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Is Metabolomics ready for the return 
of Artificial Neural Networks?
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Background: Goodacre & Kell 1992-1998
1992

1998
‘Genetic Algorithms, Artificial 
Neural Networks and their 
Application to Chemometrics’.

1994-1998

1996

28 ANN papers
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Rise of PLS-DA
Number of publications per year 
(Web of Science) including the 
key term metabolite*, metabolom* 
or metabonom*
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Fall & Rise of ANN

• Black Box
• Computer power
• Access to software
• Overtraining?
• Suitable data sets?

• Societal acceptance
• Cloud Computing
• Free Code
• Better Understanding?
• Suitable data sets?  

1998 2019
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Background Theory
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Machine Learning: Data Driven

data
prediction

data

prediction

Traditional Programming Machine Learning

e.g. e.g. Image Classification

equation
(algorithm)

equation
(algorithm)
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Machine Learning: Data Driven
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Artificial Neural Networks
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Artificial Neural Networks

!" = $" %
&'(

)
*&,"×-&

. = $/ %
"'(

0
1"×!"

. = $/ 11$( %
&'(

)
*&,(×-& + 12$5 %

&'(

)
*&,5×-& + 13$0 %

&'(

)
*&,0×-&



Centre for Integrative Metabolomics
& Computational Biology

Artificial Neural Networks
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Artificial Neural Networks
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Artificial Neural Networks
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Artificial Neural Networks
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Artificial Neural Networks
Backpropagation       
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Structural Equivalence
PLS (NIPALS / SIMPLS)FF-Lin-ANN (Backprop)
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Current Issues
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Fall & Rise of ANN

• Black Box
• Computer power
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Hyperparameters (structural / optimisation)

data
equation

prediction

ML
optimisation

hyperparameters
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Hyperparameters

Low Bias
High Variance

High Bias
Low Variance

Optimal Bias
Optimal Variance

Polynomial regression: hyperparameter = number of degrees 

degrees = 1 degrees = 6 degrees = 2
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K-fold Cross Validation
Avoid

Overfitting K-fold CV R2/Q2

model complexity              
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PLS-DA (one hyperparameter)

147 metabolites (25 case 25 control)

Example
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PLS-DA Example.
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PLS-DA Example: Pareto Front
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PLS-DA Example: Pareto Front
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Train & Evaluate Predictive Ability
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Holdout independent validation (1/3rd)
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Holdout independent validation (1/3rd)

AUCholdout=0.96 AUCholdout=0.81 AUCholdout=0.87 
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Bootstrap Validation (n=100)
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Hyperparameters for ANN
PLS ANN (3-layer)

1. No. of Latent variables

1. No. Latent Neurons
2. No. of training epochs
3. Learning rate
4. Learning momentum
5. Learning decay rate
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Neurons=2; momentum = 0.5; decay rate = 0
R2 Q2 |R2-Q2|

|R
2 -

Q
2 |

Q2
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Pareto Front
|R

2 -
Q

2 |
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Bootstrap Validation (n=100)
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PLS-DA ANN
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Example 2: MTBLS93

LC-MS: 202 metabolites
2,139 subjects
Male vs. Female. 
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Example 2: MTBLS93
PLS-DA ANN
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Example 2: MTBLS93
PLS-DA ANN
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Comparison



Centre for Integrative Metabolomics
& Computational Biology

Comparison Poster Number 256

Kevin 
Mendez
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Summary

1. All methods prone to overtrain (validation is important)
2. Increased number of hyperparameters and the more 

complex the model the less robust the model (large 
confidence intervals)

3. Only the big data sets produce models with low bias.
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Future Perspectives
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Rise of ANNs & Deep Learning
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Deep Learning
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Deep Learning

shoulder peak

peak

baseline

other
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Deep Learning

shoulder peak

peak

baseline

other
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Multi-omic Integration

multi-block
modelling

feature
selection

biological
association
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Multi-block ANN
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The time is now!
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+

+

+ Anyone
can

learn
to

code!

(not Raw)

(or       )
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Conclusions

• Be wary of the HYPE! (often simple is better)

• Large data is required (Tidy Data)
• Black Box +++
• Huge Potential
• It is not going away - so get educated
• Learn to code!
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Thank you!
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