
Parsl: Pervasive Parallel Programing in Python

Daniel S. Katz (d.katz@ieee.org, @danielskatz)
Yadu Babuji, Anna Woodard, Zhuozhao Li, Ben Clifford, Rohan Kumar, Lukasz Lacinski, 
Ryan Chard, Justin M. Wozniak, Ian Foster, Michael Wilde, Kyle Chard

http://parsl-project.org

mailto:d.katz@ieee.org


2

Supporting composition and parallelism in Python

Software is increasingly assembled rather than written
– High-level language (e.g., Python) to integrate and wrap components from many 

sources

Parallel and distributed computing is no longer a niche area
– Increasing data sizes combined with plateauing sequential processing power
– Parallel hardware (e.g., accelerators) and distributed computing systems

Parsl allows for the natural expression of parallelism in such a way that 
programs can express opportunities for parallelism that can then be 
realized, at execution time, using different execution models on different 
parallel platforms



3

Parsl: Interactive parallel programming in Python

Apps define opportunities for parallelism
• Python apps call Python functions
• Bash apps call external applications

Apps return “futures”: a proxy for a result 
that might not yet be available

Apps run concurrently respecting data 
dependencies. Natural parallel programming!

Parsl scripts are independent of where they 
run. Write once run anywhere!

pip install parsl

Try parsl via binder at bottom left of http://parsl-project.org



4

Expressing a many task workflow in Parsl

1) Wrap a protein docking code as a Parsl App:

2) Execute a 
protein 
docking 
workflow by 
calling Apps:



5

Decomposing dynamic parallel execution into a task-
dependency graph

Parsl



6

Parsl scripts are execution provider independent

The same script can be run locally, on grids, clouds, or supercomputers
– Works directly with the scheduler (no HTC-like setup)

Containers for per-app execution or repeated invocation of the same app

Growing support for various execution providers and resources:
– Local, Cloud (AWS, Azure, private), Slurm, Torque, Condor, Cobalt



7

Separation of code and execution

Pilot jobs on a cluster

Local threads



8

Interactive supercomputing in Jupyter notebooks



9

Authentication and authorization

Authn/z is hard…
– 2FA, X509, GSISSH, etc.

Integration with Globus Auth to 
support native app integration 
for accessing Globus (and other) 
services

Using scoped access tokens, 
refresh tokens, delegation 
support



10

Parsl provides transparent (wide area) data management

Implicit data movement to/from 
repositories, laptops, supercomputers

Globus for third-party, high 
performance and reliable data 
transfer 

– Support for site-specific DTNs

HTTP/FTP direct data staging

parsl_file = 
File(globus://EP/path/file)

www.globus.org



11

DOE Distributed Computing & Data Ecosystem (DCDE)

§ A DOE group is identifying best practices and research challenges to create and 
operate a DOE/SC wide federated Distributed Computing & Data Ecosystem (DCDE)
– Future Lab Computing Working Group (FLC-WG)

– Initially working towards a pilot

§ Using OAuth, working with Globus
– Test deployment at BNL

§ Parsl is part of this effort, via initial work in linking ORNL and BNL
– We’ve added support for an OAuthSSHChannel

– Now being tested on test deployment



12

Multi-site execution

1. Loading Parsl configuration 
triggers:
a) Creation of SSH channels
b) Deployment of an 

interchange process onto 
login nodes

c) Submission of pilot jobs that 
will connect to the 
interchange

2. Parsl submits tasks directly to 
interchange

3. Parsl uses Globus to stage 
data

Interchange Interchange

Parsl



13

Multi-site execution

Too much small code

See demo instead

https://bit.ly/2Wsjlep

(code in https://github.com/Parsl/demo_multifacility)

https://bit.ly/2Wsjlep


14

Parallel applications are very different

High-throughput workloads
– Protein docking, image processing, materials reconstructions
– Requirements: 1000s of tasks, 100s of nodes, reliability, usability, 

monitoring, elasticity, etc. 

Extreme-scale workloads
– Cosmology simulations, imaging the arctic, genomics analysis
– Requirements: millions of tasks, 1000s of nodes (100,000s cores), capacity

Interactive and real-time workloads
– Materials science, cosmic ray shower analysis, machine learning inference
– Requirements: 10s of nodes, rapid response, pipelining



15

Parsl’s modular executor interface supports these different use 
cases

High-throughput executor (HTEX)
– Designed for ease of use, support for clusters and clouds, fault-tolerance
– <2000 nodes (~60K workers),  1M tasks,     task duration/nodes > 0.01 (e.g., 

with 10 nodes, tasks 100ms)

Extreme-scale executor (EXEX)
– Distributed MPI job manages execution. Manager rank communicates 

workload to other worker ranks directly
– >1000 nodes (>30K workers),  1M tasks, >1m task duration

Low-latency executor (LLEX)
– Barebones executor, assumes small, fixed resource pool, no fault-tolerance, 

elasticity, etc. 
– <10 nodes, <1M tasks



16

Parsl executors scale to 2M tasks/256K workers

Weak scaling: HTEX 
& EXEX outperform 
other approaches
up to ~1M tasks

Weak scaling: 
HTEX & EXEX 
scale to 2K & 8K 
nodes, with >1K 
tasks/s

Strong scaling: HTEX 
& EXEX outperform 
other approaches at 
>256 workers

0s tasks

1s tasks

Weak scaling: 10 tasks per worker

1s tasks

Strong scaling: 50,000 tasks



17

Other functionality provided by Parsl

Globus. Delegated authentication 
and wide area data management

Fault tolerance. Support for retries, 
checkpointing, and memoization

Containers. Sandboxed execution 
environments for workers and tasks

Data management. Automated 
staging with HTTP, FTP, and Globus 

Multi site. Combining 
executors/providers for execution 
across different resources

Elasticity. Automated resource 
expansion/retraction based on 
workload

Monitoring. Workflow and resource 
monitoring and visualization

Reproducibility. Capture of workflow 
provenance in the task graph

Jupyter integration. Seamless 
description and management of 
workflows

Resource abstraction. Block-based 
model overlaying different providers 
and resources



18

Parsl is being used in a wide range of scientific applications

E

C

A B

D

G

• Machine learning to predict 
stopping power in materials

• Protein and biomolecule
structure and interaction

• Weak lensing using sky 
surveys (DESC)

• Cosmic ray showers as part of 
QuarkNet

• Information extraction to 
classify image types in papers

• Materials science at the 
Advanced Photon Source

• Machine learning and data 
analytics (DLHub)

A

B

C

D

E

F

G
F



19

Resource configuration

§ Execution environment configured via Config object(s), e.g.

§ Based on: where tasks execute; which executor; where main 
Parsl program executes, which provider, which launcher

§ Examples in Parsl documentation (→), but



20

Community Challenges

§ Describing HPC and other remote systems

– Do we all have to do this separately?  With all users maintaining 

knowledge of their systems

– Can we build something like Globus endpoints that are maintained by 

system folks?

– Do batchspawner and wrapspawner help?

§ Describing applications

– We wrap apps that we run on HPC systems for Parsl

– Others “wrap” them differently (CWL, Pegasus, etc.)

– Can we come up with a common method for this?



21

Parsl provides simple, safe, scalable, and flexible 
parallelism in Python

Simple: Python with minimal new constructs (integrated with the growing SciPy 
ecosystem and other scientific services), works in Jupyter

Safe: deterministic parallel programs through immutable input/output objects, 
dependency task graph, etc. 

Scalable: efficient execution from laptops to (multiple of) the largest supercomputers

Flexible: programs composed from existing components and then applied to different 
resources/workloads

Developer friendly: open source, on GitHub, Apache 2 license, collaborators welcome

Parsl 0.8.0a out now (142 s) – moving towards 1.0!



22

Questions?

U . S . D E P A R T M E N T O F

ENERGY

http://parsl-project.org
(binder link to try parsl at bottom left)

Parsl paper (HPDC-28, June 26 2019)
https://doi.org/10.1145/3307681.3325400
preprint: https://arxiv.org/abs/1905.02158

http://parsl-project.org/
https://doi.org/10.1145/3307681.3325400
https://arxiv.org/abs/1905.02158

