

ensland University of Technolog Faculty of Science and Engineering

We use simulations to illustrate the behaviour of both the temporal and spatio-temporal model.

and cycle period decreasing from north to south

capita and a is half of the saturated level.

we introduce the dimensionless variable by setting: u = X/K, v = Y/nK, S = s/r, C = c/(nK), (3) $A = a/K, Q = qn/r, \tau = rt, y = \sqrt{r/D_1}x$

and $d = D_1/D_2$ into (3) we obtain (4).

[1] P. Turchin, Complex population dynamics: a theoretical/empirical synthesis, Vol. 35 of Monographs in population biology, 2003. Ecology (1991) 353-367. fruit trees, Bulletin of Mathematical Biology (1988) 379-409. [5] R. May, Stability and complexity in model ecosystems, Vol. 6 of Monographs in population biology, 1974. [6] M. Andersson and S. Erlinge, Influence of predation on rodent populations, Oikos (1977) 591-597. [7] S. Erlinge, Predation and noncyclicity in a microtine population in southern Sweden, Oikos (1987) 347-352. 258-266. (2000) 363-371. [10] A. Korobeinikov, A Lyapunov function for Leslie-Gower predator-prey models, Applied Mathematics Letters (2001) 697-699. [11] C. Arancibia-Ibarra and E. González-Olivares, The Holling-Tanner model considering an alternative food for predator, Proceedings of CMMSE 2015 (2015) 130-141.

[12] A. Turing, The chemical basis of morphogenesis, Bulletin of mathematical biology (1990) 153–197.

The equilibrium points of system (4) without diffusion are (0,0), (1,0), (0,C) and the interior equilibrium points:

 $P_{1,2} = (u_{1,2}, u_{1,2} + C)$ where $u_{1,2} = \frac{1}{2} \left(1 - A - Q \pm \sqrt{(1 - A - Q)^2 + 4(A - CQ)} \right)$ The equilibrium point (0,0) is always unstable, (1,0) which is always a saddle point. Moreover, (0, C) can be attractor if CQ-A>0 (see (a)-(c)), saddle node if CQ-A=0 (see (d)) and a saddle point if CQ-A<0 (see (e)). While, there are at most two positive equilibrium points P_1 and P_2 . The positive equilibrium point P_1 is always a saddle point. when it is located in the firs quadrant. While, P₂ can be stable or unstable [11].

We first recall that the mathematical criteria for the Turing pattern formation for spatio-temporal predator-prey model where individuals are assumed to be distributed over one-dimensional and two-dimensional bounded domain. Moreover, if we linearise the full system that includes the diffusive terms [12], about the equilibrium point P₂ we arrive at

$$w_t = J(u, u + C)w + D\nabla^2 w$$
 where $D = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$

Therefore, the dispersion relation $\lambda(k)$ is determined by the roots of the characteristic polynomial:

$$|\lambda I - AP_2 + Dk^2| = \begin{vmatrix} F_u(u_2) & F_v(u_2) \\ G_u(u_2) & G_v(u_2) \end{vmatrix} - \begin{pmatrix} k^2 & 0 \\ 0 & dk^2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$

With all of the conditions met at the equilibrium point P_2 , that is for the diffusion-free system:

$$(i) \frac{u_2 S}{u_2 + A}(-1 + A + Q + 2u_2) > 0 \text{ and } (ii) \frac{u_2 S}{u_2 + A}(1 - A - 2u_2) - S < 0$$

and the conditions for diffusive instability:
$$(iii) \frac{du_2}{u_2 + A}(1 - A - 2u_2) - S > 0 \text{ and } (iv) \left(\frac{du_2}{u_2 + A}(1 - A - 2u_2) - S\right)^2 - \frac{4du_2 S}{u_2 + A}(-1 + A + Q + 2u_2) > 0$$

The Turing parameter space (Q,S) of the equilibrium point P_2 for the system parameters (A,C,d)=(0.15,0.28,5) fixed. Note that if $Q > Q^{**}$ then there are no positive equilibrium points in system (4) without diffusion and (0, C) is stable.

Temporal Model

Temporal Simulation

The bifurcation diagram of system (4) without diffusion for (A,C)=(0.15,0.28) fixed and created with the numerical bifurcation package MATCONT. The curve *H* represents the Hopf curve where P_2 changes stability, *Hom* represents the homoclinic curve of P_1 and *SN*_{1,2} represents the saddle-node curve where $\Delta = 0$ and $u_1 = 0$ respectively. Moreover, BT represents the Bogdanov-Takens bifurcation.

Spatio-temporal Model

Simulation in 2D

t=600 (stationary)