Comparison between cytoarchitectonic and MRI based parcellation of the human auditory cortex

¹Department of Cognitive Neuroscience, Maastricht University, The Netherlands; ²Institute for Neuroscience and Medicine (INM-1), and JARA Brain, Research Centre Jülich, Jülich, Germany; ³C. and O. Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Germany; ⁴University of Minnesota, Minneapolis, MN, USA

Introduction

Identifying location of human auditory cortical areas based on MRI remains challenging for primary auditory cortex [1]. The correspondence between parcels identified using in-vivo MRI and post mortem-atlases could be affected by anatomical inter subject variability in the temporal lobes [2, 3, 4]. Here we readdress this issue by modernizing analysis of a seminal cytoarchitectonic study of the human auditory cortex [2]. We compare the cytoarchitectonically labeled regions to a prominent multi-modal MRI atlas [5] to investigate the correspondence of the proposed MRI-based parcels around superior temporal cortex with post-mortem identification of cortical areas.

Methods

- 10 post-mortem brains acquired at 1x1x1.17mm resolution (T1w FLASH, see [2]).

Results

4. Individual surface reconstructions show individual sup. temp. cortex shape differences (only right hemi. shown here):

W560

- Cytoachitectonic areal broders were defined at superior temporal gyrus [6].
- Tailored surfel enhancing structure tensor based filtering [7, 8]. See https://github.com/ofgulban/segmentator for implementation of this filter.
- Initial intensity-gradient magnitude 2D histogram interactive WM segmentation.
- Manual edits with joint surface reconstruction until Euler characteristic becomes 2.

1. Figures adapted from Morosan et al. 2001 summarizing procedure of cytoarchitectonic area definitions:

Cell body stained section showing layer types

Schematic of auditory areas around HG

Section of an individual brain

Te1.2

Te1.0

2. Surfel enhanced MR images are used to reduce sulcal blurr and help white matter segmentation process:

5. Cytoarchitectonic parcels visualized on individual inflated brain surfaces (only right hemi. shown here):

6. Direct comparison between cytoarchitectonic and MRI-based parcellations shows major differences on Heschl's Gyrus

3. Reconstructions of superior temporal cortex. See the amount of shape difference between two hemispheres in the same brain:

Future directions

- Tailored cortex based alignment to better account for inter-subject differences at superior temporal cortex.

- Creating templates for different gyrification types with cytoarchitectonically labelled parcels to validate previous parcellation methods [5, 9].

References

[1] Dick, et al. (2012)[2] Morosan, et al. (2001)[3] Rademacher, et al. (2001)

[4] Hackett, et al. (2001) [5] Glasser, et al. (2016) [6] Schleicher, et al. (1999) [7] Weickert, et al. (1998) [8] Mirebeau, et al. (2015) [9] Kim, et al. (2000) Acknowledgments F.D.M. and O.F.G. were supported by NWO VIDI grant 864-13-012. @ofgulban or see my ORCID: 0000-0001-7761-3727

