Regimes of Head-on Collisions of Equal-sized Binary Droplets

Yi Ran Zhang¹ and Kai Hong Luo²*

¹ Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China

List of supplemental material

Figure S1. Series of images of representative droplet collisions at We = 200.

Figure S2. Maximum spreading state of droplet collisions under different pressures and Weber numbers.

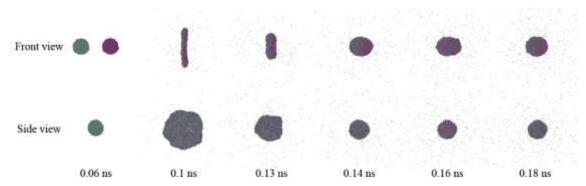


Fig. S1 A series of images of representative droplet collisions in vacuum at We = 200.

² Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom

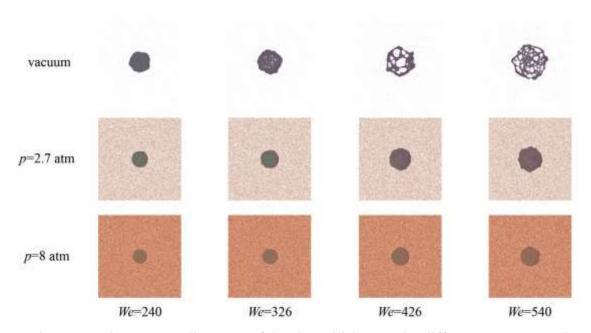


Fig. S2 Maximum spreading state of droplet collisions under different pressures and Weber numbers.