Phosphine-Scavenging Cationic Gold(I) Complexes: Alternative Applications of Gold Cocatalysis in Fundamental Palladium-Catalyzed Cross-Couplings

Curtis C. Ho,^a Alireza Ariafard,^a Christopher J. T. Hyland,^b Alex C. Bissember^{a*}

^aSchool of Natural Sciences – Chemistry, University of Tasmania, Hobart, Tasmania, Australia ^bSchool of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia

email: alex.bissember@utas.edu.au

Supporting Information

Table of Contents

I.	General	S–1
II.	General Procedures	S–2
III.	All Results from Time Course Experiments	S–4
IV.	X-Ray Crystallographic Data	S–7
V.	References	S–8

I. General

Unless otherwise specified all reactants and reagents were purchased and used as received. Stock solutions were made with degassed anhydrous solvents (THF, acetonitrile and 1,4-dioxane) and stored in an N_2 atmosphere glovebox. Ethyl acrylate and tributylphenylstannane were degassed, stored in a nitrogen-filled glovebox.

¹H, ¹³C NMR and ³¹P spectra were recorded on a Bruker NMR spectrometer operating at 400 MHz for proton, 100 MHz for carbon, and 162 MHz for phosphorus nuclei. ³¹P spectra were referenced against H₃PO₄ (internal standard). GC data were obtained on an Agilent 6850 Network GC System using an Agilent HP-5 ms capillary column (30 m x 0.25 mm x 0.25 mm): injection temp = 250 °C, oven temp = 45 °C (1 min) \rightarrow 250 °C @ 10 °C per min. All Suzuki–Miyaura, Stille, and Mizoroki–Heck cross-coupling reactions were performed in Schlenk flasks under an atmosphere of N₂.

II. General Procedures

Pd-Catalyzed Suzuki–Miyaura Cross-Couplings General Procedure (Figure 2):

Reactions Employing 1% [Pd{P(*t***-Bu)₃}₂] and 1% [Au{P(***t***-Bu)₃}(NTf₂)]. In a nitrogen-filled glovebox, phenylboronic acid (200 \mumol; 1.00 mL of a 200 mM solution in THF), 4-bromotoluene (220 \mumol; 1.00 mL of a 220 mM solution in THF),[†] and Na₂CO₃ (800 \muL of a 1 M aqueous solution) were added to a Schlenk flask (containing a stir bar). This Schlenk flask was removed from the glovebox and placed in a preheated oil bath (50 °C). A THF solution (1.00 mL) containing [Pd{P(***t***-Bu)₃}₂] (2.00 \mumol) and [Au{P(***t***-Bu)₃}(NTf₂)] (2.00 \mumol), maintained at 35 °C, was added to the Schlenk flask.[‡] The ensuing mixture was then magnetically stirred at 50 °C under N₂. Aliquots were obtained from the reaction mixture at the specified times and were added directly to Pasteur pipettes containing MgSO₄ (~0.5 cm), eluted with Et₂O, and analyzed by GC.**

Reactions Employing 1% [Pd{P(*t***-Bu)₃}₂].** In a nitrogen-filled glovebox, phenylboronic acid (200 μ mol; 1.00 mL of a 200 mM solution in THF), 4-bromotoluene (220 μ mol; 1.00 mL of a 220 mM solution in THF),[†] and Na₂CO₃ (800 μ L of a 1 M aqueous solution) were added to a Schlenk flask (containing a stir bar). This Schlenk flask was removed from the glovebox and placed in a preheated oil bath (50 °C). A THF solution (1.00 mL) containing [Pd{P(*t*-Bu)₃}₂] (2.00 μ mol), maintained at 35 °C, was added to the Schlenk flask.[‡] The ensuing mixture was then magnetically stirred at 50 °C under N₂. Aliquots were obtained from the reaction mixture at the specified times and were added directly to Pasteur pipettes containing MgSO₄ (~0.5 cm), eluted with Et₂O, and analyzed by GC.

Pd-Catalyzed Suzuki–Miyaura Cross-Couplings General Procedure (Scheme 3C):

Reactions Employing 1% [Pd(PPh₃)₄] and 2% [Au(PPh₃)(NTf₂)]. In a nitrogen-filled glovebox, phenylboronic acid (200 μ mol; 1.00 mL of a 200 mM solution in *n*-PrOH), 4-iodotoluene (220 μ mol; 1.00 mL of a 220 mM solution in *n*-PrOH),[§] and Na₂CO₃ (800 μ L of a 1 M aqueous solution) were added to a Schlenk flask (containing a stir bar). This Schlenk flask was removed from the glovebox and placed in a preheated oil bath (50 °C). A THF solution (1.00 mL) containing [Pd(PPh₃)₄] (2.00 μ mol) and [Au(PPh₃)(NTf₂)] (4.00 μ mol), maintained at 35 °C, was added to the Schlenk flask.[‡] The ensuing mixture was then magnetically stirred at 50 °C under N₂. Aliquots were obtained from the reaction mixture at the specified times and were added directly to Pasteur pipettes containing MgSO₄ (~0.5 cm), eluted with Et₂O, and analyzed by GC.

Reactions Employing 1% [Pd(PPh₃)₄]. In a nitrogen-filled glovebox, phenylboronic acid (200 μ mol; 1.00 mL of a 200 mM solution in *n*-PrOH), 4-iodotoluene (220 μ mol; 1.00 mL of a 220 mM solution in *n*-PrOH),[§] and Na₂CO₃ (800 μ L of a 1 M aqueous solution) were added to a Schlenk flask (containing a stir bar). This Schlenk flask was removed from the glovebox and placed in a preheated oil bath (50 °C). A THF solution (1.00 mL) containing [Pd(PPh₃)₄] (2.00 μ mol), maintained at 35 °C, was added to the Schlenk flask.[‡] The ensuing mixture was then magnetically stirred at 50 °C under N₂. Aliquots were obtained from the reaction mixture at the specified times and were added directly to Pasteur pipettes containing MgSO₄ (~0.5 cm), eluted with Et₂O, and analyzed by GC.

[†] This 4-bromotoluene solution also contained 1,4-dimethoxybenzene (50 μ mol, 50 mM) as an internal standard.

[‡] This THF solution was magnetically stirred for 0.25 h at 35 °C prior to addition to the mixture in the Schlenk flask.

[§] This 4-iodotoluene solution also contained 1,4-dimethoxybenzene (50 μ mol, 50 mM) as an internal standard.

Pd-Catalyzed Stille Cross-Couplings General Procedure (Figure 3):

Reactions Employing 1% [Pd{P(*t***-Bu)₃}₂] and 1% [Au{P(***t***-Bu)₃}(NTf₂)]. In a nitrogen-filled glovebox, tributylphenylstannane (220 \mumol; 1.00 mL of a 220 mM solution in MeCN), 4-iodotoluene (200 \mumol; 1.00 mL of a 200 mM solution in MeCN)[§] were added to a Schlenk flask (containing a stir bar). This Schlenk flask was removed from the glovebox and placed in a preheated oil bath (35 °C). A THF solution (1.00 mL) containing [Pd{P(***t***-Bu)₃}2] (2.00 \mumol) and [Au{P(***t***-Bu)₃}(NTf₂)] (2.00 \mumol), maintained at 35 °C, was added to the Schlenk flask.[‡] The ensuing mixture was then magnetically stirred at 35 °C under N₂. Aliquots were obtained from the reaction mixture at the specified times and were added directly to Pasteur pipettes containing MgSO₄ (~0.5 cm), eluted with Et₂O, and analyzed by GC.**

Reactions Employing 1% [Pd{P(t-Bu)₃}₂]. In a nitrogen-filled glovebox, tributylphenylstannane (220 μ mol; 1.00 mL of a 220 mM solution in MeCN), 4-iodotoluene (200 μ mol; 1.00 mL of a 200 mM solution in MeCN)[§] were added to a Schlenk flask (containing a stir bar). This Schlenk flask was removed from the glovebox and placed in a preheated oil bath (35 °C). A THF solution (1.00 mL) containing [Pd{P(t-Bu)₃}₂] (2.00 μ mol), maintained at 35 °C, was added to the Schlenk flask.[‡] The ensuing mixture was then magnetically stirred at 35 °C under N₂. Aliquots were obtained from the reaction mixture at the specified times and were added directly to Pasteur pipettes containing MgSO₄ (~0.5 cm), eluted with Et₂O, and analyzed by GC.

Pd-Catalyzed Mizoroki–Heck Cross-Couplings General Procedure (Figure 4):

Reactions Employing 2% [Pd{P(t-Bu)₃}] and 2% [Au{P(t-Bu)₃}(NTf₂)]. In a nitrogen-filled glovebox, ethyl acrylate (800 μ mol, neat), 4-iodotoluene (200 μ mol; 2.00 mL of a 200 mM solution in dioxane),[§] and Cs₂CO₃ (85 mg, 260 μ mol) were added to a Schlenk flask (containing a stir bar). This Schlenk flask was removed from the glovebox and placed in a preheated oil bath (50 °C). A THF solution (1.00 mL) containing [Pd{P(t-Bu)₃}] (4.00 μ mol) and [Au{P(t-Bu)₃}(NTf₂)] (4.00 μ mol), maintained at 35 °C, was added to the Schlenk flask.[‡] The ensuing mixture was then magnetically stirred at 50 °C under N₂. Aliquots were obtained from the reaction mixture at the specified times and were added directly to Pasteur pipettes containing MgSO₄ (~0.5 cm), eluted with Et₂O, and analyzed by GC.

Reactions Employing 2% [Pd{P(*t***-Bu)₃}₂].** In a nitrogen-filled glovebox, ethyl acrylate (800 μ mol, neat), 4-iodotoluene (200 μ mol; 2.00 mL of a 200 mM solution in dioxane),[§] and Cs₂CO₃ (85 mg, 260 μ mol) were added to a Schlenk flask (containing a stir bar). This Schlenk flask was removed from the glovebox and placed in a preheated oil bath (50 °C). A THF solution (1.00 mL) containing [Pd{P(*t*-Bu)₃}₂] (4.00 μ mol), maintained at 35 °C, was added to the Schlenk flask.[‡] The ensuing mixture was then magnetically stirred at 50 °C under N₂. Aliquots were obtained from the reaction mixture at the specified times and were added directly to Pasteur pipettes containing MgSO₄ (~0.5 cm), eluted with Et₂O, and analyzed by GC.

III. All Results from Time Course Experiments

Figure S1. Suzuki–Miyaura reactions. Investigating the respective effects of cocatalysts 1% [Au{P(t-Bu)_3}(NTf₂)] (1) (solid red line) 3% [Au{P(t-Bu)_3}(NTf₂)] (dashed black line), 1% [Cu(MeCN)_4]PF₆ (8) (solid blue line), 1% [Pd(dba)_2]/ 1% [HP(t-Bu)_3]BF₄ (dotted black line) and 1% Cul (dotted blue line) on the efficiency of Pd-mediated Suzuki–Miyaura cross-couplings with p-bromotoluene. The experiment employing 1% [Pd{P(t-Bu)_3}2] (2) is represented with a solid black line. Each data point represents the average of two experiments with yields determined via GC with the aid of a calibrated internal standard.

Figure S2. Stille reactions. Investigating the respective effects of cocatalysts 1% $[Au{P(t-Bu)_3}(NTf_2)]$ (1) (solid red line) 3% $[Au{P(t-Bu)_3}(NTf_2)]$ (dashed black line), 1% $[Cu(MeCN)_4]PF_6$ (8) (solid blue line), and 1% Cul (dotted blue line) on the efficiency of Pd-mediated Stille cross-couplings with *p*-iodotoluene. The experiment employing 1% $[Pd{P(t-Bu)_3}_2]$ (2) is represented with a solid black line. Each data point represents the average of two experiments with yields determined via GC with the aid of a calibrated internal standard.

Figure S3 Heck reactions. Investigating the respective effects of cocatalysts 2% [Au{P(*t*-Bu)₃}(NTf₂)] (1) (solid red line) 4% [Au{P(*t*-Bu)₃}(NTf₂)] (dashed black line), 2% [Cu(MeCN)₄]PF₆ (8) (solid blue line), 2% [Pd(dba)₂]/ 2% [HP(*t*-Bu)₃]BF₄ (dotted black line), and 2% Cul (dotted blue line) on the efficiency of Pd-mediated Mizoroki–Heck cross-couplings with *p*-iodotoluene. The experiment employing 2% [Pd{P(*t*-Bu)₃}₂] (2) is represented with a dashed black line. Each data point represents the average of two experiments with yields determined via GC with the aid of a calibrated internal standard.

IV. X-Ray Crystallographic Data

Data for complexes **3** and **9** were collected at -173 °C on crystals mounted on a Hampton Scientific cryoloop at the MX2 beamline of the Australian Synchrotron.¹ The structures were solved by direct methods with SHELXT-2014, refined using full-matrix least-squares routines against F² with SHELXT-2014,² and visualized using OLEX2.³ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions and refined using a riding model with fixed C–H distances of 0.95 Å (*sp*²CH), 1.00 Å (*sp*³CH), 0.99 Å (CH₂), 0.98 Å (CH₃). The thermal parameters of all hydrogen atoms were estimated as $U_{iso}(H) = 1.2U_{eq}(C)$ except for CH₃ where $U_{iso}(H) = 1.5U_{eq}(C)$.

 $[Au{P(t-Bu)_3}_2]^+$ is a known complex.⁴ Crystal data for complex **3**: C₂₆H₅₅AuF₆NO₄P₂S₂, M = 882.73, triclinic, a = 13.081(3), b = 14.761(4), c = 19.576(4) Å, $\alpha = 86.57(3)^\circ$, $\beta = 80.94(3)^\circ$, $\gamma = 73.87(3)^\circ$, U = 3585.3(14) Å^{3.} T = 100 K, space group P-1 (no 2), Z = 4, 32084 reflections measured, 18105 unique ($R_{int} = 0.0649$), 10064 > $4\sigma(F)$, R = 0.0662 (observed), $R_w = 0.2320$ (all data). CCDC Number: 1875862

Figure S4. Structural representation of complex **3**, (' denotes symmetry operator: *-x*, *-y*, *-z*). Thermal ellipsoids are shown at 50% probability level. [NTf₂]⁻ counteranion and hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): Au1-P1 2.331(14), P1-C1 1.905(6), P1-C2 1.891(6), P1-C3 1.896(7), P1-Au1-P1' 180.0, C1-P1-Au1 107.10(18), C2-P1-Au1 110.05(17), C3-P1-Au1 107.3(2).

 $[Cu{P(t-Bu)_{3}_{2}]^{+}$ is a known complex (CCDC Number: 1453515). Crystal data for complex **9**: $C_{32}H_{70}CuF_{6}O_{2}P_{3}$, M = 757.31, trigonal, a = 11.5107(16), c = 51.641(10) Å, U = 5926(2) Å³, T = 100 K, space group R-3c (no. 167), Z = 6, 16925 reflections measured, 1951 unique ($R_{int} = 0.0347$), 1818 > $4\sigma(F)$, R = 0.0344 (observed), $R_{w} = 0.1147$ (all data). CCDC Number: 1875861.

Figure S5. Structural representation of complex **9** (^{a, b, c, d, e, f} denotes symmetry operators: 2-*y, x-y, z;* 1+*y*-*x,* 2-*x, z*; 2-*x* 2-*y,* 1-*z*; 2-*x* 2-7, 1-*z*; *y,* 1-*x,* 1-*z*; 1-*y*+*x, x,* 1-*z*). Thermal ellipsoids are shown at 50% probability level. $[PF_6]^-$ counteranion, hydrogen atoms and THF solvent molecule have been omitted for clarity. Selected bond lengths (Å) and angles (°): Cu1-P1 2.2187(6)(14), P1-C1 1.9022(11), P1-Cu1-P1^{\circ} 180.0, C1-P1-Cu1 108.37(4).

V. References

- McPhillips, T. M.; McPhillips, S. E.; Chiu, H. J.; Cohen, A. E.; Deacon, A. M.; Ellis, P. J.; Garman, E.; Gonzalez, A.; Sauter, N. K.; Phizakerley, R. P.; Soltis, S. M.; Kuhn, P. Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. *J. Synchrotron Rad.* 2002, 9, 401– 406.
- 2. Sheldrick, G. M. *SHELXT* Integrated space-group and crystal-structure determination. *Acta Cryst.* **2015**, *A71*, 3–8.
- a) Barbour, L. J. X-Seed A Software Tool for Supramolecular Crystallography. *J. Supramol. Chem.* 2001, *1*, 189–191; b) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *OLEX2*: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* 2009, *42*, 339–341.
- 4. Diversi, P.; Cuzzola, A.; Ghiotto, F. Chemistry of Polynuclear Cationic Gold(I) Thiolates of Formula [Au₂(StBu)(L₂)][BF₄]. *Eur. J. Inorg. Chem.* **2009**, *4*, 545–553.