamic 

programming, with a method inspired from Smith and Waterman algorithm for local 

alignment [1]. We define a local score that reflects the binding affinity between two 

regions. For each pair of nucleotides, we assign a weight: 1 for G↔U, 2 for A↔U, 3 for 

G↔C is 3, and -2 for all other pairs (mismatches or matches). Watson-Crick pairs and 

wobble pairs have a positive weight defined as the number of hydrogen bonds involved 

in the pairing, whereas all other pairs have a negative weight. Insertions or deletions of 

a nucleotide have a penalty of -3. The algorithm then searches for the best affinity 

between the 21 nt region surrounding the peak summit and the flanking region (400 

nucleotides).  

3 Secondary structure of the hairpin precursor  

3.1 Algorithm 

The first problem to address when searching for microRNAs precursors is the typology of their 



	

	

secondary structures. Plant pre-miRNAs are known to be more variable in size and structural 

features than those of animals. To illustrate this, Figure 1 shows the size distribution of all plant 

pre-miRNAs (Viridiplantae, 6150 sequences) extracted from miRBase (Release 20) [2]. The 

size ranges from 43 to 938 nt, the mean is 146 nt and the standard deviation 76. 

 

 

Figure 1: Frequency distribution of the length of plant pre-miRNAs (miRBase, V20) 

As for the secondary structures, we investigated the optimal folding structure with minimum 

free energy of each plant pre-miRNA sequence. For that, we computed the MFE structure with 

RNAfold [3], and parsed these structures to examine their shape. We found out that for 1604 

of them (>25%) the MFE structure is not a pure stem-loop. However, these structures do 

contain a stem-loop, and the terminal loop for some local structural elements. Figure 2 shows 

such an example. 

 

     

 

 
 

Figure 2 : Optimal secondary structure of ath-mir165a, computed with RNAfold (left), and the 

stemloop secondary structure provided in miRBase (right) 

 



	

	

Considering these two points, we have developed a three-step strategy to identify putative 

miRNA precursors : 

● scan the peak sequence for locally stable secondary structures with RNALfold [4]. We 

used a sliding window of length 400 (option –L). This value has been chosen to cover 

more than 98% of pre-miRNAs present in miRBase. RNALfold is guaranteed to return 

only optimal MFE structures and does not require any other parameters, such as the 

maximal size of a bulge.  

● filter out the output of RNALfold and select all secondary structures that might contain 

a stem-loop. This is done with a custom program, that uses three parameters : 

- the minimum length of the pre-miRNA, set to 70 

- the maximum length of the pre-miRNA, set to 400 

- the size s of a sliding window and a number n of base pairs, such that the 

hairpin should contain at least one window of length s with at least n base 

pairs. We set s=20 and n= 17, which corresponds to the fact that the duplex 

formed by the mature miRNA and the star miRNA is significantly stable.  

● group overlapping predictions (more than 50% positions in common), and select the 

best candidate according to this rule: if a prediction is included into another prediction, 

select the longest one whose MFEI is smaller than -0.8. In all other cases, select the 

prediction with lower MFEI (see definition of the MFEI below). The other structures are 

kept as alternative foldings for the same candidate. 

3.2 Evaluation on pseudo-hairpins  

To evaluate the accuracy of our algorithm and see whether it is able to distinguish true 

precursors from pseudo-hairpins, we show some experimental results on positive and negative 

datasets.  

The two positive datasets are composed of known plant pre-miRNAs extracted from miRBase 

V20. We have selected two subsets: Plant pre-miRNAs and High confidence plant pre-

miRNAs. 

Plant pre-miRNAs: All pre-miRNAs from the clade viridiplantae without any ambiguous 

character, such as N, R, K,… : This gives 6,070 sequences (out of a total amount of 6,150 

plant sequences in miRBase). 

High confidence plant pre-miRNAs : This is a subset of the preceding dataset, which 

corresponds to miRBase entries based on deep sequencing data 

(http://www.mirbase.org/blog/2014/03/high-confidence-micrornas). We have selected all plant 

sequences without any ambiguous character: This gives 561 sequences (out of 566 



	

	

sequences). 

As for the negative samples, we have used two pseudo-hairpins datasets: PlantMiRNAPred 

pseudo-hairpins and Triplet-SVM pseudo-hairpins, that have both been previously defined to 

train miRNA classifiers. 

PlantMiRNAPred pseudo-hairpins: This dataset comes the plant pseudo hairpin dataset used 

in plantmirnapred [5], and was downloaded from http://nclab.hit.edu.cn/PlantMiRNAPred. This 

is a set of 2,122 sequences extracted from protein coding sequences of Arabidopsis 

thaliana and Glycine max. This collection of pseudo-hairpins is also used in [6] and [7]. Since 

a threshold of 70 nt is used on the size of the stem-loop and that some sequences are longer 

than the stem-loop structure, we selected all sequences whose length is larger than or equal 

to 80 nt to avoid spurious true negatives. This gives a total amount of 2,062 sequences. 

 

Triplet-SVM pseudo-hairpins: This dataset comes from the training set used by Triplet-SVM 

[8] and MiPred [9], and was downloaded from 

http://bioinfo.au.tsinghua.edu.cn/software/mirnasvm/Triplet-svm-predictor.htm. This is a set of 

pseudo-hairpins constructed on human messenger RNA sequences. We selected all 

sequences whose hairpin length is greater than or equal to 70 nt. This gives a total amount of 

3,381 sequences. 

We tested the performance of our approach to find precursors sequences on each of these 

data sets. Results are displayed in Table 1. They show that our approach finds a stem-loop 

structure for more than 85% of pre-miRNAs present in miRBase. False negatives come mainly 

from short stem-loops (less than 70 nt) and more importantly incomplete sequences in 

miRBase. Not surprisingly, results are even better with high confidence miRBase precursors: 

it reaches 98%. 

The selectivity can be evaluated on the two pseudo-hairpins datasets, plantMiRNApred and 

triplet-SVM. We observe less than 21% false positive predictions. So, we are able to discard 

more than 75% of pseudo-hairpins.  

 

 

 

 

 



	

	

 Total number 
of sequences 
in the dataset 

Number of sequences with 
at least one hairpin 
structure found   

Positive datasets   

plant mirbase  6070 5215 (85.9%)  

high confidence plant 

mirbase 

561 550 (98.0%)  

Negative datasets   

plantMiRNApred 2062 418 (20.3%) 

triplet-SVM 3881 417 (10.7%)  

Table 1: Sensitivity and selectivity results for raw predictions 

3.3 Results on chr1 Arabidopsis thaliana, comparison with miRNAFold 

We have also run the algorithm on the raw genomic sequence of the chromosome 1 from 

Arabidopsis thaliana. This chromosome, with a length of 35 Mb, contains 88 pre-miRNAs 

producing 102 mature miRNAs according to miRBase annotations. Of course, our algorithm is 

not intended to be used with such a large sequence without deep sequencing data. It is 

expected to produce a huge number of false positive predictions. The goal of this experiment 

is precisely to quantify this number of false positive predictions, and to see if we are still able 

to extract some signal. 

From this dataset, we produced a total of 77,584 secondary structures. By way of comparison, 

the miRNAFold program [10] was launched on the same data, with the following parameters: 

sliding window size 400, minimum hairpin size 70, species parameters A. thaliana. miRNAFold 

is an ab initio software that searches for pre-miRNA structures in genomic sequences without 

any given additional information. miRNAfold predicts more than 200,000 pre-miRNAs, three 

times more than our algorithm. 

If we look at the MFEI level (see below), 9,314 out of our 77,584 predictions have a MFEI 

smaller than the threshold -0.8. This subset of predictions contains 89.8% of all pre-miRNAs 

annotated in miRBase for chromosome 1.  

 

 



	

	

4 Thermodynamic stability of the pre-miRNA and MFEI thresholds 

Several publications establish that plant pre-miRNAs have distinctive structural folding 

characteristics compared to pseudo-hairpins (e.g. [11]). The first folding measures we use are 

the MFE, the MFEI and the AMFE [12].  

● MFE (minimal free energy) denotes the negative folding free energy of a secondary 

structure. It is computed with the Matthews-Turner nearest neighbour model 

implemented in RNAeval [13]. This model considers the minimum energy values 

obtained by complementary base pairs decreased by the stacking energy of successive 

base pairs or increased by the destabilising energy associated with non-

complementary bases.  

 

● AMFE is an adjusted MFE. It is calculated by the equation: 

AMFE = MFE / sequence length x 100.   

 

● MFEI is the minimal folding energy index. It is calculated by the equation:  

MFEI = [MFE / sequence length x 100] / GC% = AMFE/GC% 

 

Among all these measures, the MFE, AMFE and MFEI are interdependent by nature. We 

chose the MFEI as major indicator.  

 

Mirkwood uses the MFEI threshold twice. 

● It has an option to keep only precursors whose MFEI is smaller than -0.6. 

● Moreover, we add one star in our score system when the MFEI of the precursor is 

strictly smaller than -0.8.   

 

We can take a deeper look at the MFEI distribution for the hairpin found with the positive and 

negative datasets of the previous section. Results are available in Table 2. They show a clear 

separation between the predictions coming from positive and negative samples. The optional 

threshold -0.6 allows to discard more than 30% of false positive predictions, while eliminating 

less than 0.5% sequences in the high confidence miRBase dataset. As for the -0.8 threshold, 

it is reached by more than 90% sequences in the positive datasets, whereas less than 5% of 

sequences in negative datasets reach it.  

 

 



	

	

 MFEI ≥ -0.6 -0.6 > MFEI ≥ -

0.8 

MFEI < -

0.8 

Plant mirbase (5269 hairpins) 1.5% 8% 90.5% 

High confidence plant miRBase (554 hairpins) 0.5% 5.8% 93.7% 

plantmirRNApred (418 hairpins) 38.8% 56.2% 5% 

triplet-SVM (417 hairpins) 30.2% 65% 4.8% 

Table 2 : MFEI distribution 

 

Another measure which distinguishes pre-miRNA precursors from pseudo-hairpins is the 

stability of the real precursor when compared to their randomised counterparts. This idea was 

initially introduced in randfold [11] and is used in Mirdeep-P [14].  

Randfold computes the probability that, for a given RNA sequence, the MFE of the secondary 

structure is different from a distribution of MFE with Monte Carlo and randomisation tests. The 

downside of this approach is that it is time-consuming. For each candidate, it requires to 

generate hundreds of randomised sequences and to fold them. We have designed a custom 

program that concentrates on sequences with significant MFE and stops the calculation as 

soon the target probability is above a given threshold (set to 0.1). It uses RNAfold [13] to 

compute the MFE, and the Altschul-Erikson algorithm to generate randomised sequences with 

dinucleotide preservation. 

In Figure 3, we compare the behaviour of the MFEI and of the P-value for dinucleotide shuffled 

sequences on all plant miRBase sequences. We observe that low values of MFEI (<-0.8) are 

systematically associated to low values of P-value. In this perspective, the functionality Shuffle 

is an optional criteria of miRkwood. 

 



	

	

 
Figure 3: Relation between the MFEI and the P-value calculated on shuffled sequences for the 

miRBase precursor sequences. 

 

5 Evolutionary conserved mature miRNAs 

Several miRNA families are conserved between multiple plant species [15]. This observation 

is extensively used by microHarvester [16], for example. Such tools usually used BlastN to 

search for similar sequences in miRBase. Here we have chosen to use Piccolo [17], that is an 

exact implementation of the sequence alignment problem. It is more sensitive than BlastN, 

while keeping the computational time low. Moreover, it guarantees that the comparison 

involves the full length mature miRNA.  

We compare the precursor sequence to the set of miRNA sequences of miRBase V21 such 

as available in the file ‘mature.fa’ restricted to the clade Viridiplantae, and we select all 

alignments with at most three errors (mismatch, deletion or insertion) that occur in one of the 

two arms of the stem-loop. Three errors with the file miRBase mature.fa corresponds to an 

empirical estimated P-value of 3E-2 for each pre-miRNA. Alignments with 2 errors or less have 

an estimated P-value of 4E-3. Moreover, we check whether the alignment overlap with the 

miRNA. 
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