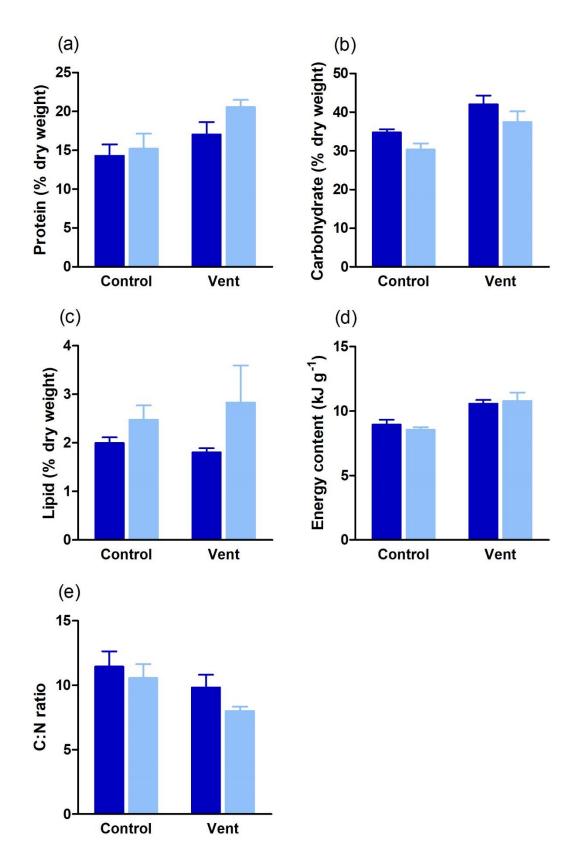
## **Supplementary Information for**

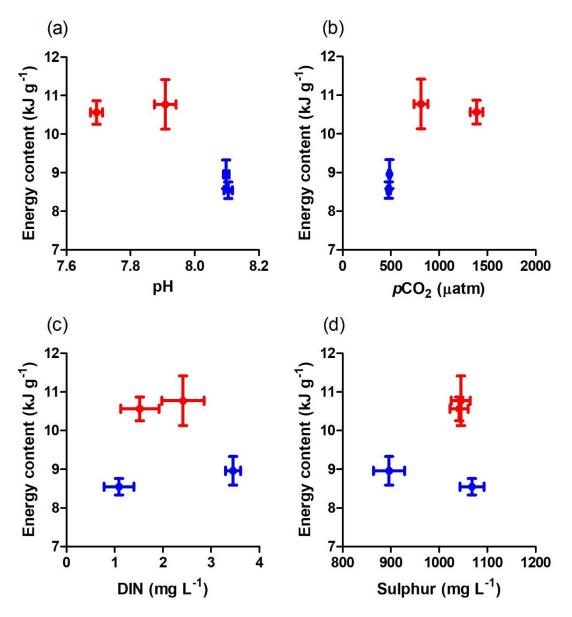
## How calorie-rich food could help marine calcifiers in a CO<sub>2</sub>-rich future

Jonathan Y.S. Leung<sup>1,2</sup>, Zoë A. Doubleday<sup>2</sup>, Ivan Nagelkerken<sup>2</sup>, Yujie Chen<sup>1,3</sup>, Zonghan Xie<sup>3</sup> and Sean D. Connell<sup>2</sup>\*

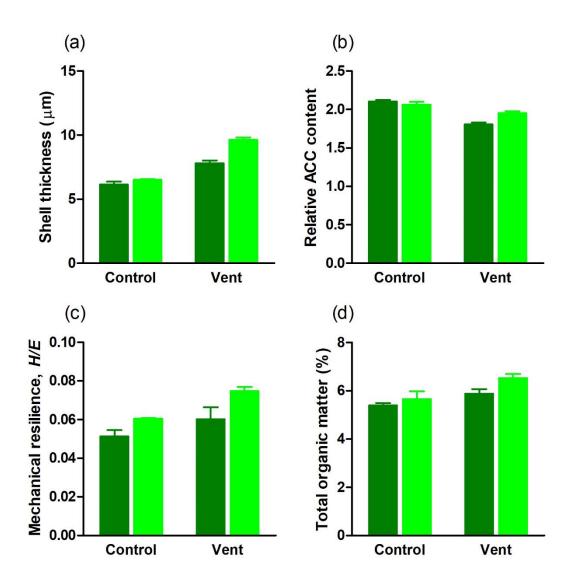
<sup>1</sup>Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China


<sup>2</sup>Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia

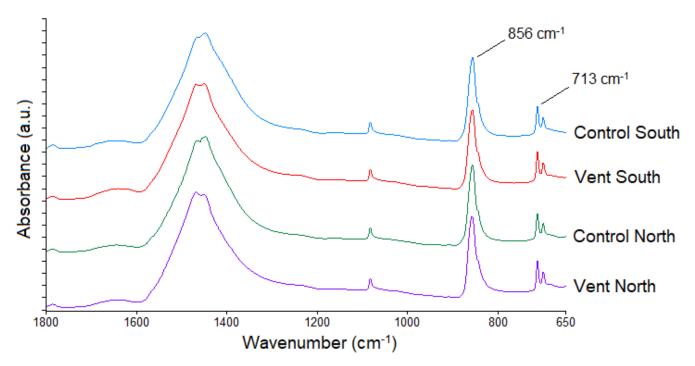
<sup>3</sup>School of Mechanical Engineering, The University of Adelaide, South Australia, Australia


\*Corresponding author: sean.connell@adelaide.edu.au

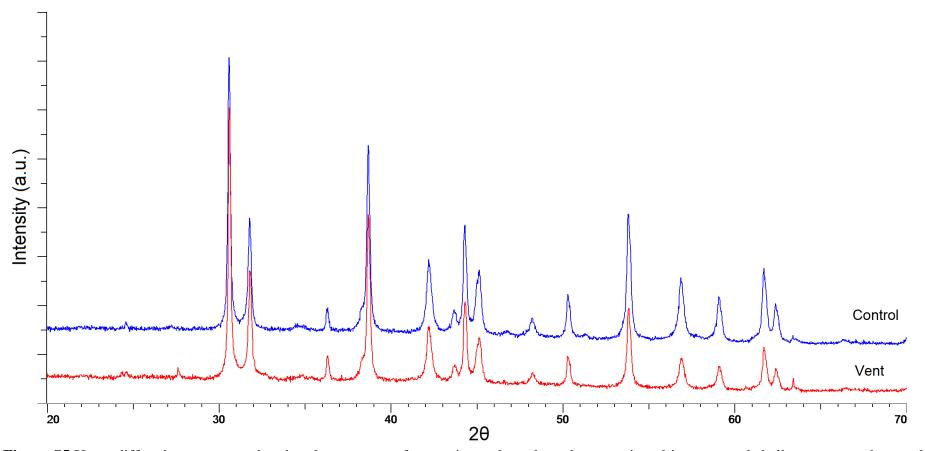
Number of figures: 6


Number of tables: 2

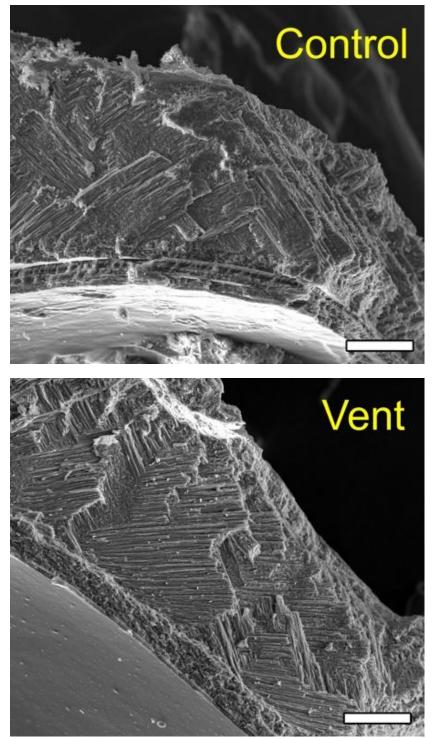



**Figure S1** (a) Protein, (b) carbohydrate, (c) lipid, (d) energy content and (e) C:N ratio of turf algae among sites (mean + S.E., n = 5 per site). North South




**Figure S2** A visual summary of site-level variation in seawater chemistry parameters of notable interest. Whilst energy content of algae tended to increase with (a) reduced pH and (b) elevated  $pCO_2$ , this was not observed for (c) dissolved inorganic nitrogen and (d) sulphur, which can have strong effects on algal growth. Each point represents a site (mean  $\pm$  S.E., n = 5). • Vent • Control.




**Figure S3** (a) Shell thickness, (b) relative ACC content, (c) mechanical resilience and (d) total organic matter of shells among sites (mean + S.E., n = 5 per site). North South



**Figure S4** FTIR spectrum showing the relative ACC content, which is indicated by the intensity ratio of peaks between  $856 \text{ cm}^{-1}$  and  $713 \text{ cm}^{-1}$ . This ratio was greater at controls than vents, meaning that the shells were more crystalline at vents.



**Figure S5** X-ray diffraction spectrum showing the presence of aragonite as the only carbonate mineral in gastropod shells at vents and controls. Carbonate mineral composition was determined using an X-ray diffractometer (D4 Endeavour, Bruker, Germany) with Co K $\alpha$  radiation (35 kV and 30 mA) from 20° to 70° 2 $\theta$  (step size: 0.018° and step time: 1 s), and identified using the EVA XRD analysis software.



**Figure S6** SEM images of *Eatoniella mortoni* shells in the outer lip region using a Philips XL 30 field emission scanning electron microscope, showing similar shell integrity between vents and controls. Bar: 20 µm

**Table S1** Carbonate chemistry parameters, concentrations of nutrients and minerals (mg L<sup>-1</sup>) in seawater among sites (mean  $\pm$  S.E., n = 5 per site). Temperature and pH were measured using a pH/temperature meter (HI 98128, HANNA Instruments, Germany), calibrated using NBS buffers. Salinity and total alkalinity were measured using a hand-held refractometer and potentiometric titrator (888 Titrando, Metrohm, Switzerland), respectively. The *p*CO<sub>2</sub>, bicarbonate ions (HCO<sub>3</sub><sup>-</sup>), carbonate ions (CO<sub>3</sub><sup>2-</sup>) and saturation state of aragonite ( $\Omega_{ara}$ ) were calculated using the CO2SYS program [1], with dissociation constants from Mehrbach et al. [2] refitted by Dickson and Millerro [3]. Nitrate (NO<sub>3</sub><sup>-</sup>), nitrite (NO<sub>2</sub><sup>-</sup>), ammonium (NH<sub>4</sub><sup>+</sup>) and phosphate (PO<sub>4</sub><sup>3-</sup>) ions were measured by a flow injection analyser (QuikChem 8500, Lachat Instruments, USA). Dissolved inorganic nitrogen (DIN) is the sum of NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup> and NH<sub>4</sub><sup>+</sup> concentrations. Minerals were measured by an inductively coupled plasma mass spectrometer (Agilent 7500cs, Agilent Technologies Inc., USA). The concentrations of Cu and Zn are below detection limit.

|                                           | Control North       | Vent North          | Control South       | Vent South          |
|-------------------------------------------|---------------------|---------------------|---------------------|---------------------|
| Seawater carbonate chemistry              |                     |                     |                     |                     |
| Temperature (°C)                          | $21.2\pm0.02$       | $21.5\pm0.12$       | $21.3\pm0.20$       | $21.1\pm0.21$       |
| pH (NBS scale)                            | $8.10\pm0.01$       | $7.69\pm0.02$       | $8.10\pm0.01$       | $7.91\pm0.03$       |
| Salinity (psu)                            | $36.0\pm0.00$       | $36.0\pm0.00$       | $36.0\pm0.00$       | $36.0\pm0.00$       |
| Total alkalinity (µmol kg <sup>-1</sup> ) | $2289 \pm 0.61$     | $2287 \pm 1.26$     | $2290\pm0.99$       | $2288 \pm 1.35$     |
| pCO <sub>2</sub> (µatm)                   | $485\pm12$          | $1390\pm65$         | $478 \pm 18$        | $813\pm72$          |
| $HCO_3^{-}$ (µmol kg <sup>-1</sup> )      | $1871\pm7.4$        | $2100\pm6.0$        | $1866 \pm 9.6$      | $1999 \pm 18$       |
| $CO_3^{2-}$ (µmol kg <sup>-1</sup> )      | $169\pm2.7$         | $75.8\pm2.9$        | $171\pm3.8$         | $117\pm7.2$         |
| $\Omega_{ m ara}$                         | $2.63\pm0.04$       | $1.18\pm0.04$       | $2.66\pm0.06$       | $1.81\pm0.11$       |
| <u>Nutrients</u>                          |                     |                     |                     |                     |
| $NO_3^- + NO_2^-$                         | $0.003\pm0.000$     | $0.029\pm0.008$     | $0.044\pm0.097$     | $0.014\pm0.005$     |
| $\mathrm{NH_4}^+$                         | $3.54\pm0.16$       | $1.49\pm0.40$       | $1.16\pm0.32$       | $2.40\pm0.44$       |
| DIN                                       | $3.55\pm0.16$       | $1.52\pm0.40$       | $1.21\pm0.31$       | $2.42\pm0.44$       |
| PO <sub>4</sub> <sup>3-</sup>             | $0.0003 \pm 0.0000$ | $0.0008 \pm 0.0003$ | $0.0024 \pm 0.0004$ | $0.0012 \pm 0.0003$ |
| Minerals                                  |                     |                     |                     |                     |
| S                                         | $896\pm32.5$        | $1042 \pm 18.7$     | $1068\pm24.9$       | $1045 \pm 19.8$     |
| Mg                                        | $876\pm39.5$        | $1014 \pm 10.9$     | $962 \pm 19.1$      | $1027\pm23.4$       |
| Ca                                        | $318 \pm 10.9$      | $414\pm22.0$        | $381 \pm 9.41$      | $369 \pm 7.05$      |
| Sr                                        | $6.10\pm0.21$       | $7.09\pm0.15$       | $7.03\pm0.12$       | $6.96\pm0.13$       |
| Κ                                         | $289 \pm 14.6$      | $268 \pm 7.36$      | $299 \pm 10.1$      | $257\pm 6.68$       |
| Rb                                        | $0.089 \pm 0.003$   | $0.105\pm0.002$     | $0.106\pm0.002$     | $0.104\pm0.002$     |
|                                           |                     |                     |                     |                     |

| Mn | $0.0004 \pm 0.0002$ | $0.005\pm0.002$ | $0.008\pm0.002$ | $0.004\pm0.0005$ |
|----|---------------------|-----------------|-----------------|------------------|
| Fe | $0.038\pm0.017$     | $0.040\pm0.018$ | $0.291\pm0.094$ | $0.173\pm0.078$  |
| Cu | < 0.0004            | < 0.0004        | < 0.0004        | < 0.0004         |
| Zn | < 0.0006            | < 0.0006        | < 0.0006        | < 0.0006         |

**Table S2** Two-way ANOVA testing the effects of Vent (vent vs. control) and Site (north vs. south) on the seawater chemistry, nutritional quality of turf algae and shell quality of gastropods. See footnote for the protocol used for analysis. Nomenclature used to report the results of SNK test:  $V_N$  (Vent North),  $V_S$  (Vent South),  $C_N$  (Control North) and  $C_S$  (Control South).

- Seawater carbonate chemistry varied among sites  $(V_N > V_S > C_N = C_S)$  for pH, carbonate ion and aragonite saturation, while a reverse pattern was found for  $pCO_2$  and bicarbonate ion. No difference was detected for temperature and total alkalinity.
- Seawater nutrients and minerals did not vary among sites, except that higher ammonium concentration was detected at C<sub>N</sub> and higher phosphate concentration was detected at the northern sites.
- Algal nutritional quality was greater at vents than controls for all parameters (i.e. protein, carbohydrate, energy content and the relative content of nitrogen to carbon), except lipid which did not differ among sites. The northern sites had greater carbohydrate content.
- Shell quality of gastropods varied among sites, where mechanical resilience and total organic matter at vents were greater than those at controls. Shell thickness ( $V_S > V_N > C_N = C_S$ ) and relative ACC content ( $V_N < V_S < C_N = C_S$ ) also varied among sites.

|                                | df      | MS                         | F    | р       | SNK test                |
|--------------------------------|---------|----------------------------|------|---------|-------------------------|
| eawater carbonate ch           | emistry |                            |      |         |                         |
| <u>pH</u>                      |         |                            |      |         |                         |
| Vent                           | 1       | 0.450                      | 8.32 | 0.212   |                         |
| Site                           | 1       | 0.061                      | 27.8 | < 0.001 | North < South           |
| Vent × Site                    | 1       | 0.054                      | 24.9 | < 0.001 | $V_N < V_S < C_N = C_S$ |
| Residual                       | 16      | $2.18 	imes 10^{-3}$       |      |         |                         |
| <u><i>p</i>CO</u> <sub>2</sub> |         |                            |      |         |                         |
| Vent                           | 1       | $1.91\times10^{6}$         | 4.74 | 0.274   |                         |
| Site                           | 1       | $4.25\times10^5$           | 34.2 | < 0.001 | North > South           |
| Site × Location                | 1       | $4.05 	imes 10^6$          | 32.6 | < 0.001 | $V_N > V_S > C_N = C_S$ |
| Residual                       | 16      | $1.24\times10^4$           |      |         |                         |
| Bicarbonate ion                |         |                            |      |         |                         |
| Vent                           | 1       | 0.042                      | 15.5 | 0.158   |                         |
| Site                           | 1       | $3.38\times10^{\text{-}3}$ | 21.0 | < 0.001 | North > South           |
| Vent × Site                    | 1       | $2.73 \times 10^{-3}$      | 17.0 | < 0.001 | $V_N > V_S > C_N = C_S$ |

| Residual               | 16      | $1.61 \times 10^{-4}$ |                       |         |                         |
|------------------------|---------|-----------------------|-----------------------|---------|-------------------------|
| Carbonate ion          |         |                       |                       |         |                         |
| Vent                   | 1       | $2.73 \times 10^4$    | 14.3                  | 0.165   |                         |
| Site                   | 1       | $2.34 \times 10^3$    | 22.7                  | < 0.001 | North < South           |
| Vent × Site            | 1       | $1.91 	imes 10^3$     | 18.6                  | < 0.001 | $V_N < V_S < C_N = C_S$ |
| Residual               | 16      | 103                   |                       |         |                         |
| Aragonite saturation   |         |                       |                       |         |                         |
| Vent                   | 1       | 6.57                  | 14.4                  | 0.164   |                         |
| Site                   | 1       | 0.56                  | 23.1                  | < 0.001 | North < South           |
| $Vent \times Site$     | 1       | 0.46                  | 18.8                  | < 0.001 | $V_N < V_S < C_N = C_S$ |
| Residual               | 16      | 0.024                 |                       |         |                         |
| Total alkalinity       |         |                       |                       |         |                         |
| Vent                   | 1       | 18.2                  | 3.22                  | 0.091   |                         |
| Site                   | 1       | 2.81                  | 0.50                  | 0.491   |                         |
| Vent $\times$ Site     | 1       | 0.761                 | 0.13                  | 0.726   |                         |
| Residual               | 16      | 5.98                  |                       |         |                         |
| Temperature            |         |                       |                       |         |                         |
| Vent                   | 1       | 0.013                 | 0.05                  | 0.864   |                         |
| Site                   | 1       | 0.221                 | 1.82                  | 0.196   |                         |
| Vent × Site            | 1       | 0.265                 | 2.18                  | 0.159   |                         |
| Residual               | 16      | 0.121                 |                       |         |                         |
| Seawater nutrients and | mineral | S                     |                       |         |                         |
| Nitrate + Nitrite      |         |                       |                       |         |                         |
| Vent                   | 1       | $6.62 	imes 10^{-6}$  | $1.63 \times 10^{-3}$ | 0.974   |                         |
| Site                   | 1       | $9.19	imes10^{-4}$    | 0.87                  | 0.365   |                         |
| Vent × Site            | 1       | $4.08 	imes 10^{-3}$  | 3.86                  | 0.067   |                         |
| Residual               | 16      | $1.06 	imes 10^{-3}$  |                       |         |                         |
| <u>Ammonium</u>        |         |                       |                       |         |                         |
| Vent                   | 1       | 0.824                 | 0.06                  | 0.846   |                         |
| Site                   | 1       | 2.69                  | 0.89                  | 0.358   |                         |
| Vent × Site            | 1       | 13.5                  | 4.49                  | 0.050   | $C_N > V_S = V_N = C_S$ |
| Residual               | 16      | 3.01                  |                       |         |                         |
| DIN                    |         |                       |                       |         |                         |
| Vent                   | 1       | 0.83                  | 0.06                  | 0.843   |                         |
| Site                   | 1       | 2.59                  | 0.88                  | 0.362   |                         |
| Vent $\times$ Site     | 1       | 13.1                  | 4.45                  | 0.051   |                         |
|                        |         |                       |                       |         |                         |

|          | Residual           | 16 | 2.94                  |                   |       |                 |
|----------|--------------------|----|-----------------------|-------------------|-------|-----------------|
| <u>P</u> | hosphate           |    |                       |                   |       |                 |
|          | Vent               | 1  | $2.88 	imes 10^{-4}$  | 0.06              | 0.842 |                 |
|          | Site               | 1  | $8.51 	imes 10^{-3}$  | 5.49              | 0.032 | North $<$ South |
|          | $Vent \times Site$ | 1  | $4.51 \times 10^{-3}$ | 2.91              | 0.107 |                 |
|          | Residual           | 16 | $1.55 	imes 10^{-3}$  |                   |       |                 |
| <u>S</u> | <u> </u>           |    |                       |                   |       |                 |
|          | Vent               | 1  | $1.86 	imes 10^4$     | 0.53              | 0.601 |                 |
|          | Site               | 1  | $3.83 	imes 10^4$     | 2.54              | 0.131 |                 |
|          | $Vent \times Site$ | 1  | $3.54 	imes 10^4$     | 2.34              | 0.145 |                 |
|          | Residual           | 16 | $1.51 	imes 10^4$     |                   |       |                 |
| N        | <u>//g</u>         |    |                       |                   |       |                 |
|          | Vent               | 1  | $5.12 	imes 10^4$     | 3.16 <sup>a</sup> | 0.093 |                 |
|          | Site               | 1  | $1.24 	imes 10^4$     | 0.76              | 0.394 |                 |
|          | Vent $\times$ Site | 1  | $6.75 	imes 10^3$     | 0.40              | 0.535 |                 |
|          | Residual           | 16 | $1.68 	imes 10^4$     |                   |       |                 |
| <u>C</u> | Ca                 |    |                       |                   |       |                 |
|          | Vent               | 1  | 8.89                  | 0.61              | 0.579 |                 |
|          | Site               | 1  | 448                   | 0.10              | 0.760 |                 |
|          | Vent $\times$ Site | 1  | $1.47 	imes 10^4$     | 3.16              | 0.095 |                 |
|          | Residual           | 16 | $4.65 	imes 10^3$     |                   |       |                 |
| <u>S</u> | <u>r</u>           |    |                       |                   |       |                 |
|          | Vent               | 1  | 1.05                  | 0.75              | 0.546 |                 |
|          | Site               | 1  | 0.809                 | 1.29              | 0.274 |                 |
|          | Vent $\times$ Site | 1  | 1.40                  | 2.22              | 0.155 |                 |
|          | Residual           | 16 | 0.630                 |                   |       |                 |
| K        |                    |    |                       |                   |       |                 |
|          | Vent               | 1  | $4.98 	imes 10^3$     | 2.02 <sup>a</sup> | 0.173 |                 |
|          | Site               | 1  | 1.54                  | 0.00              | 0.980 |                 |
|          | $Vent \times Site$ | 1  | 543                   | 0.21              | 0.653 |                 |
|          | Residual           | 16 | $2.58 	imes 10^3$     |                   |       |                 |
| R        | <u>Rb</u>          |    |                       |                   |       |                 |
|          | Vent               | 1  | $2.18 	imes 10^{-4}$  | 0.57              | 0.589 |                 |
|          | Site               | 1  | $3.18 	imes 10^{-4}$  | 2.54              | 0.131 |                 |
|          | Vent × Site        | 1  | $3.85 	imes 10^{-4}$  | 3.07              | 0.099 |                 |
|          | Residual           | 16 | $1.25 	imes 10^{-4}$  |                   |       |                 |
|          | -                  |    |                       |                   |       |                 |

<u>Mn</u>

| Vent                   | 1     | $1.15 	imes 10^{-7}$       | $1.46 	imes 10^{-3}$       | 0.976   |                |
|------------------------|-------|----------------------------|----------------------------|---------|----------------|
| Site                   | 1     | 6.51×10 <sup>-5</sup>      | 1.38                       | 0.257   |                |
| Vent × Site            | 1     | $7.87\times10^{\text{-5}}$ | 1.67                       | 0.214   |                |
| Residual               | 16    | $4.70\times10^{\text{-5}}$ |                            |         |                |
| Fe                     |       |                            |                            |         |                |
| Vent                   | 1     | 0.017                      | $0.18^{a}$                 | 0.673   |                |
| Site                   | 1     | 0.188                      | 2.04                       | 0.171   |                |
| Vent × Site            | 1     | 0.018                      | 0.19                       | 0.671   |                |
| Residual               | 16    | 0.096                      |                            |         |                |
| Nutritional quality of | algae |                            |                            |         |                |
| Protein                |       |                            |                            |         |                |
| Vent                   | 1     | 82.3                       | 7.18 <sup>a</sup>          | 0.016   | Vent > Control |
| Site                   | 1     | 24.8                       | 2.17                       | 0.159   |                |
| $Vent \times Site$     | 1     | 8.64                       | 0.74                       | 0.402   |                |
| Residual               | 16    | 11.6                       |                            |         |                |
| Carbohydrate           |       |                            |                            |         |                |
| Vent                   | 1     | 258                        | $9.53\times10^3$           | 0.007   | Vent > Control |
| Site                   | 1     | 103                        | 5.00                       | 0.040   | North > South  |
| $Vent \times Site$     | 1     | 0.027                      | $1.32\times10^{\text{-}3}$ | 0.972   |                |
| Residual               | 16    | 20.6                       |                            |         |                |
| <u>Lipid</u>           |       |                            |                            |         |                |
| Vent                   | 1     | $7.75 	imes 10^{-3}$       | $0.07^{a}$                 | 0.843   |                |
| Site                   | 1     | 0.318                      | 2.89                       | 0.081   |                |
| $Vent \times Site$     | 1     | 0.018                      | 0.16                       | 0.697   |                |
| Residual               | 16    | 0.116                      |                            |         |                |
| Energy content         |       |                            |                            |         |                |
| Vent                   | 1     | 18.3                       | 21.8 <sup>a</sup>          | < 0.001 | Vent > Control |
| Site                   | 1     | 0.052                      | 0.06                       | 0.806   |                |
| $Vent \times Site$     | 1     | 0.484                      | 0.56                       | 0.464   |                |
| Residual               | 16    | 0.861                      |                            |         |                |
| <u>C:N ratio</u>       |       |                            |                            |         |                |
| Vent                   | 1     | 21.7                       | 4.96 <sup>a</sup>          | 0.040   | Vent < Control |
| Site                   | 1     | 9.09                       | 2.08                       | 0.168   |                |
| Vent × Site            | 1     | 1.09                       | 0.24                       | 0.633   |                |
| Residual               | 16    | 4.59                       |                            |         |                |
|                        |       |                            |                            |         |                |

## Shell quality of gastropods

| Shell thickness       |    |                      |                   |         |                                 |
|-----------------------|----|----------------------|-------------------|---------|---------------------------------|
| Vent                  | 1  | 28.8                 | 10.8              | 0.188   |                                 |
| Site                  | 1  | 5.98                 | 35.6              | < 0.001 | South > North                   |
| Vent × Site           | 1  | 2.68                 | 16.0              | 0.001   | $V_{S} > V_{N} > C_{N} = C_{S}$ |
| Residual              | 16 | 0.168                |                   |         |                                 |
| Relative ACC content  |    |                      |                   |         |                                 |
| Vent                  | 1  | 0.207                | 4.64              | 0.277   |                                 |
| Site                  | 1  | 0.013                | 3.61              | 0.076   |                                 |
| Vent × Site           | 1  | 0.045                | 12.5              | 0.003   | $V_N < V_S < C_N = C_S$         |
| Residual              | 16 | $3.57 	imes 10^{-3}$ |                   |         |                                 |
| Mechanical resilience |    |                      |                   |         |                                 |
| Vent                  | 1  | 0.161                | 9.40 <sup>a</sup> | 0.007   | Vent > Control                  |
| Site                  | 1  | 0.203                | 11.9              | 0.003   | South > North                   |
| Vent × Site           | 1  | $5.27 	imes 10^{-3}$ | 0.30              | 0.594   |                                 |
| Residual              | 16 | 0.018                |                   |         |                                 |
| Total organic matter  |    |                      |                   |         |                                 |
| Vent                  | 1  | 2.32                 | 10.5 <sup>a</sup> | 0.005   | Vent > Control                  |
| Site                  | 1  | 1.04                 | 4.72              | 0.044   | South > North                   |
| Vent × Site           | 1  | 0.180                | 0.80              | 0.383   |                                 |
| Residual              | 16 | 0.224                |                   |         |                                 |

Two-way ANOVA tests the effects of Vent as a fixed factor (vent vs. control) and Site as a random factor (north vs. south). Post-hoc pooling of the interaction term with the residual enables a more powerful test of the main factor 'Vent' (p > 0.25) [4]. <sup>a</sup> *F*-ratios and *p*-values affected by pooling and resultant values are given. The critical value of ' $\alpha$ ' was adjusted to allow significant heterogeneity of variances (Cochran's *C*-test, p < 0.05). Transformation: Ln(x) for lipid and mechanical resilience; Ln(x+1) for protein, Mn and bicarbonate ion; x × 33 for phosphate. Bold letters indicate significant difference (p < 0.05).

## References

- Pierrot D, Lewis E, Wallace DWR. 2006 MS Excel Program Developed for CO<sub>2</sub> System Calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.
- Mehrbach C, Culberso CH, Hawley JE, Pytkowic RM. 1973 Measurement of apparent dissociation-constants of carbonic-acid in seawater at atmospheric-pressure. *Limnol. Oceanogr.* 18, 897–907.
- 3. Dickson AG, Millero FJ. 1987 A comparison of the equilibrium-constants for the dissociation of carbonic-acid in seawater media. *Deep Sea Res. A* **34**, 1733–1743.
- 4. Winer BJ, Brown DR, Michels KM. 1991 *Statistical Principles in Experimental Design, 3rd edition*. New York: McGraw-Hill.