= parsl

Parsl: Pervasive Parallel Programing in Python

Daniel S. Katz (d.katz@ieee.org, @danielskatz)

Yadu Babuji, Anna Woodard, Zhuozhao Li, Ben Clifford, Rohan Kumar, Lukasz Lacinski,
Ryan Chard, Justin M. Wozniak, lan Foster, Michael Wilde, Kyle Chard

http://parsl-project.org

o4 THE UNIVERSITY OF

 CHICACO Argonne - I ILLINOIS NCSA

NATIONAL LABORATORY

mailto:d.katz@ieee.org

Supporting composition and parallelism in Python

Software is increasingly assembled rather than written

— High-level language (e.g., Python) to integrate and wrap components from many
sources

Parallel and distributed computing is no longer a niche area
— Increasing data sizes combined with plateauing sequential processing power
— Parallel hardware (e.g., accelerators) and distributed computing systems

Parsl allows for the natural expression of parallelism in such a way that
programs can express opportunities for parallelism that can then be
realized, at execution time, using different execution models on different
parallel platforms

#*parsl

Parsl: Interactive parallel programming in Python

Apps define opportunities for parallelism
* Python apps call Python functions
e Bash apps call external applications

Apps return “futures”: a proxy for a result
that might not yet be available

Apps run concurrently respecting data
dependencies. Natural parallel programming!

Parsl scripts are independent of where they
run. Write once run anywhere!

#*parsl

pip install parsl

@python app
def hello ():

return 'Hello World!"’ P pgth()n

print(hello().result())
Hello World!

@bash app
def echo hello(stdout='echo-hello.stdout'):
return 'echo "Hello World!"'

echo hello().result() BASH

EEEEEEEEEEEEEEEEEEEE

with open('echo-hello.stdout', 'r') as f:
print(f.read())

Hello World!

Try parsl via binder at bottom left of http://parsl-project.org

Expressing a many task workflow in Parsl

1) Wrap a protein docking code as a Parsl App:

@bash_app
def dock(p, ¢):
return 'dock.sh {0} {1}'.format(p, c)

2) Execute a for p in proteins:

protein for ¢ in ligands:

docking structure[p][c] = dock(p, c)
workflow by

calling Apps: scatter_plot = analyze(structure)

.=“ parsl

Decomposing dynamic parallel execution into a task-
dependency graph

~ Jupyter parsk-introduction (ussavea changes) o

Flle Edt View Insert Cell Kemel Widgets Help Not Trusted | Python3 O

]

B + % @@ B 44 ¥ MHRun B C MW Markdown v

Monte Carlo workflow

Many scientific applications use the monte-cario method to compute results. a rS I

If a circle with radius r is inscribed inside a square with side length 2r then the area of the circle is xr? and the area of the square is (2,)2 Thus, f N
uniformly distributed random points are dropped within the sugare then approximately N x/4 will be inside the circle

Each call to the function pi() is executed independently and in parallel. The avg_three() app is used to compute the average of the futures that were
returned from the pi() calls

The dependency chain locks like this

App Calls pi() pi() pi()

\ | /
Futures a b <
Sl I |
App Call avg_points()
|
Future avg_pi

In [): # App that estimates pi by placing points in a box
@python_app
def pi(total):
import random

Set the size of the box (edge Length) in which we drop random points
edge_length = 10020

center = edge_length / 2

€2 = center ** 2

count = @

O
for i in range(total): D
J

Drop a rondom point in the box.
X,y = random.randint(1, edge_length),random.randint(1, edge_length)
Count points within the circle
if (x-center)**2 + (y-center)**2 < c2:
count += 1
Av4 Av4

ooa

return (count*4/total)

App that computes the average of the values
@python_app

def avg_points(a, b, c): B !
return (a + b + ¢)/3
B e amazon

a, b, c = pi(10**6), pi(10**6), pi(10**6) ;‘ -
Web Ser\nces Exireme Science and Engineering

Discovery Environment

Compute the average of the three estimates
avg_pi = avg_points(a, b, c)

Print the results
print("A: {0:.5f} B: {1:.5f) C: {2:.5f)".format(a.result(), b.result(), c.result()))
print("Average: {8:.5f}".format(avg_pi.result()))

#parsl

Parsl scripts are execution provider independent

The same script can be run locally, on grids, clouds, or supercomputers
— Works directly with the scheduler (no HTC-like setup)

Containers for per-app execution or repeated invocation of the same app

Growing support for various execution providers and resources:
— Local, Cloud (AWS, Azure, private), Slurm, Torque, Condor, Cobalt

%

*l

Ny
L amazon

¥ webservices

0

[

Y Google Cloud

#parsl

Separation of code and execution

.=“ parsl

from libsubmit.channels import SSHChannel
from libsubmit.providers import SlurmProvider

import parsl

from parsl.config import Config

from parsl.executors.ipp import IPyParallelExecutor
from parsl.executors.threads import ThreadPoolExecutor

config = Config(
executors=[
IPyParallelExecutor(

@python_app(executors=['midway'])
def midway():
return 'I am run on midway!'

@bash_app(executors=["'local'])
def local():
return 'I am run locally!'

label="midway',
provider=SlurmProvider (
'westmere',
channel=SSHChannel(
hostname="'swift.rcc.uchicago.edu’',
username="'annawoodard'
)
max_blocks=1000,
nodes_per_block=1,
tasks_per_node=6,

Pilot jobs on a cluster

overrides='module load singularity; module load Anaconda3/5.1.0; source activate parsl_py36'

)s
) s

ThreadPoolExecutor (label="'1local', max_threads=2)

1s
)

parsl.load(config)

— Local threads

Interactive supercomputing in Jupyter notebooks

: Jjupyter First-Tutorial-Start-Here (autosaved) A
File Edit View Insert Cell Kernel Help Not Trusted | Python3 O

B+ | @A B 24 ¥ N B C Makdown Y =2

Parsl Tutorial

Parsl is a native Python library that allows you to write functions that execute in paraliel and tie them together with dependencies to create workflows. Parsl
wraps Python functions as "Apps" using the @App decorator. Decorated functions can run in parallel when all their inputs are ready.

For more comprehensive documentation and examples, please refer our documentation

In []: # Import ParslL
import parsl
from parsl import *

DataFlowKernal
Parsl's DataFlowKernel acts as an abstraction layer over any pool of execution resources (e.g., clusters, clouds, threads).

In this example we use a pool of threads. to facilitate local parallel exectuion.

In []: # Let's create a pool of threads to execute our functions
workers = ThreadPoolExecutor(max_workers=4)

We pass the workers to the DataFlowKernel which will execute our Apps over the workers.
dfk = DataFlowKernel(workers)

Hello World App

As a first example let's define a simple Python function that returns the string 'Hello World!'. This function is made into a Parsl App using the @App decorator.
The decorator specifies the type of App (‘python’|'bash’) and the DataFlowKernel object as arguments.

In []: # Here we define our first App function, a simple python app that returns a string

@App(‘python®, dfk)
def hello ():
return 'Hello World!'

app_future = hello()

#parsl 8

Authentication and authorization

Authn/z is hard...
— 2FA, X509, GSISSH, etc.

Integration with Globus Auth to
support native app integration
for accessing Globus (and other)
services

Using scoped access tokens,
refresh tokens, delegation
support

@python_app
def sort_strings(inputs=[], outputs=[]):
with open(inputs[e], 'r') as u:
strs = u.readlines()
strs.sort()
with open(outputs[@].filepath, 'w') as s:
for e in strs:
s.write(e)

unsorted_globus_file = File('globus://@3d7d@6a-cbéb-11e8-8c6a-0ald4c5c824a/unsorted.txt')
sorted_globus_file = File('globus://d5990@ef-6de4-11e5-bad6s-22008b92c6ec/sorted.txt')

f = sort_strings(inputs=[unsorted_globus_file], outputs=[sorted_globus_file])
print (f.result())
parsl.clear()

Please visit the following URL to provide authorization:
https://auth.globus.org/v2/oauth2/authorize?client_id=8b8060fd-618e-4a74-885e-1051c71ad4738&redirect_uri=https%3A%2F%2Fauth.glob
us.org%2Fv2%2Fweb%2Fauth-code&scope=openid+urn%3Aglobus%3Aauth%3Ascope%3Atransfer.api.globus.org%3Aall&state=_default&response_
type=code&code_challenge=wouAVozLGvpaUcEal_EwwsKsVUFxIthAeurvtSTIwYk&code_challenge_method=S256&access_type=offline

Enter the auth code:

' SDK / Jupyter client would like to:
Log in to use SDK / Jupyter client

(:"y HTTPS Server data.materialsdatafacility.org
5 o 5 5 . (". '\j Transfer files using Globus Transfer

Use your existing organizational login .-
() View your identities on Globus Auth
(/) Know who you are in Globus
University of Chicago () Know some details about you

iR 5 R : (/) Know your email address

Didn't find your organization? Then use Globus ID to sign in. (What's thi s
(+ ' Access the Globus Search API

To work, the above will need to:

() View your identities on Globus Auth

(/) Manage your Globus Groups

#*parsl

Parsl provides transparent (wide area) data management

Implicit data movement to/from parsl file =
repositories, laptops, supercomputers File(globus://EP/path/file)

Globus for third-party, high
performance and reliable data

transfer gb
— Support for site-specific DTNs __— b
0 O AN
HTTP/FTP direct data staging - o -
0 O O
5

www.globus.org

10

DOE Distributed Computing & Data Ecosystem (DCDE)

= A DOE group is identifying best practices and research challenges to create and
operate a DOE/SC wide federated Distributed Computing & Data Ecosystem (DCDE)

— Future Lab Computing Working Group (FLC-WG)
— Initially working towards a pilot

= Using OAuth, working with Globus
— Test deployment at BNL

= Parslis part of this effort, via initial work in linking ORNL and BNL
— We've added support for an OAuthSSHChannel
— Now being tested on test deployment

#*parsl

11

Multi-site execution

1. Loading Parsl configuration
triggers:
a) Creation of SSH channels
b) Deployment of an

interchange process onto
login nodes

c) Submission of pilot jobs that
will connect to the
interchange

2. Parsl submits tasks directly to
interchange

3. Parsl uses Globus to stage
data

é’-‘"pa rsil

Parsl

|
/f

1 Interchange [~

12

Multi-site execution

Too much small code

See demo instead

(code in https://github.com/Parsl/demo_multifacility)

https://bit.ly/2Wsjlep

Parallel applications are very different

High-throughput workloads
— Protein docking, image processing, materials reconstructions

— Requirements: 1000s of tasks, 100s of nodes, reliability, usability,
monitoring, elasticity, etc.

Extreme-scale workloads
— Cosmology simulations, imaging the arctic, genomics analysis
— Requirements: millions of tasks, 1000s of nodes (100,000s cores), capacity

Interactive and real-time workloads
— Materials science, cosmic ray shower analysis, machine learning inference

— Requirements: 10s of nodes, rapid response, pipelining

#*parsl

14

Parsl’s modular executor interface supports these different use
cases

High-throughput executor (HTEX)
— Designed for ease of use, support for clusters and clouds, fault-tolerance
— <2000 nodes (~60K workers), 1M tasks, task duration/nodes >0.01 (e.g.,
with 10 nodes, tasks 100ms)
Extreme-scale executor (EXEX)

— Distributed MPI job manages execution. Manager rank communicates
workload to other worker ranks directly

— >1000 nodes (>30K workers), 1M tasks, >1m task duration
Low-latency executor (LLEX)

— Barebones executor, assumes small, fixed resource pool, no fault-tolerance,
elasticity, etc.

— <10 nodes, <1M tasks

#*parsl

15

Parsl executors scale to 2M tasks/256K workers

= =
o o
f\J S

Completion time (s)
=
2
|

Os tasks

/@ P~ e

3 P —— HTEX
N EXEX
—o— |PP
Dask
FireWorks
---- Ideal

TR AR TR RN AR o5

Number of workers

=
o
R

=
o
1 1|||||||w Ll

Completion time (s)
=
o

10

1s tasks

. —— 4 | — &
- wm— T . —m T smp N —

1bol lllll]:lbll lllll]:l 2

rrrrnn

Number of workers

1 31 Illlilb4l llllilbs

Weak scaling: HTEX
& EXEX outperform

other approaches Maximum | Maximum | Maximum
Framework + + 4
up to ~1M tasks # of workers'| # of nodes'| tasks/second-
Parsl-IPP 2048 64 330
_ Parsl-HTEX 65 536 2048° 1181
Weak scaling: Parsl-EXEX 262 144 8192" 1176
HTEX & EXEX FireWorks 1024 32 4
scale to 2K & 8K Dask distributed 4096 128 2617
nodes, with >1K .
tasks/s L I
© 8] TRy P 1s tasks
) -
ling: HTEX .g 21 —e— IPP by W 4 o—e—a
Strong scaling: = 107w HrEX A
& EXEX outperform £ 10 — EXEX TS~
< 1 —— Dask TS el
other approaches at E 0 FiroWorks ~<
>256 workers O 3 -—= Ideal
-1
10 o o 0 AL ; T
10" 10° 10° 10" 10
Number of workers
Strong scaling: 50,000 tasks &«

+parsL Weak scaling: 10 tasks per worker

Other functionality provided by Parsl

, E Resource abstraction. Block-based

and resources

N X Fault tolerance. Support for retries,
=27 checkpointing, and memoization

Multi site. Combining
’Mm executors/providers for execution
across different resources

Elasticity. Automated resource
~ expansion/retraction based on
workload

WL
dl 1
dl * 1’

Monitoring. Workflow and resource
monitoring and visualization

model overlaying different providers

J'tthyte\r

Globus. Delegated authentication
and wide area data management

Data management. Automated
staging with HTTP, FTP, and Globus

Containers. Sandboxed execution
environments for workers and tasks

Jupyter integration. Seamless
description and management of
workflows

Reproducibility. Capture of workflow
provenance in the task graph

17

Parsl is being used in a wide range of scientific applications

Machine learning to predict
stopping power in materials

e

Protein and biomolecule
structure and interaction

Weak lensing using sky
surveys (DESC)

Cosmic ray showers as part of
QuarkNet

Information extraction to
classify image types in papers

Materials science at the
Advanced Photon Source

Machine learning and data
analytics (DLHub)

®© © © © € ©

i &

s 4 W s '..-.. -
Ary 8 Datall, | u.':c:"'

*

Red indicates higher statistical
confidence in data

#*parsl

18

Resource configuration
B8 Configuration

Execution environment configured via Config object(s), e.g.

import parsl
from parsl.config import Config
from parsl.executors.threads import ThreadPoolExecutor

How-to Configure
Comet (SDSC)
Cori (NERSC)

, , Stampede2 (TACC)
config = Config(
executors=[ThreadPoolExecutor()], Theta (ALCF)
lazy_errors=True
) Cooley (ALCF)
parsl.load(config)
Swan (Cray)
Based on: where tasks execute; which executor; where main CC-IN2P3
Parsl program executes, which provider, which launcher
_ _ Midway (RCC, UChicago)
Examples in Parsl documentation (=), but
Open Science Grid
Amazon Web Services

Please note that all configuration examples below require customization for your account,
allocation, Python environment, etc.

-i‘?b“'pa rsil

Ad-Hoc Clusters
Further help

19

Community Challenges

= Describing HPC and other remote systems

— Do we all have to do this separately? With all users maintaining
knowledge of their systems

— Can we build something like Globus endpoints that are maintained by
system folks?

— Do batchspawner and wrapspawner help?

= Describing applications
— We wrap apps that we run on HPC systems for Parsl
— Others “wrap” them differently (CWL, Pegasus, etc.)
— Can we come up with a common method for this?

#*parsl

20

Parsl provides simple, safe, scalable, and flexible
parallelism in Python

Simple: Python with minimal new constructs (integrated with the growing SciPy
ecosystem and other scientific services), works in Jupyter

Safe: deterministic parallel programs through immutable input/output objects,
dependency task graph, etc.

Scalable: efficient execution from laptops to (multiple of) the largest supercomputers

Flexible: programs composed from existing components and then applied to different
resources/workloads

Developer friendly: open source, on GitHub, Apache 2 license, collaborators welcome

Parsl 0.8.0a out now (142 s)—moving towards 1.0!

#*parsl 2

http://parsl-project.org

https://doi.ore/10.1145/3307681.3325400
https://arxiv.org/abs/1905.02158

amazon

webservices \

1L ILLINOIS NCSA

http://parsl-project.org/
https://doi.org/10.1145/3307681.3325400
https://arxiv.org/abs/1905.02158

