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Abstract

In order to achieve the desired goals of the fifth generation (5G) wireless systems, exploring new

efficient physical layer techniques is necessary. Waveform design, millimeter waves (mm-Wave),

massive MIMO beamforming, and multiple access techniques are some of the areas that are being

investigated in 5G. In this thesis, we work in two areas, namely, waveform design and millimeter

waves.

In the first part, we study a recently proposed waveform design called orthogonal time frequency

space (OTFS) modulation. OTFS is shown to exhibit significant advantages over currently deployed

orthogonal frequency division multiplexing (OFDM) modulation in multipath delay–Doppler chan-

nels. The delay–Doppler domain provides as an alternative representation of a time-varying channel

geometry due to moving objects (e.g. transmitters, receivers, or reflectors) in the scene. Leveraging

on this representation, OTFS multiplexes each information symbol over a two dimensional orthogo-

nal basis functions, specifically designed to combat the dynamics of time-varying multipath channels.

Our contributions on OTFS in this thesis are three-fold. We first derive the explicit input–output

relations describing OTFS modulation and demodulation (mod/demod) for the cases of (i) ideal

pulse-shaping waveforms that satisfy the bi-orthogonality conditions, and (ii) rectangular waveforms

which do not. We show that while only inter-Doppler interference is present in the first case, addi-

tional inter-carrier interference (ICI) and inter-symbol interference (ISI) occur in the second case.

We next analyze these interference and develop a novel low-complexity yet efficient message passing

(MP) algorithm for joint interference cancellation and symbol detection. Our results indicate that

OTFS using practical rectangular waveforms can achieve the performance of OTFS using ideal but

non-realizable pulse-shaping waveforms. We also derive the input—output relation in OTFS for any

arbitrary waveforms using a simple matrix notations. Simulation results demonstrate the superior
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error performance gains of the proposed uncoded OTFS schemes over OFDM under various channel

conditions. Further, we compare the OTFS performance with different pulse-shaping waveforms,

and show that the reduction of out-of-band power may introduce nonuniform channel gains for the

transmitted symbols, thus impairing the overall error performance.

We then consider the channel estimation problem of OTFS and propose an embedded pilot-

aided channel estimation scheme for OTFS. In each OTFS frame, we arrange pilot, guard, and data

symbols in the delay–Doppler plane to suitably avoid interference between pilot and data symbols at

the receiver. At the receiver, channel estimation is performed based on a threshold method and the

estimated channel information is used for data detection via MP algorithm. Owing to our specific

embedded symbol arrangements, both channel estimation and data detection are performed within

the same OTFS frame with a minimum overhead. We compare by simulations the error performance

of OTFS using the proposed channel estimation and OTFS with ideally known channel information

and observe only a marginal performance loss.

We finally study the system structure of OTFS in static multipath channels. We show that

the OTFS structure is equivalent to the asymmetric orthogonal frequency division multiplexing (A-

OFDM) [46], bridging between cyclic prefix single carrier (CPSC) and traditional OFDM. We derive

a condition on the parameters of OTFS to guarantee that all the transmitted symbols experience

uniform channel gains, as in CPSC. Through simulation results, we show that OTFS with MP

detection achieves a significant performance improvement over ZF and MMSE detection originally

proposed for A-OFDM.

The second part of this thesis focuses on mm-Wave systems. The availability of large bandwidth

at mm-Wave frequencies offers a promising solution to support the increasing data traffic demand of

5G. Transmit and receive beamforming through a large number of antennas is a necessary technology

to combat the severe path loss encountered at mm-Wave frequencies. Beamforming can be realized

cost-effectively by inserting low resolution discrete phase shifters in the RF chain of each antenna.

Higher resolution phase shifters would require very high precision RF components, which may be

difficult to realize. The main aim of this research is to design good beamforming weight vectors,

controlling the low resolution phase shifters, to achieve the performance of fully digital beamforming

systems. We first consider the channel estimation problem in point-to-point mm-Wave analog

beamforming system. We propose a local search method that enables generation of a quasi-optimal
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weight vectors for uniform linear array. We show that the proposed local search design with low

resolution phase shifters has improved performance when compared to the existing schemes with

high resolution phase shifters.

Finally, we consider mm-Wave multiuser uplink system with low resolution phase shifters. We

propose joint and separate designs of precoder and detector that achieves a better performance and

complexity tradeoff with fully digital systems. Through simulations, we show that our precoder

and detector designs with low resolution phase shifters outperform the traditional methods using

steering vectors as beamforming vectors with high resolution phase shifters.
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Chapter 1

Introduction

The fifth generation (5G) wireless systems are expected to support billions of devices with 1000x

higher data traffic than today’s communication systems (4G) [1]. Besides the increased data rates,

5G systems are also supposed to offer better coverage, ultra reliable communications at high velocity

links, low latency, and improved energy efficiency [2, 3]. Some of the future applications may in-

clude real-time video streaming, remote health care, online gaming, and connected and autonomous

vehicles [4, 5].

The fundamental directions that researchers are endeavouring towards 5G goals can be broadly

categorized into two areas: development of new efficient physical layer techniques and deployment of

more active nodes (e.g., routers) in a given area [6–12]. Physical layer techniques primarily include

spectrum shift towards millimeter waves, utilizing massive multiple-input multiple-output (MIMO)

beamforming to support multiple parallel users, and new waveform designs that can provide better

channel gains thus reliable wireless links. Whereas dense deployment includes cell shrinking, co-

operation between different wireless systems such as WiFi, long term evolution (LTE) unlicensed,

device-to-device communications, and cognitive radio. This thesis focuses on the first aspect, effi-

cient physical layer techniques. In particular, we investigate two physical layer techniques, namely,

waveform design and millimeter waves, which can address the ultra reliable communication and

high data traffic problems of 5G respectively.

Waveform design defines the packing of information symbols in the given time and frequency

resources and forms the basic building block of the communication system [27, 28]. While the

currently deployed orthogonal frequency division multiplexing (OFDM) modulation in 4G LTE

1
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Figure 1.1: OFDM system model

mobile systems can achieve better spectral efficiency, it is not robust to time-varying channels with

high Doppler spread (e.g., high-speed railway mobile communications) [29]. A new modulation

technique called orthogonal time frequency space (OTFS) modulation was recently proposed in [17],

showing significant advantages over OFDM in time-varying channels.

On the other hand, millimeter waves (mm-Wave) offer a wide range of spectrum frequencies

which could be able to solve the huge data demands of the future wireless systems [11]. One major

issue of mm-Wave communications is the extremely high path loss. This can be typically overcome

by implementing transmit and receive beamforming through multiple antennas.

In the next part of this chapter, we run through the basics of OTFS modulation and beamforming

in millimeter waves followed by our detailed contributions in these areas.

1.1 OTFS Modulation

Prior to the introduction of OTFS modulation, we provide below a brief overview of OFDM mod-

ulation.

1.1.1 Overview of OFDM System

The main idea of OFDM is to place the information symbols in the frequency grid which are later

converted to the time domain for transmission using Fourier transform. Fig. 1.1 shows the basic

OFDM system model, where the inverse fast Fourier transform (IFFT) is applied at the transmitter

and the fast Fourier transform (FFT) is applied at the receiver, to convert from frequency to

time domain and vice-versa. Through the Fourier operations, OFDM converts the time-invariant

frequency selective channel into multiple parallel frequency flat sub-channels which are known as

subcarriers. Fig. 1.2 explains the orthogonality across the subcarriers in OFDM, where the main

lobe peak of each subcarrier experiences zero interference from all other subcarriers.

Because of the orthogonality of the subcarriers, OFDM signal can be detected by a simple one
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tap equalizer. OFDM is also known to achieve high spectral efficiency for time-invariant frequency

selective channels as it supports the optimal spacing of the subcarriers.

However, the frequency channel gains across the OFDM subcarriers are not equal and the

lowest gain subcarrier decides the overall system performance. Moreover, the one tap equalization

of OFDM results in a diversity order of one. Further, for high-mobility environments such as

high-speed railway mobile communications, the channels can be typically time-varying with high

Doppler spreads. Under such high Doppler conditions, subcarriers in OFDM experience inter carrier

interference (ICI) as shown in Fig. 1.3 and OFDM is no longer robust and suffers heavy performance

degradations. The effect of ICI becomes even more severe for the channels with multiple Dopplers.

To cope with time-varying channels, one existing approach is to shorten the OFDM symbol duration

so that the channel variations over each symbol appear inconsequential [13]. However, one major

drawback is the reduced spectral efficiency due to cyclic prefix (CP).

Several modifications on OFDM were proposed in the literature to address the low diversity

and high ICI sensitivity issues. We broadly classified these approaches into: i) design of efficient

waveforms that perform close to the ideal bi-orthogonal property in time and frequency dimensions

[14,15,29,31,38], and ii) precoding techniques over OFDM [49–52]. The first approach tries to apply

a near-optimal bi-orthogonal waveform to a series of OFDM symbols across time before transmission.

This waveform technique is popularly known as pulse-shaped OFDM (PS-OFDM) [39]. The bi-

orthogonality property of the waveform helps in minimizing the interference that occurs between

the subcarriers in both frequency and time dimensions, i.e., ICI and inter symbol interference (ISI)

respectively. The general block diagram of PS-OFDM is shown in Fig. 1.4, where the Heisenberg

and Wigner transforms can be simplified to IFFT and FFT in a single OFDM case respectively.

An example of this technique can be found in [38], where the authors provided a Zak-transform

based design to generate near-optimal waveforms. Even though this approach greatly reduces the

ICI in low Doppler channels compared to the traditional OFDM, it is not effective for multiple

high Doppler channels as the perfect bi-orthogonality is not practically feasible due to Heisenberg’s

uncertainty principle. Moreover, this approach does not solve the low diversity problem of OFDM.

The second approach applies an efficient precoding matrix on PS-OFDM before transmission.

This approach was shown to achieve full diversity from the channel and also efficiently combat the

multiple Doppler effects. For example, the authors in [51] proposed a Vandermonde matrix based
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Figure 1.4: PS-OFDM system model

(a) Time–frequency channel (b) Delay–Doppler channel

Figure 1.5: Time–frequency and delay–Doppler channels

precoding to achieve full channel diversity. However, unfortunately these methods require a very

high complexity receiver. Furthermore, acquiring the full channel state information (CSI) is also

complex as the effective channel is non-sparse full entry matrix in most of the cases. Hence, a new

modulation scheme that can provide better diversity gains and sensitivity to the high Dopplers as

well as simple receiver structure is required.

1.1.2 OTFS System

The key idea of OTFS is to transmit the information symbols in the delay–Doppler plane rather

than in the time–frequency plane as with PS-OFDM [17–20]. The delay-Doppler plane captures

the delays and Doppler shifts of the physical paths present in the wireless channel, and allows a

sparse representation of the channel. Fig. 1.5 shows an examples of the time–frequency (H(t, f))

and delay–Doppler (h(τ, ν)) channels in time-varying multipath scenarios. We can clearly see that

while the time–frequency channel is spread throughout the plane, delay–Doppler channel is sparse

which eases channel tracking.

Assuming s(t) is the transmitted time domain signal, the received signal, r(t), in the presence
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of time-variant multipath channel (also known as doubly dispersive channel) can be written as

r(t) =

∫
τ
g(t, τ)s(t− τ)dτ (1.1)

=

∫
f
H(t, f)S(f)ej2πftdf (1.2)

=

∫
ν

∫
τ
h(τ, ν)s(t− τ)ej2πνtdτdν (1.3)

where S(f) is the Fourier transform of s(t). The three equivalent relations in (1.1)–(1.3) can be

interpreted as follows. The channel g(t, τ) in (1.1) represents the time-varying impulse response

and the relation can be seen as a straightforward generalization of the linear time-invariant (LTI)

system. The relation in (1.2) describes the time–frequency channel and PS-OFDM system is defined

based on this relation. Finally, the relation in (1.3) depicts the sparse delay–Doppler channel and

OTFS is defined based on this relation. Now, the relation between the time–frequency (H(t, f)) and

delay–Doppler (h(τ, ν)) channels can be given by a pair of two-dimensional symplectic fast Fourier

transforms (SFFT) as

h(τ, ν) =

∫ ∫
H(t, f)e−j2π(νt−fτ)dtdf (1.4)

H(t, f) =

∫ ∫
h(τ, ν)ej2π(νt−fτ)dτdν (1.5)

where, (1.4) and (1.5) represent the SFFT and inverse SFFT (ISFFT) operations, respectively. Fig.

1.6 shows the relations between the four equivalent time-variant multipath channels defined in the

literature [21,29], where F denotes the Fourier operation.

Based on the SFFT relations, OTFS system model is given in Fig. 1.7 [17, 18], where the

ISFFT and SFFT are added as the pre and post processing blocks at the transmitter and receiver

of PS-OFDM–respectively. In particular, first ISSFT is applied to the information symbols at the

transmitter before processing through PS-OFDM modulator and SFFT is applied to the received

samples obtained after the PS-OFDM demodulator at the receiver. Since the SFFT operation

transforms the time–frequency domain to delay–Doppler domain, the domain where the information

symbols and the final received symbols reside is termed as delay–Doppler domain.

In an alternative representation, OTFS can be seen as a Zak-transform [18] applied on the in-

formation symbols in delay–Doppler domain, analogous to the Fourier transform in OFDM. In this
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Figure 1.7: OTFS system model

representation, the blocks ISFFT and Heisenberg transform together represents the Zak-transform,

which converts the two-dimensional information symbols to time domain transmitted signal. Simi-

larly, the blocks Wigner transform and SFFT together constitutes the inverse Zak-transform, which

converts the received time domain signal to two-dimensional received symbols in the delay–Doppler

domain.

Due to the delay–Doppler domain operations, the OTFS final output symbol, y[k, l], for ideal bi-
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orthogonal pulses can be seen as a two-dimensional convolution between the delay–Doppler channel

and the input symbol, x[k, l] [19]. Fig. 1.8 depicts the convolutional relation between the input

and output symbols in OTFS. As the delay–Doppler channel is sparse and underspread in typical

wireless communications [29], we can observe the channel in Fig. 1.8b has few non-zero taps packed

within a small area of the entire grid. The convolution relation and the sparse channel structure

provide many advantages to OTFS over other waveform designs which are described as below.

1. Uniform channel gains: In contrast to the unequal channel gains across subcarriers in OFDM,

all the transmitted symbols in OTFS experience the same channel gains, because of the con-

volution relation.

2. Channel diversity: As every information symbol is received through multiple independent

channel paths, OTFS may be able to achieve full channel diversity with appropriate precoding.

Moreover, through OTFS, we can resolve the paths that differ in at least one of the delay or

Doppler values. This property helps in achieving better diversity gains compared to the

conventional single carrier (SC) systems, where only distinct delay paths can be resolved.

3. Low Doppler sensitivity: Since the delay–Doppler channel can be easily tracked by using a few

channel coefficients, even the high Doppler channels can be easily equalized at the receiver.

In theory, OTFS is able to correct the Doppler shifts upto the subcarrier spacing, whereas

OFDM can correct the Doppler shifts only upto 10% of the subcarrier spacing.

4. Low detection complexity: Since every output symbol is dependent only on the few surrounding

input symbols, simple low-complexity algorithms such as message passing can be implemented

for detection.

Since the seminal paper on OTFS in [17], a number of improvements were proposed in [22–24,

36, 37, 42, 43, 48]. In [23], an efficient implementation for OTFS was presented by simplifying the

ISFFT and Heisenberg transforms to one IFFT at the transmitter and SFFT and Wigner transform

to one FFT at the receiver. An ergodic capacity analysis for OFDM-based OTFS was conducted

in [24]. In [22,36,37,42,43], several low-complexity detection techniques for OTFS such as decision

feedback equalizer, minimum mean square estimation (MMSE) with ISI cancellation, and Markov

Chain Monte Carlo algorithms were proposed. In [42, 43], various pilot-aided channel estimation
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methods for OTFS were proposed. In [19,43], extension of OTFS to MIMO and multiuser systems

were studied. In [48], a relation between OTFS and generalized frequency division multiplexing

(GFDM) was established.

However, all the above work assumes either i) ideal pulse-shaping waveforms that satisfy orthog-

onality conditions in both time and frequency, which is not practically feasible due to Heisenberg’s

uncertainty principle, or ii) OFDM-based OTFS system, where non-ideal rectangular pulse-shaping

waveforms and CP for every OFDM symbol in OTFS frame are considered, which considerably

reduces the overall spectral efficiency. In contrast to these assumptions, in this work, we consider

OTFS system with practically realizable waveforms and only one CP for the entire frame. The

detailed contributions of our work on OTFS are described in the next section.

1.1.3 Contributions

In this thesis, we study several aspects of OTFS system such as OTFS with practical waveforms,

channel estimation for OTFS, and OTFS for static channels. In the following, we summarize our

contributions on OTFS modulation.

In Chapter 2, we analyze the input–output relation describing OTFS mod/demod for delay–

Doppler channels using rectangular pulse-shaping waveforms. The relation reveals the effects of

the ISFFT and SFFT operations interpreted as pre and post processing blocks applied to a time–

frequency signaling scheme. We then analyze the cases of (i) ideal pulse-shaping waveforms that

satisfy the bi-orthogonality conditions, and (ii) practical rectangular waveforms which do not. Un-

like previous works [22], [23], [24], we assume no CP in the second case. We then present a simple

relation characterizing the interference. Specifically, we show that, while only inter-Doppler inter-

ference (IDI) is present in the ideal waveform case due to unavoidable fractional Doppler effects,

additional ICI and ISI occur in the rectangular waveform case due to imperfect bi-orthogonality in

time–frequency domain of the rectangular waveforms. Our analysis of these interferences enables

the development of an efficient algorithm for OTFS detection, which is the next contribution of this

chapter.

The delay–Doppler channel model with a small number of paths, with varying delay and Doppler

values, provides a sparse representation of the communication channel. We then propose a low-

complexity yet efficient message passing (MP) algorithm for a joint interference cancellation (IC)
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and detection, which takes advantage of the inherent delay–Doppler channel sparsity. The MP

algorithm is based on a sparse factor graph and uses Gaussian approximation of the interference

terms to further reduce the complexity. The approach is similar to [25], where it was applied to

massive MIMO without the advantage of channel sparsity. The complexity and convergence of the

MP algorithm are analyzed. In the MP algorithm, while the ICI and ISI can be eliminated by

suitable phase shifting, the IDI can be mitigated by adapting the MP algorithm to account for only

the largest interference terms. Consequently, the proposed MP algorithm can effectively compensate

for a wide range of channel Doppler spreads. Further, our results show that OTFS using practical

rectangular waveforms can achieve the performance of OTFS using ideal but non-realizable pulse-

shaping waveforms. Simulations results illustrate the superior performance gains of the proposed

uncoded OTFS schemes over OFDM under various channel conditions. The performance results of

uncoded systems demonstrate the performance gains of OTFS over OFDM due to specific OTFS

mod/demod architecture (i.e., ISFFT and SFFT operations as pre- and post-processing blocks) and

the effect of the proposed MP algorithm.

Inspired by a simple matrix representation of OFDM systems using circulant-matrix decompo-

sition, in Chapter 3, we first express the OTFS effective channel transfer matrix using two matrix

decompositions, one for delay and another for Doppler components. Next, we simplify the OTFS

effective channel by applying some properties of block circulant matrices, and show that the effective

channel transfer matrix has a simple sparse structure, with sparsity depending on the number of

paths in the channel. Because of the sparse matrix structure, a low-complexity detection algorithm

can be used at the receiver. Moreover, we show how our approach can be easily extended to arbi-

trary practical pulse-shaping waveforms that are applied to the time domain signal. Further, we

compare the OTFS performance of rectangular and prolate spheroidal waveforms, and illustrate a

tradeoff between out-of-band radiation and bit error rate (BER) performance.

In Chapter 4, we propose an embedded OTFS channel estimation scheme for point-to-point

single-input single-output (SISO) system with ideal and rectangular pulse-shaping waveforms, re-

spectively. Specifically, for each OTFS frame, we arrange a single pilot symbol, guard symbols, and

data symbols in the delay–Doppler grid to suitably avoid the interference between pilot and data

symbols. At the receiver, channel estimation is performed based on a threshold method and the

estimated channel information is used for data detection via a MP algorithm proposed in Chapter
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2. Depending on the channel and symbol arrangement, the threshold is chosen to optimize the es-

timation accuracy. Owing to our specific embedded symbol arrangements, both channel estimation

and data detection are performed within the same OTFS frame with a minimum overhead (1% for

integer Doppler case and 8% for fractional Doppler case).

We compare by simulations the performance of OTFS using the proposed channel estimation

schemes and OTFS with perfectly known channel information and observe only a marginal per-

formance degradation. Further, we show that OTFS with our channel estimation significantly

outperforms OFDM, with ideal channel information.

In Chapter 5, we study OTFS over static multipath channels and reveal that the system structure

of OTFS is equivalent to the asymmetric orthogonal frequency division multiplexing (A-OFDM), a

scheme proposed in [46] that generalizes OFDM and cyclic prefix single carrier (CPSC) by exploiting

a layered FFT structure. Next, we derive a necessary and sufficient condition on the number of

subcarriers in OTFS to guarantee that all the transmitted symbols experience uniform channel gains,

as in CPSC (a special case of OTFS/A-OFDM). We also show that OTFS offers a tradeoff between

spectral efficiency and maximum peak-to-average power ratio (PAPR), for a given performance

target and detection complexity. Finally, we apply a MP algorithm to OTFS/A-OFDM and show

that it outperforms OFDM as well as A-OFDM with zero forcing (ZF) and MMSE detectors in

[46,47].

1.2 Millimeter Wave Communications

Mm-Wave communications focus on operating at the 10-100GHz frequency ranges where the massive

amounts of bandwidth is available. In particular, while the overall spectrum available in today’s

communication systems is less than 1 GHz, mm-Wave below 100 GHz offers more than 20 GHz

spectrum and hundreds of GHz spectrum could be made available at frequencies higher than 100

GHz [11, 53]. However, the high propagation loss in these frequency ranges is the main challenge

for operating at mm-Wave. Owing to the higher frequencies, the wavelengths are in the millimeter

range, hence more antennas can be packed in a small area-compared to the microwave frequencies.

Transmit and receive beamforming through a large number of antennas is the preferred solution to

combat path loss [11, 53–62].
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In general, beamforming is obtained by applying different weights to the signals at each trans-

mitting or receiving antenna. In digital beamforming, this process is performed in the digital domain

and both amplitude and phase can be easily adjusted to obtain an optimal beam. This requires

a number of transmit or receive RF chains (including AD/DA converters up/down converters and

power amplifiers) equal to the number of antennas. Apart from the additional cost of the hard-

ware replicated for each antenna, the large number of AD/DA converters operating at high rates

consumes a large amount of power.

To overcome this problem, analog beamforming was proposed [63–65,67,68,70]. In analog beam-

forming, only one RF chain is used for all the antennas in the array and the weights only modify the

phases by operating on the analog domain signals. Phase shifters [75,79,80] are used to change the

phase of incoming signal. In general these phase shifters can only realize a small number of distinct

phase shifts (e.g., 4-16). Higher number of phase shifts would require very high precision compo-

nents, which may be difficult to realize. In general, optimum beamforming weight vectors need

to be quantized to such discrete phase shifts resulting in degraded performance. As a compromise

between digital and analog, hybrid beamforming was proposed in the literature [66,71,78,85]. A lim-

ited number of RF chains (e.g., 3-4) are used to transmit different streams in different beams. Two

different architectures for hybrid beamforming are possible: (i) the antennas with the respective

phase shifter are grouped and each RF chain is allocated to one group (sub-connected structure);

(ii) all antennas are connected to all RF chains through different phase shifters (fully connected

structure).

Figs. 1.9, 1.10, and 1.11 show the implementation of analog, digital, and hybrid (fully connected

K RF chains) beamforming systems at an N antenna node, respectively.

x

(w1)
α1e

jβ1

(wN )
αNejβN

1

N

RF chain
1

RF chain
N

Figure 1.9: Digital beamforming system
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Figure 1.10: Analog beamforming system
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Figure 1.11: Fully connected hybrid beamforming system

In all the beamforming structures, finding the best beamforming weights requires full channel

state information at both transmitter and receiver. The channel estimation problem in mm-Wave

is challenged by the fact that pilot signals need to be beamformed to receiver to overcome the

stark path loss of omni-directional transmission [63, 73, 74]. Fortunately, mm-Wave channels have

very small number of paths due to high absorption. Owing to this sparsity, channel estimation is

equivalent to finding the steering angles and path-loss coefficients for each of the different paths. In

the special case of uniform linear array (ULA) antenna structure at transmitter and receiver, the

channel is fully described by the angle-of-departure (AoD) and angle-of-arrival (AoA) of each path.

For example, Fig. 1.12 shows the ULA antenna structure with λ/2 spacing at the receiver. The

channel response vector at the receiver for N -antenna ULA antenna structure with λ/2 spacing can

be written as

a(θ,N) , [1, ej2πf
λ cos(θ)

2c , . . . , ej2πf
λ(N−1) cos(θ)

2c ]T

= [1, ejπ cos(θ), . . . , ejπ(N−1) cos(θ)]T
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Figure 1.12: ULA antenna structure at the receiver

where f is the operating frequency, λ is the wavelength, c is the velocity of light, and θ is AoA.

In this thesis, we consider the problems of finding the best beamforming weight vectors for the

analog and hybrid beamforming structures as mentioned below.

1.2.1 Analog Beamforming Structure

In analog beamforming structure, the optimal beamform weights for a given channel is equivalent

to beamforming along the strongest path of the channel. In [72,73], a simple method was proposed

to find the beamform vectors corresponding to the strongest path: transmitter and receiver scan

all possible beamforming vectors from a codebook and select the best beamform vector pair, which

yields the maximum received power. Even though this method is effective to find the best weights,

it requires a long training time to test all beamforming vector pairs. To overcome this problem,

a hierarchical beam search was proposed in [63, 67, 69, 70], where the authors divided the search

into several levels, with each level having an increasingly narrower beam-width. The final stage

corresponds to the highest angular resolution achievable by the antenna array. Table 1.1 shows the

hierarchical codebook structure with m levels, where M = 2m denote the total number of angular

positions to be scanned and w(0, 1) in level 0 is the omni-directional mode.

In [71], a hierarchical beam search for hybrid beamforming was proposed based on an orthogonal

matching pursuit (OMP) algorithm, and this was extended to a beam search for multiple paths to
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Table 1.1: The hierarchical codebook structure

0 w(0, 1)

1 w(1, 1) w(1, 2)

2 w(2, 1) w(2, 2) w(2, 3) w(2, 4)

3 w(3, 1) w(3, 2) w(3, 3) w(3, 4) w(3, 5) w(3, 6) w(3, 7) w(3, 8)
...

...

m = log2(M) w(m, 1) · · · w(m,M)

support multi-stream transmission. The performance of hierarchical search completely depends on

the resolution of the beamforming vectors in the codebook used at different levels. In [63], a three-

level hierarchical codebook was proposed, which has a limited beamforming gain since the antenna

array gain is not fully exploited. In [67], a hierarchical codebook was proposed, where the weights

of the beamform vectors in the initial levels were adapted in both amplitude and phase. However,

realizing the amplitude changes is an additional challenge to the implementation of analog phase

shifters. In [71], high quality beams were generated by using large number of RF chains, which

significantly increases the system cost. To reduce it, in [69], a hierarchical codebook was designed

based on deactivation of some of the antennas in the array.

Further, in [70], a complete binary-tree structured hierarchical codebook design was proposed

by jointly using beam widening via single RF sub-array (BMW-SS) and deactivation techniques

(DEACT). These showed a performance improvement over the schemes in [69, 71]. However, all

these codebook designs are based on the assumption of high resolution phase shifters (7, 8 bits) or

switching off some of the antennas. The use of high resolution phase shifters increases the device

cost and switching off some antennas increases the power load on other antennas.

1.2.2 Hybrid Beamforming Structure

Analog beamforming in its basic form supports only one RF stream in a point-to-point communi-

cation system and uses only one RF chain at the transmitter and receiver. In contrast, the hybrid

beamforming structure [71,78,85] allows us to support multiple streams and multiuser communica-

tion.

For hybrid beamforming, designing multiple beamforming vectors requires the knowledge of
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multiple propagation paths in the RF channel, in contrast to analog beamforming which requires

only the knowledge of the strongest path. Typically, at mm-Wave frequencies, a few dominant paths

are sufficient to construct an accurate channel matrix model due to the sparsity of propagation

paths. An efficient hierarchical codebook design for channel estimation in hybrid beamforming

system was proposed using generalized detection probability in [77]. In [86], the transmit and

receive beamforming vectors were designed by decomposing the non-convex matrix decomposition

problem into a series of convex sub-problems. The authors in [87] proposed a design of transmit

and receive beamforming vectors for a finite alphabet rather than Gaussian input alphabet using

an iterative gradient ascent algorithm.

On the other hand, several works have focused on the mm-Wave multiuser downlink system

[90, 92–94]. For example, in [90], the authors proposed a beam selection method using compressed

sensing with low-cost analog beamformers. In [93], the authors proposed a two-stage multi user

hybrid beamforming algorithm, where the first stage implemented an analog only beamforming

design and second stage implemented a digital only beamforming disign.

In contrast, much less work has focused on the design of beamforming vectors, in particular,

transmit beamforming vectors, for mm-Wave multiuser uplink systems, where multiple users trans-

mit simultaneously to the base station (BS). In [95], receive beamforming vectors were designed

based on successive cancellation for low complexity detection at the BS. In [96], a detector that

designs receive beamforming vectors at the BS using a low complexity Gram-Schmidt method was

proposed. Note that, in [95, 96], only receive beamforming vectors were designed, and high reso-

lution phase shifters were required to guarantee good performance. Recently, the authors of [98]

have proposed an iterative algorithm for the design of transmit and receive beamforming vectors,

assuming high resolution phase shifters and only the structure of a(θ,N) for transmit and receive

beamforming vectors.

1.2.3 Contributions

In this thesis, we study the design of best beamforming weight vectors using practically feasible

low resolution phase shifters for analog beamforming in the case of point-to-point system and the

hybrid beamforming structure for the multiuser uplink system. In the following, we summarize our

contributions on mm-Wave communications.
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In Chapter 6, we consider channel estimation problem in point-to-point analog beamforming

system and propose a hierarchical codebook design for channel estimation in analog beamforming

with low resolution phase shifters. The beamforming vectors in our codebook are grouped into

multiple levels. At each level, the preferred beamforming vector is constructed to approach the

corresponding amplitude beamforming gain mask using a low complexity local search algorithm.

Through simulations, we show that our codebooks with low resolution phase shifters outperform an

existing scheme with high resolution phase shifters. Our design method can also be extended to a

variety of antenna arrangements, such as uniform planar arrays.

In Chapter 7, we design transmit and receive beamforming vectors for multiuser uplink system

using low resolution phase shifters only, each with q phase shifts (q = 4, 8, 16). We assume CSI

is available at both the users and the BS, i.e., the BS feedbacks the transmit beamforming vector

information to the users. The contributions on the multiuser uplink system are summarized below.

1. We propose a joint precoder and detector design based on the low-complexity local search

algorithm for the system using low resolution phase shifters (q = 4, 8, 16), where both transmit

and receive beamforming vectors are iteratively determined to maximize the sum-rate of the

uplink system. We show by simulations that the joint design achieves similar sum-rate to

the fully digital system, and better error performance than the existing scheme with high

resolution phase shifters (q = 128) [98].

2. Although the joint design achieves excellent performance, the computation complexity of

searching good beamforming vectors is high. We then propose separate designs of precoder and

detector that provide good complexity-and-performance tradeoffs. In precoder designs, the

transmit beamforming vectors are selected to maximize either the signal to noise ratio (SNR)

or the signal to interference plus noise ratio (SINR) of each user. In detector designs, the

receive beamforming vectors are chosen by using either an approximate maximum likelihood

detector or a successive cancellation detector.

3. Through simulations, we show that our designs with low resolution phase shifters outperform

the traditional methods which uses the steering vectors as beamforming vectors with high

resolution phase shifters [95,96].
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1.3 Organization

The rest of the thesis is organized as follows. Chapters 2, 3, and 4 correspond to OTFS modulation

and constitutes Part 1 of the thesis. Chapters 6 and 7 correspond to millimeter wave communication

and constitutes Part 2 of the thesis.

In Chapter 2, we derive the input–output relation in OTFS for practical rectangular waveforms.

Chapter 3 presents the OTFS input–output relation for arbitrary waveforms using simple matrix

notations. In Chapter 4, we propose an embedded pilot based channel detection algorithm for OTFS.

Chapter 5 studies the OTFS system for static multipath channels. In Chapter 6, we present the

local search based analog beamforming algorithm for channel estimation in point-to-point mm-Wave

system. Chapter 7 presents the joint and individual precoder and detector designs for mm-Wave

multiuser uplink system. Finally, in Chapter 8, we summarize the contributions and discuss some

possible future directions.



Part 1: Orthogonal Time Frequency

Space (OTFS) Modulation

19



Chapter 2

OTFS With Practical Rectangular Wave-

forms

In this chapter, we elaborate on the recently proposed OTFS modulation technique, which provides

significant advantages over OFDM in delay–Doppler channels. We first derive the input-output

relation of OTFS with ideal waveforms for delay-Doppler channels with arbitrary number of paths,

with given delay and Doppler values. We show that the fractional Doppler paths (i.e., not exactly

aligned with the Doppler taps) produce IDI that results in increasing the number of total effective

channel paths. We then extend the input–output relation to the practically realizable rectangular

waveforms that do not satisfy the bi-orthogonality condition. We show that the non-orthogonality

results in ICI and ISI, which can be easily mitigated by applying phase shifts in the detection

algorithm. Finally, we propose a low-complexity MP detection algorithm which is suitable for

large-scale OTFS taking advantage of the inherent channel sparsity. Simulations results illustrate

the superior performance gains of OTFS over OFDM under various channel conditions.

The rest of the chapter is organized as follows. Section 2.1 recalls the OTFS mod/demod and

derives the corresponding input–output relation. In Section 2.2, we analyze the time–frequency

domain and delay–Doppler domain relations for the ideal waveform case. Section 2.3 is dedicated

to the case of OTFS using rectangular waveforms. Section 2.4 proposes the MP algorithm for the

joint IC and detection. Finally, the simulation results are presented in Section 2.5.

Part of the content of this chapter appears as, P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interfer-
ence cancellation and iterative detection for orthogonal time frequency space modulation,” IEEE Trans. Wireless
Commun., vol. 17, no. 10, pp. 6501-6515, Oct. 2018.

20
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2.1 System Model

In this section, we first recall the basic concepts in OTFS and then present the explicit analysis of

OTFS mod/demod. More importantly, we derive the input–output relation of OTFS mod/demod

for delay–Doppler channels.

2.1.1 Basic OTFS Concepts/Notations

We follow the notations in [17,18] summarized below

– The time–frequency signal plane is discretized to a grid by sampling time and frequency axes

at intervals T (seconds) and ∆f (Hz), respectively, i.e.,

Λ =
{

(nT,m∆f), n = 0, . . . , N − 1,m = 0, . . . ,M − 1
}

for some integers N,M > 0.

– Modulated time–frequency samplesX[n,m], n = 0, . . . , N−1,m = 0, . . . ,M−1 are transmitted

over an OTFS frame with duration Tf = NT and occupy a bandwidth B = M∆f .

– Transmit and receive pulses (or waveforms) are denoted by gtx(t) and grx(t). Let Agrx,gtx(t, f)

denote the cross-ambiguity function between gtx(t) and grx(t), i.e.,

Agrx,gtx(t, f) ,
∫
g∗rx(t′ − t)gtx(t′)e−j2πf(t′−t)dt′. (2.1)

– The delay–Doppler plane is discretized to an information grid

Γ =
{( k

NT
,

l

M∆f

)
, k = 0, . . . , N − 1, l = 0, . . . ,M − 1

}
,

where 1/M∆f and 1/NT represent the quantization steps of the delay and Doppler frequency,

respectively1.

Remark 2.1. (Choice of parameters in OTFS systems) – Given a communications system with

total bandwidth B = M∆f and latency Tf = NT constraints, we may choose N , M , T (since

∆f = 1/T ) to support communications over a time-varying channel with maximum delay τmax

1Note that the first and second indexes, k and l, in Γ represent the Doppler and delay axis, respectively.
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ISFFT SFFT

Time-Frequency Domain

Delay-Doppler Domain

x[k, l] X [n,m] Y [n,m] y[k, l]s(t) r(t) Wigner
Transform

Heisenberg
Transform

Channel
h(τ, ν)

Figure 2.1: OTFS mod/demod

and maximum Doppler νmax, among all channel paths. We can see that T and ∆f determine

the maximum supportable Doppler (i.e., 1/T ) and delay (i.e., 1/∆f). Hence, it is required that

νmax < 1/T and τmax < 1/∆f so that N and M are determined. To support a fixed data rate of

NM symbols per frame, depending on the channel conditions, we can choose a larger T and smaller

∆f , which results in a smaller N and larger M , respectively, or vice versa.

2.1.2 General OTFS Mod/Demod Block Diagram

The OTFS system diagram is given in Fig. 2.1. OTFS modulation is produced by a cascade of a

pair of 2D transforms at both transmitter and receiver. The modulator first maps the information

symbols x[k, l] in the delay–Doppler domain to samples X[n,m] in the time–frequency domain using

the ISFFT. Next, the Heisenberg transform is applied to X[n,m] to create the time domain signal

s(t) transmitted over the wireless channel. At the receiver, the time-domain signal r(t) is mapped to

the time–frequency domain through theWigner transform (the inverse of the Heisenberg transform),

and then to the delay–Doppler domain using SFFT for symbol demodulation.

2.1.3 OTFS Modulation

Consider a set of NM information symbols {x[k, l], k = 0, . . . , N − 1, l = 0, . . . ,M − 1} from a

modulation alphabet of size Q A = {a1, · · · , aQ} (e.g. QAM symbols), which are arranged on the

delay–Doppler grid Γ.

The OTFS transmitter first maps symbols x[k, l] to NM samples X[n,m] on the time–frequency

grid Λ using the ISFFT as follows

X[n,m] =
1√
NM

N−1∑
k=0

M−1∑
l=0

x[k, l]ej2π
(
nk
N
−ml
M

)
(2.2)
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for n = 0, . . . , N − 1,m = 0, . . . ,M − 1.

Next, a time–frequency modulator converts the samples X[n,m] to a continuous time waveform

s(t) using a transmit waveform gtx(t) as

s(t) =
N−1∑
n=0

M−1∑
m=0

X[n,m]gtx(t− nT )ej2πm∆f(t−nT ). (2.3)

As noted in [17], (2.3) is also referred to in the mathematical literature as the (discrete) Heisenberg

transform [26], parametrized by gtx(t).

2.1.4 Wireless Transmission and Reception

The signal s(t) is transmitted over a time-varying channel with complex baseband channel impulse

response h(τ, ν), which characterizes the channel response to an impulse with delay τ and Doppler

ν [21]. The received signal r(t) is given by (disregarding the noise to simplify notation)

r(t) =

∫ ∫
h(τ, ν)s(t− τ)ej2πν(t−τ)dτdν. (2.4)

Equation (2.4) represents a continuous Heisenberg transform parametrized by s(t) [17]. Since typi-

cally there are only a small number of reflectors in the channel with associated delays and Dopplers,

very few parameters are needed to model the channel in the delay–Doppler domain. The sparse

representation of the channel h(τ, ν) is given as

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi) (2.5)

where P is the number of propagation paths; hi, τi, and νi represent the path gain, delay, and

Doppler shift (or frequency) associated with i-th path, respectively, and δ(·) denotes the Dirac delta

function. We denote the delay and Doppler taps for i-th path as follows

τi =
lτi

M∆f
, νi =

kνi + κνi
NT

(2.6)

for integers lτi , kνi and real −1
2 < κνi ≤ 1

2 . Specifically, lτi and kνi represent the indexes of the delay

tap and Doppler tap corresponding to (continuous) delay τi and Doppler frequency νi, respectively.
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We will refer to κνi as the fractional Doppler since it represents the fractional shift from the nearest

Doppler tap kνi . We do not need to consider fractional delays since the resolution of the sampling

time 1
M∆f is sufficient to approximate the path delays to the nearest sampling points in typical

wide-band systems [27].

2.1.5 OTFS Demodulation

At the receiver, a matched filter computes the cross-ambiguity function Agrx,r(t, f) as follows

Y (t, f) = Agrx,r(t, f) ,
∫
g∗rx(t′ − t)r(t′)e−j2πf(t′−t)dt′. (2.7)

The matched filter output is obtained by sampling Y (t, f) as

Y [n,m] = Y (t, f)|t=nT,f=m∆f (2.8)

for n = 0, . . . , N − 1 and m = 0, . . . ,M − 1. Operations (2.7) and (2.8) are referred as the Wigner

transform. In the following theorem, we characterize the relationship between time–frequency output

samples Y [n,m] and input samples X[n,m].

Theorem 2.1. OTFS time–frequency domain analysis. The following input–output relation of

OTFS in time–frequency domain is given by

Y [n,m] =

N−1∑
n′=0

M−1∑
m′=0

Hn,m[n′,m′]X[n′,m′], (2.9)

where

Hn,m[n′,m′] =∫ ∫
h(τ, ν)Agrx,gtx((n− n′)T − τ, (m−m′)∆f − ν)ej2π(ν+m′∆f)((n−n′)T−τ)ej2πνn

′Tdτdν. (2.10)

Proof: The proof is given in Appendix A.1. �

We can see that the terms Hn,m[n′,m′] include the combined effects of the transmit pulse, channel
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response, and receive pulse. Note that similar results have been presented for the case of PS-

OFDM [30,31].

Next, the SFFT is applied on the samples Y [n,m] to obtain symbols y[k, l] in the delay–Doppler

domain

y[k, l] =
1√
NM

N−1∑
n=0

M−1∑
m=0

Y [n,m]e−j2π
(
nk
N
−ml
M

)
. (2.11)

Theorem 2.1 provides the basis of the study of OTFS in two special cases, namely using ideal

waveforms (Section 2.2) and more practical rectangular waveforms (Section 2.3). We will obtain

explicit input-output relations using the delay–Doppler channel model (2.5) for both cases.

2.2 OTFS With Ideal Waveforms

The grx(t) and gtx(t) pulses are said to be ideal if they satisfy the bi-orthogonal property [17]

Agrx,gtx(t, f)|t=nT+(−τmax,τmax),f=m∆f+(−νmax,νmax) = δ[n]δ[m]qτmax(t)qνmax(f) (2.12)

where qa(x) = 1 for x ∈ (−a, a) and zero otherwise. Equivalently, the cross-ambiguity function

Agrx,gtx(t, f) = 0 for t ∈ (nT − τmax, nT + τmax) and f ∈ (m∆f − νmax,m∆f + νmax), ∀n,m except

for n = 0,m = 0, where Agrx,gtx(t, f) = 1 for t ∈ (−τmax, τmax) and f ∈ (−νmax, νmax).

Unfortunately, ideal pulses cannot be realized in practice but can be approximated by waveforms

with a support concentrated as much as possible in time and in frequency, given the constraint

imposed by the uncertainty principle. Nevertheless, it is important to study the error performance

of OTFS with ideal waveforms since it serves as a lower bound on the performance of OTFS with

practically realizable waveforms such as rectangular waveforms, etc.

2.2.1 Time–Frequency Domain Analysis

For ideal waveforms, the time–frequency relation can be obtained as a special case of Theorem

2.1 [18].
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Proposition 2.1. For ideal pulses, the following result can be obtained

Y [n,m] = Hn,m[n,m]X[n,m] (2.13)

where

Hn,m[n,m] =

∫ ∫
h(τ, ν)ej2πνnT e−j2π(ν+m∆f)τdτdν.

Proof: From (2.10), we observe that the value of Hn,m[n′,m′] is non-zero only at n′ = n and

m′ = m for the ideal pulses satisfying the bi-orthogonal property (2.12). Hence, the result in (2.13)

follows from (2.9) by considering only the term with n′ = n, m′ = m in the summations. �

2.2.2 Delay–Doppler Domain Analysis

Input–output relationship

We now apply SFFT on Y [n,m] in (2.13) to obtain the symbols y[k, l] in the delay–Doppler domain.

The following proposition describes the input–output relation in delay–Doppler domain [18].

Proposition 2.2. For ideal pulses, the following input-output relation holds

y[k, l] =
1

NM

N−1∑
k′=0

M−1∑
l′=0

x[k′, l′]hw[k − k′, l − l′], (2.14)

where hw[·, ·] is a sampled version of the impulse response function

hw[k − k′, l − l′] = hw(ν, τ)|
ν= k−k′

NT
,τ= l−l′

M∆f

for hw(ν, τ) being the circular convolution of the channel response with the SFFT of a rectangular

windowing function in the time-frequency domain

hw(ν, τ) =

∫ ∫
h(τ ′, ν ′)w(ν − ν ′, τ − τ ′)e−j2πντdτ ′dν ′, (2.15)

w(ν, τ) =
N−1∑
n=0

M−1∑
m=0

1 · e−j2π(νnT−τm∆f). (2.16)
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Proof: The proof is relegated to the Appendix A.2. �

Inter-Doppler interference (IDI) analysis

From (2.14), we can see that a received signal y[k, l] is a linear combination of all the transmitted

signals x[k′, l′], k′ = 0, . . . , N − 1, l′ = 0, . . . ,M − 1. Consequently, the input-output relation (2.14)

can be represented as a linear system with NM variables x[k′, l′]. Since N and M tend to be very

large for practical OTFS systems, the detection complexity can be prohibitive. In the following,

by using (2.5) as the sparse representation of the delay–Doppler channel, (2.14) reduces to a sparse

linear system, where each received signal can be approximately expressed as a linear combination

of only a few transmitted signals. Such sparsity will then be exploited in Section 2.4 to devise a

low-complexity yet efficient iterative detection algorithm based on message passing on the factor

graph representation.

By substituting (2.5) and (2.16) into (2.15), we obtain

hw(ν, τ) =

P∑
i=1

hie
−j2πνiτi w(ν − νi, τ − τi)

=
P∑
i=1

hie
−j2πνiτi G(ν, νi)F(τ, τi),

where we have denoted

F(τ, τi) ,
M−1∑
m′=0

ej2π(τ−τi)m′∆f ,

G(ν, νi) ,
N−1∑
n′=0

e−j2π(ν−νi)n′T .

Let us first evaluate F(τ, τi) at τ = l−l′
M∆f as

F
(
l − l′
M∆f

, τi

)
=

M−1∑
m′=0

ej
2π
M

(l−l′−lτi )m
′

=
ej2π(l−l′−lτi ) − 1

ej
2π
M

(l−l′−lτi ) − 1
(2.17)

recalling that lτi is the delay tap of i-th path with a delay τi defined in (2.6). From (2.17), we see
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that

F
(
l − l′
M∆f

, τi

)
=


M, [l − l′ − lτi ]M = 0,

0, otherwise,

where [·]M represents mod M operation, i.e., F
(
l−l′
M∆f , τi

)
equals to M for l′ = [l − lτi ]M and is

zero otherwise.

Similarly, we can evaluate

G
(
k − k′
NT

, νi

)
=
e−j2π(k−k′−kνi−κνi ) − 1

e−j
2π
N

(k−k′−kνi−κνi ) − 1
. (2.18)

Due to the fractional κνi , we can see that for a given k, G
(
k−k′
NT , νi

)
6= 0, for all k′.

We will show that the magnitude of 1
N G

(
k−k′
NT , νi

)
has a peak at k′ = k − kνi and decreases as

k′ moves away from k − kνi . From (2.18), after some manipulations, we have

∣∣∣∣ 1

N
G
(
k − k′
NT

, νi

)∣∣∣∣ =

∣∣∣∣ sin(Nθ)

N sin(θ)

∣∣∣∣
where we set θ , − π

N (k − k′ − kνi − κνi). It can be easily shown that

∣∣∣∣ sin(Nθ)

N sin(θ)

∣∣∣∣ =

∣∣∣∣sin((N − 1)θ) cos(θ) + sin(θ) cos((N − 1)θ)

N sin(θ)

∣∣∣∣
≤ N − 1

N
|cos(θ)|+ 1

N
. (2.19)

Here, we used the inequality, | sin(Nθ)| ≤ N | sin(θ)|, which can be proven by induction. The upper

bound (2.19) is tight for small values of θ (when both sides are close to 1) and it has a peak at the

smallest value of θ when k′ = k − kνi . As |θ| increases (due to k′ moving away from k − kνi), the

upper bound decreases with (approximate) slope of π
N (k − k′ − kνi − κνi). Since N is quite large

in OTFS, the function decreases rapidly.

From the above analysis, we need to consider only a small number 2Ni + 1, for some Ni > 0,

of significant values of G
(
k−k′
NT , νi

)
in (2.18) around the peak k − kνi , i.e., [k − kνi −Ni]N ≤ k′ ≤

[k − kνi + Ni]N , where Ni � N . Using this approximation, we can now express the receive signal
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y[k, l] in (2.14) as

y[k, l]≈
P∑
i=1

[k−kνi+Ni]N∑
k′=[k−kνi−Ni]N

(
e−j2π(k−kνi−k

′−κνi ) − 1

Ne−j
2π
N

(k−kνi−k′−κνi ) −N

)
hie
−j2πνiτi x

[
k′, [l − lτi ]M

]

≈
P∑
i=1

Ni∑
q=−Ni

(
e−j2π(−q−κνi ) − 1

Ne−j
2π
N

(−q−κνi ) −N

)
hie
−j2πνiτix [[k − kνi + q]N , [l − lτi ]M ] . (2.20)

In the simulation result section, we will demonstrate that for N = 128, by choosing Ni = 10,

negligible performance loss is incurred. From (2.20), we can see that the received signal y[k, l]

is a linear combination of S =
∑P

i=1 2Ni + 1 transmitted signals. Out of 2Ni + 1 transmitted

signals in i-th path, the signal corresponding to q = 0, x [[k − kνi ]N , [l − lτi ]M ], contributes the

most and all the other 2Ni signals can be seen as interference. Such interference is due to the

transmitted signals that are neighboring x [[k − kνi ]N , [l − lτi ]M ] in the Doppler domain and we

refer to this interference as inter Doppler interference (IDI). Further, the number of transmitted

signals S affecting the received signal y[k, l] in (2.20) is much smaller than NM in (2.14). Hence,

the graph (or linear system) describing (2.20) is sparsely-connected.

Special channel model cases

The above input-output expression simplifies for the following special cases.

i) Ideal channel: Assuming h(τ, ν) = δ(τ)δ(ν), the received signal becomes

y[k, l] = x[k, l]

and behaves as an AWGN channel as expected.

ii) No fractional Doppler (i.e., κνi = 0,∀i): Assuming that Doppler frequencies exactly coincide

with Doppler taps, the received signal can be obtained by replacing Ni = 0 in (2.20), i.e.,

y[k, l]=
P∑
i=1

hie
−j2πνiτix[[k − kνi ]N , [l − lτi ]M ].

For each path, the transmitted signal is circularly shifted by the delay and Doppler taps and scaled

by the associated channel gain.
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2.3 OTFS With Rectangular Waveforms

Since the ideal pulses cannot be realized in practice, we now analyze the OTFS with the rectangular

pulses at both the transmitter and receiver. These pulses do not satisfy the bi-orthogonality con-

ditions and generate some interference which degrades the system performance. Here, we analyze

the effect of such interference and show that it can be compensated to achieve the ideal pulses

performance.

We assume the rectangular pulse has amplitude 1/
√
T for t ∈ [0, T ] and 0 at all other values, to

have unit energy.

2.3.1 Time–Frequency Domain Analysis

For the rectangular pulses, we can see that the cross-ambiguity term in the time–frequency relation

of Theorem 2.1, Agrx,gtx((n− n′)T − τ, (m−m′)∆f − ν) is non-zero for |τ | < τmax |ν| < νmax only

when n′ = n and n′ = n− 1, since gtx(t) and grx(t) are pulses of duration T and τmax � T . Hence,

the time–frequency relation (2.9) becomes

Y [n,m] =
n∑

n′=n−1

M−1∑
m′=0

Hn,m[n′,m′]X[n′,m′]

= Hn,m[n,m]X[n,m] +

M−1∑
m′=0,m′ 6=m

Hn,m[n,m′]X[n,m′] +

M−1∑
m′=0

Hn,m[n− 1,m′]X[n− 1,m′].

(2.21)

The second term in (2.21) can be seen as the total interference from the samples X[n,m′] at different

frequencies m′ 6= m, but in the same time slot n as the current sample X[n,m]. On the other hand,

the third term in (2.21) accumulates the interference from the samples X[n− 1,m′] in the previous

time slot n − 1. Hence, we call the second and third terms as the inter carrier interference (ICI)

and inter symbol interference (ISI), respectively. The interference depends on the delay τ and

Doppler ν of the channel. In particular, they are affected by the value of the cross-ambiguity

function Agrx,gtx((n− n′)T − τ, (m−m′)∆f − ν) in Hn,m[n′,m′]. In the following, we focus on the

cross-ambiguity function for ICI and ISI.
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ICI analysis

Fix n,m. We note that the cross-ambiguity function in the Hn,m[n,m′],m′ 6= m term of ICI,

Agrx,gtx(−τ, (m−m′)∆f − ν), is independent of n, and is computed for the i-th channel path with

delay τi and Doppler νi (i.e., see (2.5)) as

Aici ,
∫
g∗rx(t′ + τi)gtx(t′)e−j2π((m−m′)∆f−νi))(t′+τi)dt′.

We discard the dependency of Aici on (m,m′, τi, νi) for simplicity. Since the received signal r(t) is

sampled at intervals of T/M (or 1/(M∆f)), we can compute Aici as

Aici =
1

M

M−1−lτi∑
p=0

e
−j2π((m−m′)∆f−νi)

(
p

M∆f
+τi

)
. (2.22)

Recall that the pulses gtx(t) and grx(t) have duration T , and lτi is the delay tap defined in (2.6).

The amplitude of Aici is

|Aici| =
1

M

∣∣∣∣∣∣
M−1−lτi∑
p=0

e
−j2π((m−m′)∆f−νi) p

M∆f

∣∣∣∣∣∣
=

∣∣∣∣e−j2π(m−m′− kνi+κνiN

)
M−lτi
M − 1

∣∣∣∣∣∣∣∣Me
−j2π

(
m−m′− kνi+κνi

N

)
1
M −M

∣∣∣∣ .

Similar to the analysis of (2.18), we can observe that |Aici| decreases as m′ moves away from m. It

implies that the ICI becomes less as the interfering subcarriers are further away from the interfered

subcarrier. We can also see that an increase in Doppler (i.e., kνi + κνi) increases the number of

neighboring subcarriers that interfere with the present subcarrier. This is similar to the fractional

Doppler effect studied for (2.18).
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ISI analysis

Similar to the ICI analysis, the cross-ambiguity function in the Hn,m[n− 1,m′] term of ISI, Aisi ,

Agrx,gtx(T − τ, (m−m′)∆f − ν), is computed for the i-th channel path as

Aisi =
1

M

M−1∑
p=M−lτi

e
−j2π((m−m′)∆f−νi)

(
p

M∆f
+τi−T

)
. (2.23)

The amplitude |Aisi| also has similar properties of |Aici|, where it reduces as m′ moves away from

m implying that the ISI is smaller for interfering symbols further away (in the frequency axis) from

the interfered symbol.

Note that the terms that affect the ICI and ISI in the summations (2.22) and (2.23) are mutually

exclusive, i.e., p = 0 to M − 1− lτi contributes to ICI whereas p = M − lτi to M − 1 contributes to

ISI. This property helps in differentiating the ICI and ISI effects in delay–Doppler domain, which

will be studied below.

2.3.2 Delay–Doppler Domain Analysis

We now characterize the input–output relation in delay–Doppler domain for OTFS with rectangular

pulses.

Theorem 2.2. The received signal y[k, l] in delay–Doppler domain with the rectangular pulses can

be written as

y[k, l]≈
P∑
i=1

Ni∑
q=−Ni

hie
j2π

(
l−lτi
M

)(
kνi+κνi

N

)
αi(k, l, q)x [[k − kνi + q]N , [l − lτi ]M ] (2.24)

where we have

αi(k, l, q) =


1
N βi(q) lτi ≤ l < M

1
N (βi(q)− 1) e−j2π

[k−kνi+q]N
N 0 ≤ l < lτi

βi(q) =
e−j2π(−q−κνi ) − 1

e−j
2π
N

(−q−κνi ) − 1
. (2.25)
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Proof: The proof is relegated to the Appendix A.3. �

Note that the approximation error in (2.24) is very small and it reduces by increasing N (see

(A.25) in Appendix A.3). Theorem 2.2 implies that the ICI and ISI in time–frequency domain are

converted to simple phase shifts in the delay–Doppler domain. Moreover, from (2.20) and (2.24),

we can observe that the number of transmitted signals that affects a received signal is the same

for both ideal and rectangular pulse cases. The only difference is that the channel is shifted by an

additional phase that depends on the location of the transmitted signal in the delay–Doppler plane

(i.e., k and l).

Special channel model cases: Let us consider the above input-output expression (2.24) for the

special cases mentioned in Section 2.2.

i) Ideal channel: The received signal becomes

y[k, l] = x[k, l],

which is the same as the ideal pulses case since the rectangular pulses satisfy the bi-orthogonal

property in (2.12) when the channel is ideal (i.e., τmax = 0 and νmax = 0). This can be seen easily

by observing (2.1) at t = nT and f = m∆f .

ii) No fractional Doppler (i.e., κνi = 0,∀i): Equation (2.24) simplifies to

y[k, l]≈
P∑
i=1

hie
j2π

(
l−lτi
M

)
kνi
N αi(k, l)x[[k − kνi ]N , [l − lτi ]M ],

where

αi(k, l) =


1 lτi ≤ l < M

N−1
N e

−j2π
(

[k−kνi ]N
N

)
0 ≤ l < lτi .

In this case, IDI does not appear as in the case of ideal pulses.
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2.4 Message Passing Algorithm for Joint Interference Cancellation

and Detection

We now propose a message passing (MP) algorithm for OTFS using the input-output relation in

(2.20) (or (2.24)).

2.4.1 Low-Complexity MP Detection Algorithm

The received signal in vectorized form can be written as

y = H x + z (2.26)

where y and z are complex vectors of dimension NM × 1 with elements denoted by y[d] and z[d], 1 ≤

d ≤ NM , respectively; H is a NM ×NM complex matrix with elements H[d, c], 1 ≤ d, c ≤ NM ;

x is the information vector of dimension NM × 1 with elements x[c] ∈ A, 1 ≤ c ≤ NM . 2 The

elements of y,x, and H are determined from (2.20) (or (2.24)) and z is the noise vector. Due to

mod N and mod M operations in (2.20), we observe that only S =
∑P

i=1(2Ni + 1) elements out

of NM are non-zero in each row and column of H. Recall that P is the number of propagation

paths. We can see that since S is much smaller than NM , H is a sparse matrix. Let I(d) and J (c)

denote the sets of indexes with non-zero elements in the d-th row and c-th column, respectively, then

|I(d)| = |J (c)| = S for all rows and columns. Note that although (2.26) applies to both ideal pulses

case in (2.20) and rectangular pulses case in (2.24), with different matrices H, the number of non-

zero elements S in each row and column of H remains the same for both cases. This condition helps

in compensating ICI and ISI of rectangular pulses with the same complexity detection algorithm of

ideal pulses.

Based on (2.26), we model the system as a sparsely-connected factor graph with NM variable

nodes corresponding to x and NM observation nodes corresponding to y. In this factor graph, each

observation node y[d] is connected to the set of S variable nodes {x[c], c ∈ I(d)}. Similarly, each

variable node x[c] is connected to the set of S observation nodes {y[d], d ∈ J (c)}.

From (2.26), the joint maximum a posterior probability (MAP) detection rule for estimating the
2The proposed algorithm can also be applied for the corresponding real valued systems which is beneficial for

higher order QAM modulation. Here, for the general case, we consider a complex valued system.
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(µd;e1 ;σ
2

d;e1
)

fe1; e2; · · · ; eSg = Id

y[d]

x[e1] x[eS ]

(µd;eS ;σ
2

d;eS
)

Observation node messages

y[e1]

x[c]

y[eS ]

pc;e1
pc;eS

fe1; e2; · · · ; eSg = Jc

Variable node messages

Figure 2.2: Messages in factor graph

transmitted signals is given by

x̂ = arg max
x∈ANM×1

Pr
(
x
∣∣ y,H

)
,

which has a complexity exponential in NM . Since the joint MAP detection can be intractable

for practical values of N and M , we consider the symbol-by-symbol MAP detection rule for c =

1, . . . , NM

x̂[c] = arg max
aj∈A

Pr
(
x[c] = aj

∣∣ y,H
)

= arg max
aj∈A

1

Q
Pr
(
y
∣∣ x[c] = aj ,H

)
(2.27)

≈ arg max
aj∈A

∏
d∈Jc

Pr
(
y[d]

∣∣ x[c] = aj ,H
)
. (2.28)

In (2.27), we assume all the transmitted symbols aj ∈ A are equally likely and in (2.28) we assume

the components of y are approximately independent for a given x[c], due to the sparsity of H. That

is, we assume the interference terms ζ(i)
d,c defined in (2.29) are independent for a given c. In order

to solve the approximate symbol-by-symbol MAP detection in (2.28), we propose a MP detector

which has a linear complexity in NM . Similarly to [25], for each y[d], a variable x[c] is isolated

from the other interference terms, which are then approximated as Gaussian noise with an easily

computable mean and variance.

In the MP algorithm, the mean and variance of the interference terms are used as messages

from observation nodes to variable nodes. On the other hand, the message passed from a variable
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node x[c] to the observation nodes y[d], d ∈ J (c), is the probability mass function (pmf) of the

alphabet pc,d = {pc,d(aj)|aj ∈ A}. Fig. 2.2 shows the connections and the messages passed between

the observation and variable nodes. The MP algorithm is described in Algorithm 2.1.

Algorithm 2.1 MP algorithm for OTFS symbol detection
1: Input: Received signal y, channel matrix H.
2: Initialize: pmf p

(0)
c,d = 1/Q, c = 1, · · · , NM, d ∈ J (c), iteration count i = 1.

3: repeat
4: Observation nodes y[d] compute the means µ(i)

d,c and variances (σ
(i)
d,c)

2 of Gaussian random

variables ζ(i)
d,c using p

(i−1)
c,d and pass them to variables nodes x[c], c ∈ I(d).

5: Variable nodes x[c] update p
(i)
c,d using µ(i)

d,c, (σ
(i)
d,c)

2, and p
(i−1)
c,d and pass them to observation

nodes y[d], d ∈ J (c).
6: Compute convergence indicator η(i).
7: Update the decision on the transmitted symbols x̂[c], c = 1, . . . , NM if needed.
8: i← i+ 1
9: until Stopping criteria

10: Output: The decision on transmitted symbols x̂[c].

The details of the steps in iteration i in the MP algorithm are detailed below.

Message passings from observation nodes y[d] to variable nodes x[c], c ∈ I(d): The mean

µ
(i)
d,c and variance (σ

(i)
d,c)

2 of the interference, approximately modeled as a Gaussian random variable

ζ
(i)
d,c defined as

y[d] = x[c]H[d, c] +
∑

e∈I(d),e 6=c

x[e]H[d, e] + z[d]

︸ ︷︷ ︸
ζ

(i)
d,c

, (2.29)

can be computed as

µ
(i)
d,c =

∑
e∈I(d),e6=c

Q∑
j=1

p
(i−1)
e,d (aj)ajH[d, e], (2.30)

and

(σ
(i)
d,c)

2 =
∑

e∈I(d),e 6=c

(
Q∑
j=1

p
(i−1)
e,d (aj)|aj |2|H[d, e]|2 −

∣∣∣∣∣∣
Q∑
j=1

p
(i−1)
e,d (aj)ajH[d, e]

∣∣∣∣∣∣
2)

+ σ2. (2.31)
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Message passings from variable nodes x[c] to observation nodes y[d], d ∈ J (c): The pmf

vector p
(i)
c,d can be updated as

p
(i)
c,d(aj) = ∆ · p̃(i)

c,d(aj) + (1−∆) · p(i−1)
c,d (aj), aj ∈ A (2.32)

where ∆ ∈ (0, 1] is the damping factor used to improve the performance by controlling the conver-

gence speed [32], and

p̃
(i)
c,d(aj) ∝

∏
e∈J (c),e 6=d

Pr
(
y[e]
∣∣∣x[c] = aj ,H

)
=

∏
e∈J (c),e 6=d

ξ(i)(e, c, j)∑Q
k=1 ξ

(i)(e, c, k)
, (2.33)

where ξ(i)(e, c, k) = exp

(
−
∣∣∣y[e]−µ(i)

e,c−He,cak
∣∣∣2

(σ
(i)
e,c)2

)
.

Convergence indicator: Compute the convergence indicator η(i) as

η(i) =
1

NM

NM∑
c=1

I
(

max
aj∈A

p(i)
c (aj) ≥ 1− γ

)
, (2.34)

for some small γ > 0 and where

p(i)
c (aj) =

∏
e∈J (c)

ξ(i)(e, c, j)∑Q
k=1 ξ

(i)(e, c, k)
(2.35)

and I(·) is an indicator function which gives a value of 1, if the expression in the argument is true,

and 0 otherwise.

Update decision: If η(i) > η(i−1), then we update the decision of the transmitted symbol as

x̂[c] = arg max
aj∈A

p(i)
c (aj), c = 1, · · · , NM. (2.36)

We update the decision on the transmitted symbols only when the current iteration can provide

better estimates than the previous iteration.

Stopping criteria. The MP algorithm stops when at least one of the following conditions is

satisfied.
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1. η(i) = 1.

2. η(i) < η(i∗)−ε, where i∗ is the iteration index from {1, · · · , (i−1)} for which η(i∗) is maximum.

3. Maximum number niter of iterations is reached.

We select ε = 0.2 to disregard small fluctuations of η. Here, the first condition occurs in the best

case, where all the symbols have converged. The second condition is useful to stop the algorithm if

the current iteration provides a worse decision than the one in previous iterations.

Remark 2.2. Complexity of the proposed MP algorithm. The complexity of one iteration in-

volves the computation of (2.30), (2.31), (2.32), (2.34), and (2.36). More specifically, each of

(2.30), (2.31), and (2.32) 3, has a complexity order O(NMSQ). Furthermore, (2.34) and (2.36)

can be computed with a complexity order O(NMQ) 4. Therefore, the overall complexity order is

O(niterNMSQ). In simulations, we observed that the algorithm converges typically within 20 it-

erations (i.e., see Figure 2.4 in the illustrative result section for more references). We conclude

that the IDI analysis, which includes the smart approximation of IDI, to exploit the sparsity of the

delay-Doppler channel representation is a key factor in reducing the complexity of the detector (due

to relatively small S). The memory requirement is dominated by the storage of 2NMSQ real values

for p
(i)
c,d and p

(i−1)
c,d . In addition, we have the messages (µ

(i)
d,c, (σ

(i)
d,c)

2), requiring NMS complex values

and NMS real values, respectively.

2.4.2 Application of MP Detection Algorithm for OFDM Over Delay–Doppler

Channels

In the simulation result section, we will compare the performance of OTFS and OFDM over delay–

Doppler channels. In this section, we demonstrate that it is also possible to utilize the above MP

algorithm to compensate the Doppler effects in OFDM systems.

Consider OFDM system with OFDM symbol of duration T and M subcarriers. Hence, the

received signal and noise are sampled at T/M . Then, the frequency-domain signal after FFT

3In computing (2.33), first we find the p
(i)
c (aj) in (2.35) which requires O(NMQ) complexity and then we obtain

(2.33) by dividing (2.35) with the term related to e = d for all d, which requires O(S) complexity for each c. Hence,
the over all complexity of (2.33) becomes O(NMSQ).

4The computation of (2.34) and (2.36) require to find the maximum element out of Q elements for each c. As
(2.35) is already computed for (2.33), finding the maximum element requires O(Q) complexity for each c, which leads
to an overall complexity of O(NMQ) to compute (2.34) and (2.36).
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operation is given by

y = WHtW
Hx + z (2.37)

where W is M -point FFT matrix, and x ∈ AM×1 is the transmitted OFDM symbol. The elements

Ht[p, q] of time-domain channel matrix Ht are given in [33] as

Ht[p, q] =

P∑
i=1

hiδ

[[
p− q − τiM

T

]
M

]
ej

2π(q−1)νi
M , p, q = 1, . . . ,M.

Using the M ×M frequency-domain channel matrix Hofdm = WHtW
H, we can re-write (2.37) as

y = Hofdmx + z. (2.38)

Since (2.38) has the form similar to (2.26), the MP previously developed for OTFS can also be

applied for OFDM symbol detection. We note that Hofdm is diagonally dominant and the values

of off-diagonal elements in each row decay as we move away from the diagonal entry as explained

in [33]. Hence, the Hofdm matrix is also sparse enabling the use of the proposed low-complexity MP

detection algorithm.

2.5 Illustrative Results and Discussions

In this section, we simulate the error performance of uncoded OTFS and OFDM systems over delay-

Doppler channels. In particular, we first study BER performance of OTFS for ideal pulses with the

number of IDI interference terms Ni and MP parameter ∆. We next study the BER performance

of OTFS with ideal pulses and rectangular pulses, and its comparison with OFDM.

All relevant simulation parameters are given in Table 2.1. First, ideal channel estimation is

assumed, i.e., the channel impulse function h(τ, ν) is perfectly known at the receiver. Then, we

consider the effect of imperfect channel estimation on OTFS performance. For both OTFS and

OFDM systems, Extended Vehicular A model (EVA) [35] is adopted as the channel model for the

path delays (or delay taps) and each delay tap has a single Doppler shift generated using Jakes’
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Parameter Value

Carrier frequency 4 GHz

No. of subcarriers (M) 512

No. of OTFS symbols (N) 128

Subcarrier spacing 15 KHz

Cyclic prefix of OFDM 2.6 µs

Modulation alphabet 4-QAM, 16-QAM

UE speed (Kmph) 30, 120, 500

Channel estimation Ideal

Table 2.1: Simulation Parameters

formula

νi = νmax cos(θi)

where νmax is the maximum Doppler shift determined by the UE speed and θi is uniformly dis-

tributed over [−π, π]. In general, the channel can have multiple paths with the same delay but

different Doppler shifts. In our simulations, we consider channels with only one path for given

delay. However, it is straightforward to consider multiple paths with different Doppler shifts for a

given delay, and our main theoretical result in Theorem 2.2 is still valid. In order to obtain BER

values, we consider 7× 104 different channel realizations in the Monte-Carlo simulations.

We first demonstrate the effects of IDI in OTFS. Fig. 2.3 shows the BER performance of OTFS

system with ideal pulses using the proposed MP detector for different number of IDI interference

terms Ni with 4-QAM signaling over the delay–Doppler channel with different Doppler frequencies

(i.e., UE speeds of 120, 500 Kmph) and SNRs. Note that ICI and ISI are not present for the

ideal pulses case. We consider the same Ni for all paths. We can see that there is a significant

BER improvement when Ni increases from 0 to 10 and saturation thereafter. Note that Ni = 0

corresponds to the case when IDI is not taken into account. The results imply that fewer neighboring

interference terms are sufficient to consider in the MP algorithm (e.g. Ni = 10) without incurring

performance loss. We also observe that if IDI is not taken into account at all or an insufficient

number of IDI terms is considered (i.e., Ni ≤ 5), the error performance worsens significantly.

These observations demonstrate the importance of our previous IDI analysis for suitable interference

cancellation algorithm development. Also, it can be observed that for given SNR (e.g., SNR =
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4-QAM.
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18 dB), the error performances of OTFS with different Doppler frequencies are similar since the

proposed MP algorithm can effectively compensate for a wide range of channel Doppler variations

as demonstrated further in the following.

In Fig. 2.4, we illustrate the BER performance and average number of iterations with ideal

pulses using the MP algorithm. We fix Ni = 10 and vary the damping factor ∆. We consider

4-QAM signaling, SNR = 18 dB, and UE speed of 120 Kmph. We observe that, when ∆ ≤ 0.7,

the BER remains almost the same, but deteriorates thereafter. Further, when ∆ = 0.7, the MP

algorithm converges with the least number of iterations. Hence, we choose ∆ = 0.7 as the optimum

damping factor in terms of performance and complexity.

In Fig. 2.5, we compare the BER performance of OTFS with ideal pulses and OFDM using

4-QAM signaling over the delay-Doppler channels of different Doppler frequencies (i.e., UE speeds

of 30, 120, 500 Kmph). Note that the MP algorithm proposed in Section 2.4.2 is used for OFDM

detection. We observe that OTFS outperforms OFDM by approximately 15 dB at BER of 10−4

thanks to the constant channel gain over all transmitted symbols in OTFS, whereas in OFDM, the

overall error performance is limited by the subcarrier(s) experiencing the worse channel conditions.

Moreover, OTFS exhibits the same performance at different Doppler frequencies thanks to the IDI

cancellation provided by the MP detector. Similar behavior applies to OFDM, since the ICI can be

removed by the MP detector. We can conclude that the performance of OTFS under the proposed

MP algorithm is robust to Doppler variations and is much better than that of OFDM.

Fig. 2.6 shows the BER performance of OTFS with rectangular pulses using 4-QAM signaling

for two scenarios: one with ICI and ISI cancellations (WC) and the other without (WO). In the

second scenario, we observe that OTFS with rectangular pulses has an error floor incurred by the

ICI and ISI. The performance degradation becomes more severe at high Doppler (e.g., 500 Kmph)

due to large ICI and ISI. On the other hand, the BER performance of OTFS with rectangular pulses

approaches that of OTFS with ideal pulses, when ISI and ICI are mitigated. Moreover, we can see

that the proposed MP algorithm can effectively mitigate ISI and ICI and thus OTFS performance

remains almost constant regardless of the Doppler frequencies. These results show that it is possible

to achieve the performance of OTFS with ideal waveforms even with the more practical rectangular

waveforms by using our MP algorithm together with appropriate IDI, ICI and ISI cancellation.

In Fig. 2.7, we compare the BER performance of OTFS and OFDM at a Doppler of 120 Kmph
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Figure 2.7: The BER performance of OTFS with rectangular and ideal pulses for 16-QAM.

using 16-QAM signaling. We observe that OTFS with ICI and ISI cancellation outperforms OFDM

by 11 dB at BER = 10−3. We also simulate OTFS at different Doppler frequencies of 30 and 500

Kmph and we observe the BER performances are similar to that of 120 Kmph.

In the next experiments, we study the performance of OTFS under different practical constraints,

namely low-latency and non-ideal channel estimation.

Fig. 2.8 shows the OTFS performance under low-latency constraint where N = 16, M = 128,

and 16-QAM. In this experiment, the frame duration is Tf = NT ≈ 1.1 ms, which is much smaller

than the previous case with N = 128 and Tf ≈ 8.8 ms. We can observe that the OTFS performance

is the same for different Dopplers. Further, the performance of OTFS degrades with low-latency

because the delay–Doppler grid has lower resolution on the Doppler axis, and hence, the receiver

resolves a smaller number of paths in the channel. This leads to the diversity loss over the high-

latency case. When compared to OFDM, we observe that OTFS outperforms OFDM below BER

= 2× 10−3 with a significant diversity gain.

Fig. 2.9 shows the effect of imperfect channel estimation on the performance of OTFS with

N = 128,M = 512, 16-QAM, and a Doppler of 120 Kmph. Here, we introduce the error in the
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channel estimation using the model [34]

h′i = hi + ne, 1 ≤ i ≤ P

where ne ∼ CN (0, σ2
e) and we assume the delay and Doppler taps are perfectly estimated. From Fig.

2.9, we see that as the noise variance reduces, performance of OTFS is approaching the ideal system,

particularly for a noise variance of −20 dB it is very close to the ideal system. A comprehensive

study on the performance of OTFS under non-ideal channel estimation is presented in Chapter 4.



Chapter 3

OTFSWith Arbitrary Pulse-ShapingWave-

forms Using Simplified Matrix Notations

In this chapter, we first present an alternative proof for the OTFS input–output relation with the

rectangular pulse-shaping waveforms derived in the previous chapter and generalize it to arbitrary

waveforms. The proof is based on the properties of block circulant matrices which is inspired by

the circulant matrix decomposition in OFDM. Next, we compare OTFS performance with different

pulse-shaping waveforms, and show that the reduction of out-of-band power may introduce non-

uniform channel gains for the transmitted symbols, thus impairing the overall error performance.

The rest of the chapter is organized as follows. Section 3.1 describes the OTFS system model

in matrix notations. In Section 3.2, we derive the input–output relation in OTFS for arbitrary

waveforms using the block circulant matrices properties.

3.1 System Model

In this section, we describe the OTFS system using matrix notations. We assume that the total

duration of the transmitted signal frame is NT and the sampling interval is T/M . Moreover, we

let gtx(t) and grx(t) denote a pulse of duration [0, T ] repeated N times in the frame.

Part of the content of this chapter appears as, P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Practical
pulse-shaping waveforms for reduced-cyclic-prefix OTFS,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 957-961,
Jan. 2019.
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3.1.1 Transmitter

Let X ∈ CM×N denote the two-dimensional information symbols transmitted in the delay–Doppler

plane. To convert these symbols to time–frequency signals, ISFFT precoding is applied (this

amounts to an M -point FFT of the columns and an N -point IFFT of the rows of X). The “Heisen-

berg transform modulator” generates the time domain signal using an M -point IFFT along with

the pulse-shaping waveform gtx(t). The transmitted signal can be written as [22]

S = GtxFH
M (FMXFH

N ) = GtxXFH
N (3.1)

where the diagonal matrix Gtx has the samples of gtx(t) as its entries:

Gtx = diag[gtx(0), gtx(T/M), · · · , gtx((M − 1)T/M)] ∈ CM×M

(for rectangular waveforms, Gtx reduces to the identity matrix IM ). Column-wise vectorization of

the M ×N matrix S in (3.1) yields the MN × 1 vector

s = vec(S) = (FH
N ⊗Gtx)x (3.2)

where x = vec(X) and denoting by ⊗ the Kronecker product. We assume that a CP of length L−1

(see after (3.5)) is appended to s before transmission.

Note that we assume only one CP for the entire OTFS frame, whereas the other works [22–24,

36,37] considered N CP’s for one OTFS frame. This design assumption considerably increases the

spectral efficiency of the overall system, particularly for the cases where the value of N is large,

(e.g., 64, 128) or the CP overhead is large (e.g., 802.11ac requires 25% CP).

3.1.2 Channel

After parallel-to-serial and digital-to-analog conversion, denoting by s(t) the transmitted signal, the

received signal r(t) can be expressed in the form [17,18]

r(t) =

∫ ∫
h(τ, ν)s(t− τ)ej2πν(t−τ)dτdν + w(t). (3.3)



3.1 System Model 49

Since typically there is only a small number of reflectors in the channel with associated delays and

Doppler shifts, very few parameters are often needed to model the channel in the delay–Doppler

domain. Given the sparsity of the channel representation, it is convenient to express the response

h(τ, ν) in the form

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi) (3.4)

where δ(·) is the Dirac delta function, P is the number of propagation paths, and hi, τi, and νi

denote the complex path gain, delay, and Doppler shift (or frequency) associated with the i-th path,

respectively. The delay and Doppler-shift taps for i-th path are given by

τi =
li

M∆f
, νi =

ki
NT

(3.5)

For ease of derivations, we assume the delay and Doppler shifts as integer multiples of 1
M∆f and

1
NT , respectively, i.e., we assume li, ki are integers. However, fractional delay and Doppler shifts

can also be handled using the techniques discussed in [16] by adding virtual integer taps in the

delay–Doppler channel. Hence, the results derived in this work can be straightforwardly extend to

the fractional delay and Doppler shifts.

Here, NT and M∆f denote the total duration and bandwidth of the transmitted signal frame,

respectively. Throughout the chapter, we have considered T∆f = 1, i.e., OTFS is critically sampled

for all pulse-shaping waveforms. We assume that the maximum delay of the channel is τmax =

(L− 1)T/M , i.e., max(li) = L− 1. Moreover, li < M and ki < N (i.e., the channel is underspread:

for example, typical values of li and ki in LTE channels are less than 10% ofM and N , respectively).

The received signal y(t) is sampled at a rate fs = M∆f = M/T and, after discarding the CP, a

vector r = {r(n)}MN−1
n=0 is formed, whose entries, from (3.3) and (3.4), are the samples

r(n) =

P∑
i=1

hie
j2π

ki(n−li)
MN s([n− li]MN ) + w(n) (3.6)

where [·]n denotes mod-n operation. We write (3.6) in vector form as

r = Hs + w, (3.7)
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where H is the MN ×MN matrix

H =
P∑
i=1

hiΠ
li∆ki , (3.8)

with Π the permutation matrix (forward cyclic shift),

Π =



0 · · · 0 1

1
. . . 0 0

...
. . . . . .

...

0 · · · 1 0


MN×MN

(3.9)

and ∆ is the MN ×MN diagonal matrix

∆ = diag
[
z0, z1, · · · , zMN−1

]
(3.10)

with z = e
j2π
MN . Here, the matrices Π and ∆ model the delays and the Doppler shifts in (3.3),

respectively. Each path introduces an li-step cyclic shift of the transmitted signal vector s, modeled

by Πli , and modulates it with a carrier at frequency ki, modeled by ∆ki .

3.1.3 Receiver

At the receiver, we invert the transmitter operations to transform the received signal samples

r into the time–frequency domain symbols R = vec−1(r) (the vector elements are folded back

into a matrix), next into the delay–Doppler domain symbols Y = FH
M (FMGrxR)FN . To do

this, we apply an M -point FFT followed by an SFFT. Here, Grx ∈ CM×M represents the fil-

ter operating at the receiver and using the pulse-shaping waveform grx(t). We can write Grx =

diag[grx(0), grx(T/M), · · · , grx((M − 1)T/M)].

In vectorized form the received signal in the delay–Doppler domain can be written, after substi-

tuting (3.2) in (3.7), as

y = (FN ⊗Grx)r



3.2 Input–Output Relation 51

= (FN ⊗Grx)H(FH
N ⊗Gtx)x + (FN ⊗Grx)w

= Heffx + w̃ (3.11)

where Heff = (FN ⊗Grx)H(FH
N ⊗Gtx) denotes the effective channel matrix, and w̃ = (FN ⊗Grx)w

the noise vector. It can be easily seen that in general w̃ has a diagonal covariance matrix, which

becomes a scalar matrix (indicating iid noise samples) in the case of rectangular waveforms, i.e.,

Grx = IM .

In the next section, we will simplify Heff to obtain a simple relation between the input and

output symbols in delay–Doppler domain.

3.2 Input–Output Relation

In this section, we first derive the simplified form of Heff for the rectangular waveforms and then

extend that relation to the arbitrary waveforms at the transmitter and receiver. For the rectangular

waveforms, both Gtx and Grx are equal to IM , and hence

Hrect
eff = (FN ⊗ IM )H(FH

N ⊗ IM ). (3.12)

Let us first recall the following lemma on circulant matrices decomposition [40].

Lemma 3.1. Let A = circ[A0, . . . ,AN−1] denote the MN ×MN block-circulant matrix

A =



A0 AN−1 · · · A1

A1 A0 · · · A2

...
. . . . . .

...

AN−1 AN−2 · · · A0


(3.13)

where A0, · · · ,AN−1 are square matrices of order M . Then A can be block-diagonalized in the

following forms:

A = (FH
N ⊗ IM )D(FN ⊗ IM ) (3.14)
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= (FN ⊗ IM )D̃(FH
N ⊗ IM ) (3.15)

where D and D̃ are the block diagonal matrices

D = diag [D0,D1, · · · ,DN−1] (3.16)

D̃ = diag
[
D̃0, D̃1, · · · , D̃N−1

]

with block submatrices D0, · · · ,DN−1, D̃0, · · · , D̃N−1 ∈ CM×M . The (i, j)-th entry (0 ≤ i ≤M −1,

0 ≤ j ≤ M − 1) of Dn (0 ≤ n ≤ N − 1) can be computed as the nth element of the DFT of the

vector a(i,j) = [A0(i, j), · · · ,AN−1(i, j)]T , i.e.,

[D0(i, j), · · · ,DN−1(i, j)]T =
√
NFNa(i,j) (3.17)

Similar to D, D̃ is related to a(i,j) by

[
D̃0(i, j), · · · , D̃N−1(i, j)

]T
=
√
NFH

Na(i,j).

The above can also be expressed in the form

a(i,j) =
1√
N

FN

[
D̃0(i, j), · · · , D̃N−1(i, j)

]T
(3.18)

Proof: See [40] for the details. The proof of (3.17) is based on the fact that theN×N submatrices

of A obtained by taking a row and a column every M are circulant. There are M2 distinct such

circulant submatrices. �

The following theorem yields a simplified form of Heff.

Theorem 3.1. The effective channel matrix Heff for rectangular waveforms can be written as

Hrect
eff =

P∑
i=1

hiT
(i), (3.19)
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where the entry (p, q), 0 ≤ p ≤MN − 1, 0 ≤ q ≤MN − 1, of T(i) is

T(i)(p, q) =


e−j2π

n
N zki([m−li]M ), if q = [m− li]M +M [n− ki]N and m < li

zki([m−li]M ), if q = [m− li]M +M [n− ki]N and m ≥ li

0, otherwise.

(3.20)

In (3.20), the values of n and m can be computed from p = (m,n) using n = b pM c and m = p−nM .

Notice that Hrect
eff has only P nonzero entries in each row and column. The row and column entries

describe the effect of information symbols on a particular received signal.

Proof: The proof is relegated to the Appendix B.1. �

Example: Let us consider M = 2, N = 2, and examine T(i) in the following four channel cases.

1. k1 = 0, l1 = 0: In this case, P(1) and Q(1) becomes I4 that leads T(1) to I4. That is, the channel

with zero delay and Doppler corresponds to a narrowband channel in OTFS.

2. k2 = 0, l2 = 1: In this case, Q(2) becomes I4 and

P(2) = T(2) =



0 1 0 0

1 0 0 0

0 0 0 e−j2π
1
2

0 0 1 0


That is, channel with one delay circularly shifts the elements in each column (delay dimension) of

s with extra phase shifts.

3. k3 = 1, l3 = 0: In this case, P(3) becomes I4 and

Q(3) = T(3) =



0 0 1 0

0 0 0 ej2π
1
4

1 0 0 0

0 ej2π
1
4 0 0


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That is, channel with one Doppler circularly shifts the columns (Doppler dimension) of s with extra

phase shifts.

4. k4 = 1, l4 = 1: In this case,

T(4) =



0 0 0 ej2π
1
4

0 0 1 0

0 e−j2π
1
4 0 0

1 0 0 0


That is, channel with both delay and Doppler circularly shifts the columns and elements in each

column of s.

Remark 3.1. From Chapter 2, the input–output relation for the ideal waveforms case can be written

as a 2D convolution in the form [17,18]

Y(m,n) =

P∑
i=1

hiX([m− li]M , [n− ki]N ) (3.21)

Therefore, the effective channel matrix in Theorem 1 can be obtained from (3.21) by replacing hi

with hiαi(m,n), where the correction factor is given by

αi(m,n) =


e−j2π

n
N zki([m−li]M ), if m < li

zki([m−li]M ), if m ≥ li

0, otherwise.

The extra phase shifts, αi(m,n), are caused by imperfect bi-orthogonality of the non-ideal waveforms.

Note that sparsity of OTFS is not affected by the αi(m,n)’s, hence the complexity of any detection

algorithm does not change, when practical waveforms are used.

Based on Theorem 1, we can provide a simplified input–output relation when the waveforms at

the transmitter and receiver are arbitrary.
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Figure 3.1: BER performance of OTFS system with rectangle and prolate spheroidal pulse shaping
waveforms.

Theorem 3.2. The effective channel matrix, Heff for the arbitrary waveforms can be written as

Heff =

P∑
i=1

hi

[
(IN ⊗Grx)T(i)(IN ⊗Gtx)

]
, (3.22)

Proof: The result can be obtained by writing Heff in (3.11) as

Heff = (IN ⊗Grx)(FN ⊗ IM )H(FH
N ⊗ IM )(IN ⊗Gtx)

= (IN ⊗Grx)Hrect
eff (IN ⊗Gtx)

= (IN ⊗Grx)

[
P∑
i=1

hiT
(i)

]
(IN ⊗Gtx) (3.23)

Moreover, Heff has also exactly P nonzero elements in each row as (IN ⊗Grx) and (IN ⊗Gtx) are

diagonal matrices. �

3.2.1 A Special Case: Prolate Spheroidal Waveforms

Assume gtx(t) to be a prolate spheroidal waveform (PSW) [41]: this has a much lower out-of-

band power than the rectangular waveform, which reduces the out-of-band interference of OFDM

systems. It can be easily shown that an arbitrary grx(t) does not affect the performance of maximum
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likelihood (ML) detection, since both signal and noise components are equally scaled. Therefore,

we have selected a rectangular grx(t).

Fig. 3.1 shows BER of OTFS vs. Eb/N0 with rectangular and PSW. This figure also compares

OTFS with CP-OFDM as a function of Eb/N0, where Eb/N0 takes into account the rate loss of

CP-OFDM due to the use of CP overhead. The plot corresponds to the following parameters:

carrier frequency = 4 GHz, subcarrier spacing = 15 KHz, M = 512, N = 128, maximum speed

= 120 Kmph, and 4-QAM modulation. We use EVA model [35] for the channel delay, and each

delay tap has a single Doppler shift generated using Jakes’ formula νi = νmax cos(θi), where νmax

is the maximum Doppler shift determined by the UE speed and θi is uniformly distributed over

[−π, π]. For the detection of transmit symbols, we use the message-passing detector proposed in

the Chapter 2. Note that both waveforms have similar detection complexity, as the sparsity of the

effective channel matrix is same.

We can see from the figure that rectangular waveforms outperform by about 5 dB the PSW. This

is due to the structure of the latter: here, some of the symbols (edge symbols, see (3.23)) experience

lower channel gains, which degrades the overall performance, while with rectangular waveforms all

symbols experience uniform channel gains. Hence, we see a trade-off between out-of-band power and

error performance of the OTFS system. Moreover, OTFS with PSW can still be able to outperform

OFDM in terms of diversity gain (the BER curve slope).



Chapter 4

Embedded Pilot-Aided Channel Estima-

tion for OTFS

In order to implement the OTFS detection methods proposed in the earlier chapters, the delay–

Doppler channel impulse response needs to be known at the receiver. In this chapter, we propose

embedded pilot-aided channel estimation schemes for OTFS. In each OTFS frame, we arrange pilot,

guard, and data symbols in the delay–Doppler plane to suitably avoid interference between pilot

and data symbols at the receiver. We develop such symbol arrangements for OTFS over multipath

channels with integer and fractional Doppler shifts respectively. At the receiver, channel estimation

is performed based on a threshold method and the estimated channel information is used for data

detection via a MP algorithm. As a result of our specific embedded symbol arrangements, both

channel estimation and data detection are performed within the same OTFS frame with a minimum

overhead. We compare by simulations the error performance of OTFS using the proposed channel

estimation algorithm and OTFS with ideally known channel information and observe only a marginal

performance loss. We also demonstrate that the proposed channel estimation in OTFS significantly

outperforms OFDM with ideal channel information.

The rest of the chapter is organized as follows. Section 4.1 reviews the basic OTFS results

derived in Chapter 2, which lay the foundations for the development of OTFS-specific channel

estimation schemes in Section 4.2 and 4.3. Numerical results are presented in Section 4.4.

Part of the content of this chapter appears as, P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Embedded
delay-Doppler channel estimation for orthogonal time frequency space modulation,” in Proc. IEEE 88th Vehicular
Technology Conference: VTC2018-Fall, Chicago, USA, August 2018.
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4.1 OTFS Overview

In this section, we recollect the OTFS input–output relations derived in the Chapter 2 for the ideal

waveforms.

4.1.1 Integer Doppler Shifts (i.e., κνi = 0, for all i)

The relation between y[k, l] and x[k, l] with the ideal waveforms for integer Doppler case can be

written as

y[k, l] =

kν∑
ki=−kν

lτ∑
li=0

b[ki, li]ĥ[ki, li]x[[k − ki]N , [l − li]M ] + v[k, l] (4.1)

where ĥ[ki, li] = hie
−j2π ki

NT

li
M∆f ; b[ki, li] ∈ {0, 1} is path indicator: b[ki, li] = 1 means that there is a

path with Doppler tap ki and delay tap li with corresponding (modified) path magnitude ĥ[ki, li],

otherwise, there is no such path, i.e., b[ki, li] = ĥ[ki, li] = 0; v[k, l] ∼ CN (0, σ2) is additive white

noise with variance σ2, [·]N and [·]M denote modulo N and M operations, respectively. We have

the total number of paths:
kν∑

ki=−kν

lτ∑
li=0

b[ki, li] = P.

Each path circularly shifts the transmitted signal by the delay and Doppler taps and scales it by

the associated path gain.

4.1.2 Fractional Doppler Shifts

Similarly, the input–output relation for the fractional Doppler case can be written as

y[k, l] =

kν∑
ki=−kν

lτ∑
li=0

b[ki, li]

N/2−1∑
q=−N/2

h̄(ki, li, κi, q)x [[k − ki + q]N , [l − li]M ] + v[k, l] (4.2)

where h̄(ki, li, κi, q) =

(
ej2π(−q−κi)−1

Nej
2π
N

(−q−κi)−N

)
hie
−j2π ki+κi

NT

li
M∆f . It can be seen that with fractional

Doppler shifts, each received symbol is affected by more neighboring symbols than in the case

of integer Doppler.
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Figure 4.1: Tx pilot, guard, and data symbols and Rx received symbols

4.1.3 OTFS Data Detection via Message Passing (MP)

From the received symbols y[k, l], if the channel parameters hi, τi, and νi (and hence, the corre-

sponding taps lτi , kνi , and κνi) are known, we can employ the MP algorithm to detect the data

symbols x[k, l] using the set of MN linear equations (4.1) or (4.2).

We first assume OTFS with ideal waveforms for multipath channel with integer and fractional

Doppler cases. Then we consider the extension to OTFS with practical rectangular waveforms.

4.2 Embedded Channel Estimation: The Integer Doppler Case

Let xp denote the pilot symbol with pilot SNR of SNRp = |xp|2/σ2, xd[k, l] denote the data symbols

with data SNR of SNRd = E(|xd|2)/σ2, located at location [k, l] in the delay–Doppler information

grid, and 0 denotes the guard symbol.

Motivated by [44], we place one pilot symbol xp, Nn of the guard symbols, and MN −Nn − 1

information symbols in the delay–Doppler grid Γ for each OTFS frame transmission. The symbols

are located in such a way so that at the receiver, we can separate two distinct groups of received

symbols: the first group that involves pilot and guard symbols is used for channel estimation, and

the second group for data detection. Moreover, the guard symbols guarantee that the received

symbols for channel estimation and data detection are not interfered with each other. This helps to

provide a more accurate channel estimation to be used for data detection within the same frame.
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For a pilot, we first choose arbitrary grid location [kp, lp] such that 0 ≤ kp ≤ N − 1, and

0 ≤ lp ≤ M − 1. For ease of representation, we choose 0 ≤ lp − lτ ≤ lp ≤ lp + lτ ≤ M − 1, and

0 ≤ kp − 2kν ≤ kp ≤ kp + 2kν ≤ N − 1. Recall that lτ and kν denote the taps corresponding to the

maximum delay and Doppler values.

We arrange the pilot, guard, and data symbols in the delay–Doppler grid for an OTFS frame

transmission as in Fig. 4.1a:

x[k, l] =


xp k = kp, l = lp,

0 kp − 2kν ≤ k ≤ kp + 2kν , lp − lτ ≤ l ≤ lp + lτ ,

xd[k, l] otherwise.

(4.3)

In this case, we have Nn = (2lτ + 1)(4kν + 1) − 1 guard symbols. For example, in LTE channels,

the overhead for pilot and guard symbols is less than 1% of the data frame [45].

At the receiver, we use the received symbols y[k, l], kp − kν ≤ k ≤ kp + kν , lp ≤ l ≤ lp + lτ

for channel estimation. Then the remaining received symbols y[k, l] on the grid are used for data

detection, as shown in Fig. 4.1b.

Due to the transmit symbol arrangement in (4.3), using (4.1), we can express the received

symbols for channel estimation as

y[k, l] = b[k − kp, l − lp]ĥ[k − kp, l − lp]xp + v[k, l]. (4.4)

for k ∈ [kp − kν , kp + kν ], l ∈ [lp, lp + lτ ]. We can see that if there is a path with Doppler tap k− kp
and delay tap l− lp, i.e., b[k−kp, l− lp] = 1, we have y[k, l] = ĥ[k−kp, l− lp]xp + v[k, l]. Otherwise,

y[k, l] = v[k, l].

Similarly, we can express the received symbols for data detection as in (4.1), demonstrating no

interference between the received symbols for channel estimation and data detection.

We propose a simple channel estimation algorithm as follows. For k ∈ [kp − kν , kp + kν ], l ∈

[lp, lp + lτ ], if the magnitude |y[k, l]| ≥ T , where T is some positive detection threshold, then we

estimate b[k − kp, l − lp] = 1 and ĥ[k − kp, l − lp] = y[k, l]/xp. Otherwise, we set b[k − kp, l − lp] =

ĥ[k−kp, l− lp] = 0. The proposed threshold-based scheme relies on the fact that if a path exists, the
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received symbol is the scaled pilot signal with additive white Gaussian noise (see (4.4)). Otherwise,

it is only noise.

By varying the threshold T , we can alter the miss detection or false alarm probabilities on path

detection. As a result, the error performance of data detection is affected by T , as will be shown in

Section 4.4.

We then use the estimated information for data detection, i.e., the received symbols y[k, l] for

data detection are

y[k, l] =

kν∑
k′=−kν

lτ∑
l′=0

b[k′, l′]ĥ[k′, l′]xd[[k − k′]N ,[l − l′]M ] + v[k, l] (4.5)

for k /∈ [kp − kν , kp + kν ] or l /∈ [lp, lp + lτ ]. Note that we have a total of MN − (2kν + 1)(lτ + 1)

received symbols to detect a smaller number of MN − (2lτ + 1)(4kν + 1) data symbols via the MP

algorithm.

4.3 Embedded Channel Estimation: The Fractional Doppler Case

We consider two cases using full guard symbols and reduced guard symbols, respectively. The former

case offers better channel estimation at the expense of the lower spectral efficiency by using more

guard symbols and less data symbols, in contrast to the latter case.

4.3.1 The Case With Full Guard Symbols

We arrange the pilot, guard, and data symbols in the delay–Doppler grid, as depicted in Fig. 4.2a:

x[k, l] =


xp, k = kp, l = lp

0, 0 ≤ k ≤ N − 1, lp − lτ ≤ l ≤ lp + lτ

xd[k, l], otherwise.

(4.6)

For simplicity of notation, we choose 0 ≤ lp − lτ ≤ lp ≤ lp + lτ ≤ M − 1. We have the number of

guard symbols Nn = (2lτ + 1)N − 1, and the overhead for pilot and guard symbols is about 8% in

LTE channels [45].

At the receiver, we use the received symbols y[k, l], 0 ≤ k ≤ N − 1, lp ≤ l ≤ lp + lτ for channel
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Figure 4.2: The fractional Doppler case: Full guard symbols

estimation, and the remaining received symbols y[k, l] for data detection (see Fig. 4.2b).

Using (4.2), the received symbols y[k, l] for channel estimation are

y[k, l] =

kν∑
k′=−kν

b[k′, l − lp]h̄[k′, l − lp, κ′, [kp + k′ − k]N ]xp + v[k, l] (4.7)

for k ∈ [0, N − 1], l ∈ [lp, lp + lτ ]. We can rewrite y[k, l] as

y[k, l] = b̃[l − lp]h̃[[k − kp]N , l − lp]xp + v[k, l] (4.8)

where

b̃[l − lp] =


1,

∑kν
k′=−kν b[k

′, l − lp] ≥ 1

0, otherwise

is the path indicator, and

h̃[[k − kp]N , l − lp] =

kν∑
k′=−kν

b[k′, l − lp]h̄[k′, l − lp, κ′, [kp + k′ − k]N ]

is the effective path gain from the pilot symbol xp at location [kp, lp] to the received symbol y[k, l].

Then b̃[l−lp] = 1 indicates that there is at least one path with delay tap l−lp, otherwise, b̃[l−lp] = 0.
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Figure 4.3: The fractional Doppler case: Reduced guard symbols

Based on (4.8), we propose the following threshold-based channel estimation algorithm.

For k ∈ [0, N−1], l ∈ [lp, lp+lτ ], if |y[k, l]| ≥ T , then we have b̃[l−lp] = 1, and h̃[[k−kp]N , l−lp] =

y[k, l]/xp. Otherwise, we set b̃[l − lp] = h̃[[k − kp]N , l − lp] = 0. Unlike the integer Doppler case,

where we estimate whether an individual path with given delay and Doppler taps exists, in this

case, we estimate whether there exists at least one path with a given delay tap.

For data detection, similar to (4.8), we rewrite (4.2) as

y[k, l] =

lτ∑
l′=0

b̃[l′]
N−1∑
k′=0

h̃[k′, l′]xd[[k − ki′ ]N ,[l − l′]M ] + v[k, l] (4.9)

for k ∈ [0, N − 1] and l /∈ [lp, lp + lτ ]. Now we can adapt the MP algorithm for data detection in

(4.9).

Note that, to guarantee no interference between the received symbols for channel estimation and

data detection, the guard symbols need to expand over a wider range over the Doppler axis, when

compared to the integer Doppler case.

4.3.2 The Case of Reduced Guard Symbols

Employing full guard symbols to avoid interference provide more accurate channel estimation but

with reduced spectral efficiency. To improve the spectral efficiency, we can reduce the number of

guard symbols and thus increase the number of data symbols, as discussed below.
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We arrange the symbols as in Fig. 4.3a

x[k, l] =


xp k = kp, l = lp,

0 kp − 2kν − 2k̂ ≤ k ≤ kp + 2kν + 2k̂, lp − lτ ≤ l ≤ lp + lτ ,

xd[k, l] otherwise

for some integer k̂. We can see that as the value of k̂ reduces, the required number of guard symbols

reduces, resulting in an increased spectral efficiency.

The received symbols y[k, l], kp − kν − k̂ ≤ k ≤ kp + kν + k̂, lp ≤ l ≤ lp + lτ are used for channel

estimation, while the remaining y[k, l] are used for data detection (see Fig. 4.3b)

From (4.2), for channel estimation, we have

y[k, l] = b̃[l − lp]h̃[[k − kp]N , l − lp]xp + I[k, l] + v[k, l] (4.10)

for kp − kν − k̂ ≤ k ≤ kp + kν + k̂, lp ≤ l ≤ lp + lτ . The second term I[k, l] is the interference from

all neighboring data symbols xd[k, l], i.e.,

I[k, l] =

kν∑
k′=−kν

lτ∑
l′=0

b[k′, l′]
∑

q /∈[kp−2kν−2k̂,kp+2kν+2k̂]

h̄[k′, l′, κ′, q]xd
[
[k − k′ + q]N , [l − l′]M

]
(4.11)

We observe that the interference I[k, l] gets larger for smaller k̂, and similarly for the interference

from pilot symbols to the received symbols for data detection.

Similar to the case of full guard symbols, we develop a threshold-based algorithm to estimate

b̃[l − lp] and h̃[[k − kp]N , l − lp] based on (4.10) by treating I[k, l] as additive noise. Based on the

simulation results (see next section), we demonstrate that the performance gap of the full guard

symbols case (8% overhead) and reduced guard symbols case (2% overhead) is indeed marginal.

4.3.3 OTFS With Rectangular Waveforms

So far, we have assumed ideal transmit gtx(t) and receive grx(t) pulses. Since the ideal pulses cannot

be realized in practice, we now investigate OTFS with the more practical rectangular pulses at both

transmitter and receiver. Although these pulses do not satisfy the bi-orthogonality conditions, we
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show that the proposed embedded channel estimation schemes can also be employed for this case.

Consider the integer Doppler case for simplicity. With rectangular pulses, the input-output

symbol relationship can be rewritten from Chapters 2 and 3 as

y[k, l] =

kν∑
k′=−kν

lτ∑
l′=0

b[k′, l′]ĥ[k′, l′]β[k, l]x[[k − k′]N ,[l − l′]M ] + v[k, l]

where

β[k, l] =


e
j2π

(
l−l′
M

)
k′
N l′ ≤ l < M

N−1
N e

j2π
(
l−l′
M

)
k′
N e
−j2π

(
[k−k′]N

N

)
0 ≤ l < l′.

Hence, the threshold-based channel estimation technique can be straightforwardly employed by

introducing a known phase β[k, l] in the detection process. The thresholds for the rectangular

waveforms remain the same as the ideal waveforms, since the channel differs only by a phase.

4.4 Numerical Results

We illustrate the performance in terms of BER of the uncoded OTFS using the proposed channel

estimation schemes for integer and fractional Doppler cases. We adopt the following system pa-

rameters: Carrier frequency of 4 GHz, sub-carrier spacing of 15 KHz, M = 512, N = 128, and

4−QAM signaling. We denote SNRp = |xp|2/σ2 and SNRd = E(|xd|2)/σ2 to represent the average

pilot and data SNRs, respectively. We use σ2
p = 1/SNRp to denote the effective noise power of the

pilot signal. For simplicity, we assume σ2 = 1 in all the simulations. For both OTFS and OFDM

systems, EVA model [35] is used, and each delay tap has a single Doppler shift generated by using

Jakes’ formula, i.e., νi = νmax cos(θi), where νmax is the maximum Doppler shift determined by the

UE speed and θi is uniformly distributed over [−π, π].

4.4.1 The Integer Doppler Case

Fig. 4.4 compares BER versus data SNRs (SNRd) for OTFS with known channel information

(ideal case) and OTFS using the proposed channel estimation for the integer Doppler case with

SNRp = 30, 35, and 40 dB and T = 3σp. We assume a delay–Doppler channel with maximum delay
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Figure 4.4: BER versus SNRd: Integer Doppler case.

tap lτ = 20 and Doppler tap kν = 4, which corresponds to maximum Doppler speed of 120 Kmph.

The overhead for pilot and guard symbols is approximately 1% of an OTFS frame. We observe

that the BER reduces as SNRp increases, providing more accurate channel estimation and better

data detection. Moreover, the performance of OTFS with channel estimation is very close to the

ideal case, when SNRp = 40 dB (at least 20dB higher than the data SNRd). Note that a large pilot

power does not affect the peak transmit power as OTFS spreads each delay–Doppler symbol in the

entire time–frequency plane thanks to the ISFFT operation.

In Fig. 4.5, we perform comparisons of BER versus SNRd for different Doppler frequencies with

SNRp = 40 dB, lτ = 20, T = 3σp, and 4-QAM. Consider UE speeds of 30, 120, and 500 Kmph

corresponding to maximum Doppler tap kν = 1, 4, and 16, respectively. From the Fig. 4.5, we

observe that the proposed estimation scheme exhibits highly similar performance under different

Doppler frequencies except a slight performance improvement under higher Doppler frequencies (i.e.,

kν = 16). This is due to the fact that more guard symbols and less data symbols are transmitted at

high Doppler frequencies, leading to better data detection capability at higher SNRd. Since OTFS

performs similarly at different frequencies, in the following, we consider only the UE speed of 120

kmph.

We next investigate the effect of the channel estimation threshold T on the system performance.



4.4 Numerical Results 67

SNR
d
 in dB

10 12 14 16 18

B
E

R

10-5

10-4

10-3

10-2

10-1

30 Kmph
120 Kmph
500 Kmph
Ideal

N = 128, M = 512, l
τ

 = 20,
SNR

p
= 40 dB, 4-QAM

Figure 4.5: BER versus SNRd for different Dopplers

Threshold 

σ
p

2σ
p

3σ
p

4σ
p

5σ
p

B
E

R

10-5

10-4

10-3

10-2

SNR
d
 = 15 dB

SNR
d
 = 18 dB

N = 128, M = 512, l
τ

 = 20, k
ν

 = 4,
SNR

p
 = 40 dB, 4-QAM

Figure 4.6: BER versus channel estimation thresholds: Integer Doppler case.
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Figure 4.7: BER versus SNRd: Fractional Doppler with full guard symbols.

Fix SNRp = 40 dB. Fig. 4.6 displays BER versus SNRd with different T . We observe that the

BER performance improves as T increases. For small threshold values, the path false detection

probability is higher (i.e., it is more likely to detect non-existent paths), which degrades the BER

performance. However, at the same time, increasing the threshold beyond a certain value may cause

the likely miss detection of paths with small path-gains, resulting in performance loss. Hence, there

is an optimal threshold to balance the false detection and miss detection probabilities. For the given

system parameters, we observe that the optimal threshold is approximately 3σ.

4.4.2 The Fractional Doppler Case

Fig. 4.7 shows the BER for different SNRp with a threshold of T = 3σp. In this case, the pilot and

guard symbols occupy approximately 8% of an OTFS frame. Similar to the integer Doppler case, as

the pilot power is increased, the error performance is improved. As SNRp = 50 dB, OTFS with our

proposed embedded channel estimation attains similar performance as OTFS with known channel

information. We can see that a larger pilot power is required for channels with fractional Doppler

shifts than integer Doppler shifts. Last, we compare the BERs of OTFS with channel estimation

and OFDM with known channel information and find that OTFS significantly outperforms OFDM,

demonstrating the effectiveness of OTFS over delay–Doppler channels.
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Figure 4.8: BER versus SNRd: Fractional Doppler with reduced guard symbols.

In Fig. 4.8, we compare the BER performance of OTFS using the proposed channel estimation

scheme with reduced guard symbols for k̂ = 2 and 5. Fix SNRp = 50 dB, T = 3σp, and 4-QAM.With

k̂ = 2, and 5, the overheads for pilot and guard symbols are roughly 1.5% and 2.3%, respectively,

which are much less than the full guard symbols case (roughly 8%). We observe that, as k̂ becomes

larger, the performance improves. In particular, with k̂ = 5, the performance is very close to that

with full guard symbols. For larger k̂, smaller interference from neighboring data symbols improves

the channel estimation accuracy. Hence, there is a tradeoff between spectral efficiency and error

performance.

In Fig. 4.9, we illustrate the effectiveness of the proposed channel estimation scheme with full

and reduced guard symbols, respectively, using 16-QAM, SNRp = 60 dB, and T = 3σp. We see

that with the higher pilot power (i.e., 60 dB), the performance of our channel estimation scheme

with full guard symbols is the same as that of the ideal case. Moreover, with 16-QAM, a larger

number of guard symbols are required (i.e., k̂ = 10, about 3.6% guard symbols overhead) to achieve

a performance close to the full guard symbols case, when compared to the 4-QAM case that adopts

k̂ = 5, about 2.3% guard symbols overhead. This is due to the fact that the data detection of

16-QAM case is more sensitive to the channel estimation and hence requires more guard symbols.
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Figure 4.9: BER versus SNRd: Fractional Doppler with reduced guard symbols for 16-QAM.

4.4.3 OTFS Under Low Latency Communications

As next-generation wireless communications mostly require low latency communications, we next

simulate the proposed OTFS channel estimation schemes under such scenario. Fig. 4.10 shows the

OTFS performance for low latency application with N = 16 and M = 128, corresponding to frame

duration of 1.1 ms. We consider a UE speed of 120 Kmph, corresponding to a maximum Doppler

tap, kν = 1. We consider the channel estimation scheme with full guard symbols as the reduced

guard symbols case will not improve significantly the spectral efficiency with small N . We observe

that the OTFS performance with channel estimation is very close to the ideal case with SNRp = 60

dB. Hence, we can conclude that the proposed channel estimation schemes are very efficient under

low latency communications.
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Figure 4.10: BER versus SNRd: low latency communication



Chapter 5

OTFS Performance on Static Multipath

Channels

Even though OTFS has been originally proposed for the highly time-variant channels, it’s system

architecture can also be suitable for time-invariant channels. In this chapter, we explore the per-

formance of OTFS on time-invariant multipath channels and show that it still outperforms OFDM.

We show that, in static multipath channels, the system structure of OTFS is equivalent to the

A-OFDM [46], bridging between CPSC and traditional OFDM. We derive a condition on the pa-

rameters of OTFS to guarantee that all the transmitted symbols experience uniform channel gains,

as in CPSC. Finally, we apply a low-complexity MP detection to OTFS/A-OFDM and show a sig-

nificant performance improvement over ZF and MMSE detection originally proposed for A-OFDM.

The rest of the chapter is organized as follows. Section 5.1 presents the OTFS system model in

static channels and establishes a relation with A-OFDM. In Section 5.2, we derive a condition to

optimize the OTFS system performance. Finally, we present the simulation results in 5.3.

5.1 OTFS System Model in Static Multipath Channels

We consider an OTFS system with single antenna transmitter and receiver over static multipath

channels, i.e., the channel consists of P zero-Doppler multipaths with the ith path delay denoted

by τi, for i = 1, 2, · · · , P . We assume that a total of Nc = MN symbols are transmitted in an

Part of the content of this chapter appears as, P. Raviteja, E. Viterbo, and Y. Hong, “OTFS performance on
static multipath channels,” IEEE Wireless Commun. Lett., Jan. 2019, doi: 10.1109/LWC.2018.2890643.
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OTFS frame of duration NcTs, where Ts is the sampling interval. Let τmax = (L − 1)Ts denote

the maximum delay of an L-tap channel. The static multipath channel is represented by the L tap

coefficients [h0, h1, · · · , hL−1], where only P elements are non-zero.

Let x = vec(X) ∈ CNc×1 denote one OTFS frame containing Nc transmitted information sym-

bols, each with average energy Es, where the matrix X ∈ CM×N represents the two-dimensional

information symbols transmitted in the delay-Doppler plane. The transmitted time domain signal

in OTFS can be obtained by first applying the (2D) ISFFT on X followed by Heisenberg trans-

form [17]. Assuming rectangular transmit waveform, the output of the Heisenberg transform can

be written from Chapter 3 as

S = FH
M (FMXFH

N ) = XFH
N (5.1)

The transmitted time domain signal can be generated by column-wise vectorization of S:

s = vec(S) = (FH
N ⊗ IM )x (5.2)

We assume a CP of length (L − 1) is added to s before transmission. The received signal in time

domain, after discarding the CP, can be written as

r = Hs + w, (5.3)

where H = circ[h0, h1, · · · , hL−1, 0, · · · , 0] ∈ CNc×Nc is the circulant matrix, and w ∈ CNc×1 is the

i.i.d. Gaussian noise vector with the ith entry, wi ∼ CN (0, σ2).

At the receiver, the received signal r is devectorized into an M × N matrix R, followed by a

Wiegner transform as well as a SFFT, yielding

Y = FH
M (FMR)FN = RFN (5.4)

Finally, the input–output relation of OTFS in the information domain can be obtained by column-

wise vectorization of (5.4):

y = vec(Y) = (FN ⊗ IM )r

= (FN ⊗ IM )H(FH
N ⊗ IM )x + w̃



5.1 OTFS System Model in Static Multipath Channels 74

S/P P/S Channel

M

M − 1

2M − 1

NM − 1

(N − 1)M

0

1

Nc − 2

0

1

Nc + L− 2

Nc + L− 3

CP S/P Detector

IFFT
1

0

1

Nc + L− 2

Nc + L− 3

CP

0

1

Nc − 1

Nc − 2

P/S

FFT
1

IFFT
M Nc − 1

0

M

M − 1

2M − 1

NM − 1

(N − 1)M

0

FFT
M

Figure 5.1: OTFS/A-OFDM for static multipath channels

= Heffx + w̃ (5.5)

where Heff = (FN ⊗ IM )H(FH
N ⊗ IM ) is the effective channel matrix. Since (FN ⊗ IM ) is a unitary

matrix, w̃ = (FN ⊗ IM )w preserves the same statistical properties of w.

Let us consider the following two special cases for OTFS over static multipath channels.

1. If M = 1 then (5.4) reduces to y = FNHFH
Nx + w̃, i.e., a conventional N -subcarrier OFDM

system, when a CP is added to x.

2. If N = 1 then (5.4) reduces to y = Hx + w̃, i.e., a conventional CPSC system.

This shows that OTFS can be seen as a generalization of both OFDM and CPSC systems.

5.1.1 Relation Between OTFS and A-OFDM

Now we are ready to reveal the relation between OTFS and A-OFDM systems in static multipath

channels.

Specifically, at the transmitter of an A-OFDM system [46, Fig. 1], the input data of length Nc is

arranged into an M ×N matrix and a N -point IFFT is then applied to each row. The transmitted

outputs after IFFT are read out column-wise and can be written as

S̆ = XFH
N , (5.6)

which yields the transmitted time domain signal, s̆ = (FH
N ⊗ IM )x.

At the receiver of A-OFDM, the Nc received signals are converted to a M × N matrix and a

N -point FFT is applied to each row. Similar to the transmitter, the receiver output of A-OFDM

can be written as

Y̆ = RFN
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y̆ = (FN ⊗ IM )r̆ (5.7)

Therefore, from (5.1), (5.4), (5.6), and (5.7), we can conclude that, under static multipath channels,

OTFS and A-OFDM systems share the same transmitter and receiver structure (see Fig. 5.1).

Note that OTFS/A-OFDM uses M copies of an N -point IFFT and FFT at transmitter and

receiver, respectively. Comparing to a conventional OFDM with Nc = MN subcarriers, the com-

plexity of OTFS/A-OFDM reduces from MN log2(MN) to MN log2N complex multiplications

and the maximum PAPR reduces from MN to N .

5.2 Detection of OTFS/A-OFDM

In this section, we first review traditional ZF and MMSE detections, originally proposed for A-

OFDM in [46, 47] and also applicable for OTFS in static multipath channels. Further, we derive

a necessary and sufficient condition on the number of subcarriers in OTFS to guarantee that all

the transmitted symbols experience uniform channel gains, as in CPSC (a special case of OTFS/A-

OFDM). We then apply the low-complexity MP detection algorithm for OTFS (see Chapter 2) with

improved error performance over ZF and MMSE detections.

5.2.1 ZF Detection

It was identified in [46, Theorem 1] for A-OFDM that the effective channel matrix has a block

diagonal structure, Heff = diag[H̆0, H̆1, · · · , H̆N−1] with H̆0, · · · , H̆N−1 ∈ CM×M . Further, each

H̆n, for n = 0, · · · , N − 1, can be diagonalized as H̆n = FH
MDnFM . Therefore, from (5.5), received

symbols can be simplified as

yn = H̆nxn + w̃n (5.8)

ŷn = FMyn = DnFMxn + FMw̃n (5.9)

for n = 0, 1, · · · , N−1. Here, yn,xn, and w̃n, are the subvectors formed by taking nM to (n+1)M−1

elements from y,x, and w̃, respectively. Hence, the estimated symbols after ZF detection can be
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written as

x̂n = FH
MD−1

n ŷn (5.10)

5.2.2 MMSE Detection

From (5.9), the estimated symbols after MMSE detection can be written as

x̂n = FH
MDH

n

(
DnD

H
n +

σ2

Es
IM

)−1

ŷn (5.11)

Note that the complexity of ZF and MMSE detectors is of the order of O(M log2M). However,

ZF and MMSE linear detectors do not fully exploit the available system diversity. Finally, these

detection methods do not take advantage of the sparsity of H̆n.

5.2.3 Message Passing Detection

For OTFS in static multipath channels, we first establish the relation between Heff and H using

the following lemma, which is based upon the observation that H = circ[H0,H1, · · · ,HN−1], is a

block circulant matrix, where Hn, 0 ≤ n ≤ N − 1, are M ×M submatrix.

Lemma 5.1. H̆n(i, j), 0 ≤ i, j ≤ N − 1, is equal to the nth element in the FFT of u(i,j) ,

[H0(i, j), · · · ,HN−1(i, j)].

Proof: Since H is a block circulant matrix ofN blocks of sizeM×M , it can be block-diagonalized

using (FN ⊗ IM ) and (FH
N ⊗ IM ) [40], and the result follows from (5.5). �

Next, using Lemma 5.1, we prove the following theorem on the minimum value of M in OTFS

to guarantee that all the transmitted symbols experience uniform channel gains, as in CPSC.

Theorem 5.1. The input–output relation in an OTFS system of NM transmitted symbols is equiv-

alent to N parallel CPSCs of length M with the identical time-domain channel, except for an addi-

tional phase shift, if and only if M ≥ L.

Proof: See Appendix C.1. �
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Detector

Since the OTFS input–output relation for static multipath channels is sparse (C.2), we propose to

use the MP algorithm presented in the Chapter 2. The complexity of MP algorithm for each block

is O(niterMPQ), where niter is the number of iterations in MP and Q is the modulation alphabet

size. In general, even the value of L is large, but the value of P can be small, for example, in EVA

channel model, L = 72 and P = 9.

Remark 5.1. OTFS has the same performance and detection complexity as N consecutive blocks of

CPSCs of length M , but has higher spectral efficiency, since OTFS only requires one CP, whereas

CPSC requires N CPs. On the other hand, OTFS has a higher PAPR = N than CPSC (PAPR

= 1). Therefore, OTFS offers a tradeoff between spectral efficiency and PAPR.

Remark 5.2. As the proposed MP detector is highly non-linear and the number of codewords are

huge, it is difficult to derive the theoretical BER expressions for MP detector. However, we provide

the performance of MP using Monte-Carlo simulations in the numerical results section.

5.2.4 Channel Estimation

We now propose an embedded pilot channel estimation method to estimate the P non-zero channel

coefficients for OTFS with M ≥ L. In this method, we allocate first M symbols of x as a header

and the remaining M(N − 1) symbols for data. In the header, we transmit a known pilot symbol

xp followed by M − 1 zeros. Therefore, from (5.8) and (C.2), y0 reduces to

y0(m) = hmxp + w̃0(m) for 0 ≤ m ≤M − 1 (5.12)

and hm can be estimated using the threshold method proposed in the Chapter 4. Note that the

pilot power |xp|2 can be M times higher than the data signal power without increasing the average

transmitted power.

Also note that OTFS enables simple correction of any carrier frequency offset (CFO). This is

due to the fact that the CFO effect is equivalent to applying a single Doppler shift to all the paths

in the OTFS channel. This can be easily detected and corrected in the channel estimation using a

pilot signal and thus enables to compensate for much larger CFOs than OFDM.
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Figure 5.2: BER of OTFS for different P with Nc = 1024,M = 128, N = 8, L = 72, and 16-QAM

5.3 Numerical Results and Discussions

In this section, we compare BER of OTFS with OFDM and CPSC for different P and M . In all

simulations, we consider Nc = 1024 and 16-QAM modulation alphabet (Q = 16). In order to obtain

BER, we consider 105 different channel realizations in Monte-Carlo simulations.

Fig. 5.2 illustrates the BER performance of OTFS for different P = 1, 2, 4, and 8 with

M = 128, N = 8, L = 72. Note that we consider M > L in the figure so that all transmitted

symbols experience equal channel gains. We assume that the P paths are uniformly distributed

in L, for example, when P = 4, we assume only h0, h23, h46, and h69 have non-zero coefficients.

Moreover, if P = 1 then it reduces to a flat fading channel. The channel coefficients of the P paths

are generated using i.i.d. complex Gaussian distribution, CN (0, 1/P ). Here we adopt MP detection

algorithm and assume perfect CSI is available at the receiver. We observe from Fig. 5.2 that as P

increases, the BER slope improves. This diversity advantage is due to the fact that each information

symbol experience the channel gains from P paths.

In Fig. 5.3, we present the performance of OTFS for different M with L = 72 and P = 9. We

consider LTE EVA channel model for generating channel tap coefficients (hl) and assume perfect

CSI is available at the receiver.. We observe that, for M = 128, 256, (M > L), the performance
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Figure 5.3: BER of OTFS for different M with Nc = 1024, L = 72, and 16-QAM

of OTFS using MP detection improves with M and achieves the performance similar to CPSC

of M = 1024, which agrees to Theorem 5.1. Moreover, OTFS using MP detection outperforms

OTFS/A-OFDM using MMSE detection by approximately 5 dB, and OFDM by 15 dB. This is due

to the fact that MP detection is approximate to maximum likelihood detection and better exploits

the full channel diversity, when compared to MMSE.

Fig. 5.4 compares the BER of OTFS for different pilot SNRs, SNRp = |xp|2/σ2, with M =

128, N = 8 and L = 72. We adopt a threshold of 3√
SNRp

. We observe that BER performance

improves as SNRp increases and approaches the performance of the perfect CSI (ideal) case for

SNRp = 40 dB.
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Chapter 6

Channel Estimation in Point-to-Point Mil-

limeter Wave System

In this chapter, we consider analog beamforming using low resolution phase shifters for mm-

Wave point-to-point communication system. We propose a hierarchical codebook design, where the

beamforming vectors in the codebook are grouped into multiple levels and the preferred beamforming

vector at each level is constructed to approximate an amplitude beamforming gain mask by using a

low complexity local search algorithm (LSA). We show, by simulations, that the proposed codebook

using low resolution phase shifters outperforms the existing schemes using high resolution phase

shifters.

The rest of the chapter is organized as follows. In Section 6.1, we present the system model.

In Section 6.2, we define the notion of ideal beamforming vector with two properties and propose a

new codebook design using LSA. The simulation results are shown in Section 6.3.

6.1 System Model

We consider a point-to-point mm-Wave communication system in Fig. 6.1, where the transmitter

and receiver have Nt and Nr antennas, respectively, and each has only one RF chain. The phase

shifters are assumed to operate on q angles that are spaced uniformly in [0, 2π). The set of all

Part of the content of this chapter appears as, P. Raviteja, Y. Hong, and E. Viterbo, “Analog beamforming with
low resolution phase shifters,” IEEE Wireless Commun. Lett.,, vol. 6, no. 4, pp. 502-505, Aug. 2017.
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Figure 6.1: Point-to-point analog beamforming system model

possible beamforming vectors for a terminal with N antennas is denoted by

Sq(N) =
{

w ∈ CN×1 : wi = ejβi , βi ∈
{

0,
2π

q
, . . . , 2π

q − 1

q

}
∀ i = 0, 1, . . . , N − 1

}
, (6.1)

where ‖w‖2 = N and |Sq(N)| = qN . We let wt and wr denote the transmit and receive beamforming

vectors, chosen from codebooks Ct ⊂ Sq(Nt) and Cr ⊂ Sq(Nr), respectively.

Channel Model: Let the antenna response vector in the angular direction θ be a(θ,N) ,

[1, ejπ cos(θ), . . . , ejπ(N−1) cos(θ)]T then the millimeter wave channel can be written as

H =

L∑
l=1

αla(φl, Nr)a(θl, Nt)
H

where αl ∼ CN (0, σ2
αl

) is the path-loss coefficient of the lth path such that
∑L

l=1 σ
2
αl

= 1, φl and

θl are the corresponding AoA and AoD, respectively, and L is the total number of paths. Since

the path loss and materials absorption are high at mm-Wave frequencies, the number of paths can

usually be L = 3 or 4. We assume ULA at both transmitter and receiver with antenna spacing by

half wavelength.

Let x denote the baseband equivalent complex symbol sent through the transmitter phase shifters
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wt ∈ Ct ⊂ Sq(Nt), then the received signal after receiver phase shifters wr ∈ Cr ⊂ Sq(Nr) is

y =
1√
NrNt

L∑
l=1

αlw
H
r a(φl, Nr)a(θl, Nt)

Hwt x+ n, (6.2)

where 1√
Nr

and 1√
Nt

are the normalization factors for wr and wt respectively, and n = (n1, . . . , nNr)
T

is the received noise vector with i.i.d entries (i.e., ni ∼ CN (0, σ2)). Here |wH
r a(φl, Nr)| and

|a(θl, Nt)
Hwt| represent the beamforming gains of wr and wt in angular directions φl and θl,

respectively.

We define the transmit SNR as SNRTx , Px/σ
2, where Px = E{|x|2} denotes the transmitted

power of the symbol x and σ2 is the noise power. Similarly, the receive SNR is defined as SNRRx ,
Px|wH

r Hwt|2
σ2NrNt

. The spectral efficiency of the link in (6.2) is given by [71]

C = log2

[
1 + SNRRx

]
bits/s/Hz , (6.3)

which depends on the beamforming vectors wt and wr.

Beamforming Protocol: Considering the hierarchical codebook based protocol (e.g. [71]), the

beamforming vectors in the codebook are selected to generate beams with preferred beam-widths

and directions. In particular, the beamforming vectors in the codebook are grouped into m different

levels. For each level ` = 1, · · · ,m, there are K` disjoint beams of decreasing beam-width. The

protocol selects the narrowest beamforming vectors aligned with the strongest channel path from the

transmit/receive codebooks at level m by an exchange of pilot tones. Both transmitter and receiver

cooperatively scan all the beamforming vectors in the codebook at level 1 (K ×K pilot tones) and

select the best one at that level. Then both of them repeat the search over K2 beamforming vector

pairs at level 2, which cover the same angular region of the best pair at level 1. This process is

repeated until the last level m. This protocol only uses mK2 pilot tones, which improves over the

exhaustive search protocol in [73] with K2m pilot tones.

6.2 The Codebook Design Using LSA

In this section, we present our hierarchical codebook design for analog beamforming at a Tx/Rx

terminal with arbitrary N antennas using low resolution phase shifters (q = 4, 8, 16).
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Let us consider the discrete time Fourier transform (DTFT) of a beamforming vector w, using

a continuous frequency variable ω ∈ (−1, 1], W(ejπω) =
∑N−1

n=0 w(n)e−jnπω. The DTFT describes

the beamforming gain of w in all azimuth angles ψ = cos−1(ω) ∈ [0, π). Therefore, |W(ejπω)|

represents the amplitude beamforming gain given by w along the angular directions ψ. In order to

efficiently plot the radiation pattern of the beamformer, we consider the DTFT at R discrete points

z1, z2, . . . , zR, which are equally spaced in (−1, 1], i.e., zi = (−1 + 2i
R ), for i = 1, 2, . . . , R. Note that

this results in a non-uniform angular resolution (∆ψ) in the variable ψ, as well as a smooth diagram

when R > N is sufficiently large. Fig. 6.2 show the hierarchical codebook structure for R = 512.

We see that the value of angular resolution (∆ψ) is high at the edges (around −1 and 1) and low

at the center (around 0) which is due to the behaviour of cos(ψ).

0 w(0, 1)
1 w(1, 1) w(1, 2)
2 w(2, 1) w(2, 2) w(2, 3) w(2, 4)
3 w(3, 1) w(3, 2) w(3, 3) w(3, 4) w(3, 5) w(3, 6) w(3, 7) w(3, 8)
... ...

m = log2(M) w(m, 1) · · · w(m,M)

cos ψ = −1 10
. . . . . .

−1+ 2
R

2
R

1- 2
R

− 2
R

∆ψ = 5.06◦ 0.22◦{ {

Figure 6.2: The hierarchical codebook structure for R = 512.

The corresponding DFT is obtained by defining an N × R matrix A such that AHw =

[W(ejπz1), . . . ,W(ejπzR)]T . Then |AHw| , [|W(ejπz1)|, . . . , |W(ejπzR)|]T denotes the vector of

amplitude beamforming gains in the angular directions ψi = ± cos−1(zi), for i = 1, 2, . . . , R. The

matrix AH is given by

AH =



1 e−jπz1 e−jπ2z1 · · · e−jπ(N−1)z1

...
...

...
. . .

...

1 1 1 · · · 1

...
...

...
. . .

...

1 e−jπzR e−jπ2zR · · · e−jπ(N−1)zR


,
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=

(
a(ψ1, N) a(ψ2, N) · · · a(ψR, N)

)H
. (6.4)

Since zi = (−1 + 2i
R ), the (R/2)th row of AH has all one entries and AH can be related to the first

N columns of an R×R DFT matrix F = {e−j2πnk/R}R−1
k,n=0 by swapping the block of the first R

2 − 1

rows with the block of last R
2 + 1 rows, i.e. the submatrix with the first N columns of F is given by

FN = PAH , where

P =

 0 IR
2

+1

IR
2
−1 0


and Ir is an r × r identity matrix and 0 is an all zero matrix.

Amplitude Beamforming Gain Mask: The amplitude beamforming gain mask for the beams in

the hierarchical codebook should have a constant amplitude in the main lobe and zero everywhere

else. We let g(`, i), an R component vector, denote the mask for level ` = 1, . . . ,m = logK N and

i = 1, . . . ,K`. The j-th component of g(`, i), for j = 1, . . . , R, is given by

gj(`, i) ,


c` if R(i−1)

K` < j ≤ Ri
K`

0 otherwise
. (6.5)

where c` value is given by the following lemma.

Lemma 6.1. The value of c` in (6.5) is upper bounded by
√
NK`.

Proof: See Appendix D.1. �

That is, an ideal steering vector should result in a beam with a constant amplitude c` in the

covered angular region

[
cos−1

(
−1 +

2i

K`

)
, cos−1

(
−1 +

2(i− 1)

K`

))

and zero in the other angular positions. For example, for ` = 1, i = 1, and K = 2, we have

g(1, 1) = [c1, . . . , c1,︸ ︷︷ ︸
R/2 values

0, . . . , 0︸ ︷︷ ︸
R/2 values

]T
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covering the angular region [π/2, π).

Remark 6.1. In principle it is possible to consider levels ` > logK N , where all the beams maintain

the same width and gain of level ` = logK N , but can be steered to higher resolution angles. In this

case, we can still use the non-overlapping masks in (6.5) with the same c` = N , for ` > logK N . The

actual K` beams will have a larger overlap with a main lobe peak at the mid-angle of the mask and

a minimum at the edge of the mask. Our simulations have shown minor performance improvements

when ` > logK N .

Hierarchical Codebook Design: Given an arbitrary steering vector x ∈ Sq(N), we let

ζ(`,i)(x) , ‖|AHx| − g(`, i)‖2 (6.6)

for ` = 1, . . . ,m, and i = 1, . . . ,K`, be the error between the amplitude beamforming gain of x

relative to the amplitude beamforming gain mask g(`, i). Therefore the optimum steering vector

w(`, i) ∈ Sq(N) is given by

w(`, i) , arg min
x∈Sq(N)

ζ(`,i)(x). (6.7)

Then the best hierarchical codebook can be obtained by C , {w(`, i)|` = 1, . . . ,m, i = 1, . . . ,K`}.

The following proposition gives the conditions for which (6.7) can be solved only once for each level.

Proposition 6.1. If K` divides q, then ws(`, p) = ws(`, 1)e
jr2π

(
p−1

K`

)
, where ws(`, p) is the sth

element in beamforming vector w(`, p), which corresponds to the phase shift of the sth antenna.

Proof: See Appendix D.2. �

Local Search Algorithm (LSA): In the following we drop the index (`, i) for simplicity. An

exhaustive search to solve (6.7) has an exponential complexity |Sq(N)| = qN . For example, in a

mm-Wave system with q = 4 and N = 64, we need to compute 464(≈ 1038.5) values. To reduce the

complexity, we propose an LSA, which provides a sub-optimal solution to (6.7). The LSA starts

with an initial value of x, which can be chosen randomly or obtained by the compressed sensing

method proposed in [71]. Then the algorithm computes (6.6) for all the vectors in the neighborhood
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of solution x, defined as

Nd(x) , {y : y ∈ Sq(N) and 0 < ‖x− y‖0 ≤ d}

where ‖x−y‖0 denotes the number of non-zero values in (x−y). Hence, we can interpret Nd(x) as

the set of all vectors in Sq(N) that differ in at most d positions from x. The size of the neighborhood

is |Nd(x)| = ∑d
i=1

(
N
i

)
(q − 1)i.

If the best solution found in the neighborhood has smaller ζ(x) than the present solution, then

x is updated. This process stops when the present solution yields a smaller error than all its

neighbors. To improve the performance, we can run the algorithm rs times, each time starting

with different initial vector x, and then select the solution with the least error. A similar approach

applied to constant envelop multiuser precoding is proposed in [76]. The pseudo-code of LSA is

given in Algorithm 6.1.

Algorithm 6.1 Local Search Algorithm for Codebook Design
Inputs: A, g, d, rs
for i = 1 to rs do

Compute x(i) % Initial vector at ith start
while (1) do

Find z = arg min
y∈Nd(x(i))

ζ(y) % Finding the best vector in neighborhood

if ζ(x(i)) > ζ(z) then
x(i) = z % Update solution with the better

else
break % Stop the algorithm if the present sol. is the best in neighborhood

end if
end while

end for
Output: w = arg min

x(i),1≤i≤rs
ζ(x(i)) % Finding the best vector from all the restarts

Complexity and convergence: The complexity of the algorithm is O(rs|Nd(x)|). Fig. 6.3 shows

the variation of ζ(w)/R as a function of d and rs for N = 32. We observed that the optimum metric

is converging when d = 2 and rs = 1000. Note that the codebook design is performed offline and

hence large rs can be used.

In summary, the proposed LSA provides a heuristic solution for any given value of K and N

with low resolution phase shifters. In contrast, in [70], the hierarchical codebooks using DEACT
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Figure 6.3: The variation of optimum average metric with d and rs for N = 32.

method and BMW-SS method were designed for non-quantized phase shifters (q →∞) supporting

a continuous range of phase shifts, which can only be implemented by high resolution phase shifters.

Moreover, for some hierarchical levels in these codebooks, some antennas are turned off. Hence,

to preserve a constant total power for all beams, the active antennas have a higher peak power

requirement. Further, the BMW-SS approach was designed only for N = Kp, for some positive

integer p, since it needs to divide the antennas into K smaller sub-arrays, while our method uses

all antennas to form the beams, which reduces the peak power.

Furthermore, the method in [71] finds the optimal solution and then quantizes it to the con-

strained beamforming vector in Sq(N), where the quantization requires high resolution phase shifters

to reduce the overall error. In contrast, our method directly selects the best beamforming vector

from the set Sq(N).

6.3 Simulation Results

In this section, we compare the spectral efficiencies of our hierarchical codebook for low resolution

phase shifters (q = 4, 8, 16) and the other codebook using BMW-SS [70] for high resolution phase

shifters (q →∞). In all simulations, we consider the per-antenna transmission power model in [70]

and assume that the power per antenna is the same in all cases rather than a constant total power.

We adopt the following parameters: K = 2, N = 32, 64, 128, m = log2(N), rs = 1000, and d = 2,
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Figure 6.4: Beam pattern of the designed codebook at different levels for N = 32,K = 2, and d = 2.
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Figure 6.5: Beam pattern of the designed codebook at different levels for N = 64,K = 2, q =
16, and d = 2.

and L = 3 (channel paths containing one line of sight (LoS) path and two non line of sight (NLoS)

paths). We assume the variance of the LoS path (η) is greater than that of the NLoS paths by 10

dB.

In Figs. 6.4 and 6.5, we illustrate the beam pattern for different N and q. We plot the value

of the beamforming gain 1√
N
|a(ψ,N)Hw| at an angle ψ ∈ (−π, π]. We see that the gain is around

√
K` for the level ` in the codebook, which corresponds to the maximum achievable limit given in

Lemma 6.1. The gain is almost zero in all other angular directions. We also observe that even with

low phase shifter resolutions (q = 4, 8, 16), the gain of LSA is comparable to BMW-SS with full

resolution phase shifters (q =∞).

Fig. 6.6 illustrates the spectral efficiencies of our codebook with q = 16 and the BMW-SS one

using high resolution phase shifters [70], for N = 64, 128, respectively. The upper bound is obtained

by assuming the genie-aided receiver that knows perfect CSI and uses the amplitude beamforming

gain mask in (6.5) for the beam search protocol. The perfect CSI case is plotted with the best



6.3 Simulation Results 91

Average SNR (per antenna) in dB
-26 -20 -15 -10 -5 0 5

S
pe

ct
ra

l 
ef

fi
ci

en
cy

 (
bi

ts
/s

/H
z)

0

5

10

15

20

LSA,  q = 16
BMW-SS
Upper Bound

 N = 64

Average SNR (per antenna) in dB
-25 -20 -15 -10

2

4

6

8

10

12

14

16

LSA, q = 16
BMW-SS
Upper Bound

N = 128

Figure 6.6: The spectral efficiency of the proposed design codebook for different values of N (64,
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Figure 6.8: The comparison of the proposed LSA design codebook with the BMW-SS method in
terms of success rate for N = 32 and different values of q (4, 8, 16)

beamforming vectors selected directly using full CSI. We observe that the performance of our code-

book with low resolution phase shifters outperforms the BMW-SS codebook with high resolution

phase shifters. Similar observations can be found in Fig. 6.7 when N = 32, and q = 8, 16. When

q = 4, the codebook using LSA method has similar performance to BMW-SS at low SNR region,

but degrades in high SNR region. We also observe that the LSA performance is approaching the

perfect CSI case at high SNR’s for q = 16. Similar performance can also be found for the cases

q = 4 and q = 8.

In Figs. 6.8, 6.9, and 6.10, we show the search performance in terms of success rate, as defined

in [70], for different values of N . We observe both LSA and BMW-SS have similar performance as

the spectral efficiency for all N : worse for q = 4, but better for q = 8, 16.
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Figure 6.9: The comparison of the proposed LSA design codebook with the BMW-SS method in
terms of success rate for N = 64 and q = 16

Average SNR (per antenna) in dB
-26 -20 -15 -10 -5 0

S
uc

ce
ss

 R
at

e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LSA,  q = 16
BMW-SS
Upper Bound

 N = 128
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Chapter 7

Precoder and Detector Designs in Mil-

limeter Wave Multiuser Uplink System

This chapter extends the idea of designing low resolution beamforming vectors in the previous

chapter to the multiuser millimeter wave uplink system, where users transmit simultaneously to

base station. In this chapter, we first propose a joint precoder and detector design based on the

low-complexity local search algorithm that iteratively finds the preferred transmit and receive beam-

forming vectors, which maximizes the sum-rate of the multiuser uplink system. Although the joint

design achieves similar sum-rate to a fully digital system, the computation complexity to determine

good beamforming vectors is high. To reduce complexity, we then propose non-joint designs of

precoder and detector. For the precoder design, the transmit beamforming vectors are chosen to

maximize either SNR or the SINR of each user. For the detector design, the receiver beamforming

vectors are selected using either an approximate ML detector (AMLD) or a successive cancella-

tion detector (SCD). We show by simulations that the proposed designs with low resolution phase

shifters outperform the traditional methods with high resolution phase shifters.

The rest of the chapter is organized as follows. We introduce the system model in Section

7.1, and then present the joint precoding and detector design in Section 7.2. We present multiple

independent precoding and detector designs in Section 7.3. The simulation results of both joint and

independent designs are presented in Section 7.4.

Part of the content of this chapter appears as, P. Raviteja, Y. Hong, and E. Viterbo, “Millimeter wave hybrid
beamforming with low resolution phase shifters for multiuser uplink,” IEEE Trans. Veh. Technol., vol. 67, no. 4,
pp. 3205-3215, April 2018.
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Figure 7.1: Multiuser uplink millimeter wave system.

7.1 System Model

Consider a multiuser uplink mm-Wave system with K users and a BS, as shown in Fig. 7.1.

We assume that each user is equipped with Nt transmit antennas over one RF chain, i.e., each

user supports only one data stream to be transmitted. We also assume that all K users transmit

simultaneously with perfect synchronization to the BS that contains K RF chains and Nr receive

antennas. AllK users and the BS adopt phase shifters for transmit and receive analog beamforming.

These phase shifters change phases of analog signals by a discrete number of steps q, and the q phase

shifts are uniformly distributed in [0, 2π).

Let Sq(N) be the set of all possible beamforming vectors of phase shifters of a terminal with N

antennas as in Chapter 6, i.e.,

Sq(N) =
{

w ∈ CN×1 : wi = ejβi , βi ∈
{

0,
2π

q
, . . . , 2π

q − 1

q

}
∀ i = 0, 1, . . . , N − 1

}
. (7.1)

with ‖w‖2 = N and |Sq(N)| = qN . We let ui ∈ CNt×1 and vj ∈ CNr×1 represent the transmit and

receive beamforming vectors at the ith user and the jth RF chain of the BS, respectively, chosen

from the codebooks ui ∈ Ct ⊂ Sq(Nt), vj ∈ Cr ⊂ Sq(Nr), i, j = 1, . . . ,K.

We assume ULA antenna structure at all terminals (users and the BS) with λ/2 antenna spacing,

where λ is the carrier wavelength. Let the antenna response vector in the angular direction θ be

a(θ,N) , [1, ejπ cos(θ), . . . , ejπ(N−1) cos(θ)]T , (7.2)
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then the channel between the BS and the ith user, Hi ∈ CNr×Nt , i = 1, . . . ,K, is of the form

Hi =
1√
L

L∑
l=1

αila(φil, Nr)a(θil , Nt)
H , (7.3)

where L is the total number of propagation paths, αil is the gain of the l-th path, φil and θ
i
l are the

corresponding AoA and AoD, respectively.

Let xi be the unit power complex symbol (base-band equivalent) taken from a modulation

alphabet A such as M -QAM, transmitted through the transmit phase shifters ui ∈ CNt×1 of the

i-th user. Then the received signal at the jth RF chain of the BS after using receive phase shifters

vj ∈ CNr×1, is given by

yj =

√
P

NtNr
vHj

K∑
i=1

Hiuixi +

√
1

Nr
vHj n, j = 1, . . . ,K, (7.4)

where P is the average transmit power of each user,
√

1
Nt

and
√

1
Nr

are the normalization factors

for ui and vj , respectively, and n ∈ CNr×1 is the noise vector with each entry ∼ CN (0, σ2). After

the receive phase shifters, yj , j = 1, · · · ,K are passed to the detector, which is in digital domain,

to estimate the transmitted signals. Different detector designs are explained in next sections. We

consider SNR = P/σ2 as the average transmit power per user to noise ratio. Here, we name

h̃i , Hiui as the effective channel for user i.

In our system, we assume the channel state information is available only at the receiving base

station. Specifically, the BS first computes the transmit and receive beamforming vectors based

on the proposed design, and then forwards the beamforming vectors (Nt log2 q bits) to each user.

Millimeter wave channel information can be found by using the compressive-sensing approaches as

discussed in [71, 97]. These compressive-sensing approaches can be applied to analog beamforming

with low resolution phase shifters, as discussed in Chapter 6. The algorithms proposed in [83, 84]

uses AoD and channel gains to compute the beamforming vectors in the multiuser downlink system.

In this work, we assume the full channel state information, which requires AoA in addition to AoD

and channel gains. Beamforming designs in multiuser uplink that uses only AoA information is very

interesting and we consider it in our future work.

From (7.4), we clearly observe that the system performance depends on the selection of transmit
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and receive beamforming vectors ui and vj , respectively, for i, j = 1, . . . ,K. In the following, we

denote the selection of ui’s and vj ’s as precoder and detector design.

7.2 Joint Precoder and Detector Design

In this section, we propose a joint precoder and detector 1 design for low resolution phase shifters

(q = 4, 8, 16). The preferred transmit and receive beamforming vectors ui and vj , i, j ∈ [1,K] are

chosen to approximately maximize the sum-rate of the uplink system by using an iterative joint

search algorithm.

We first rewrite (7.4) as

y =
√
P VHHUx + VHn

=
√
P H̃x + VHn, (7.5)

where y , [y1 y2 · · · yK ], V ,
√

1
Nr

[v1 v2 · · · vK ] ∈ CNr×K , H , [H1 H2 · · · HK ] ∈ CNr×KNt ,

x , [x1 x2 · · · xK ] ∈ CK×1, H̃ , VHHU ∈ CNr×K , and

U ,

√
1

Nt



u1 0 · · · 0

0 u2 · · · 0

...
...

. . .
...

0 0 · · · uK


∈ CKNt×K .

Let the sum-rate of the multiuser uplink system be

C = log2 det
[ P
σ2

H̃H̃H + VHV
]

= log2 det
[ P
σ2

VHHUUHHHV + VHV
]
bits/s/Hz, (7.6)

1We use the detector term to represent both the combiner operation at analog beamforming stage and the detection
part at digital stage.
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Then our joint design aims at finding the best U and V to maximize C, i.e.,

Û, V̂ = arg max
U,V

det
[ P
σ2

VHHUUHHHV + VHV
]

= arg max
U,V

f(U,V). (7.7)

where f(U,V) is named as the metric of the joint precoder and detector design.

This sum-rate expression is the same as the one in [91] except for the analog receive beamforming

(V) at BS which is due to the hybrid architecture used in mm-Wave systems, whereas full digital

signal is used for microwave communications in [91]. After analog processing at BS, we assume

optimal detection in digital stage (see Section 7.3.2 for details). Note that the optimization of the

metric in (7.7) is different from the one considered in mm-Wave literature [93,96,98], where receive

SINR is maximized by using linear detectors such as MMSE.

To solve (7.7), the brute-force search requires an exponential computation complexity of

|Sq(Nt)|K |Sq(Nr)|K = qK(Nt+Nr).

Even for a small mm-Wave system of q = 4,K = 2, Nt = 16, and Nr = 16, it requires to compute 464

values. To reduce the complexity, we propose a low complexity iterative joint precoder and detector

design algorithm, which can find a sub-optimal solution to (7.7).

Iterative Joint Design Algorithm: The iterative joint design algorithm starts with the randomly

chosen initial values of Û and V̂. In each iteration we sequentially update Û and V̂ using the

local search (LS) method, as discussed below. The output of the previous iteration is used as the

initial solution for LS in the next iteration. The algorithm stops when the difference of C between

successive iterations is arbitrarily small or when the maximum iterations are reached.

Local Search (LS) Method: LS starts with an initial solution. Then it computes the best solution

to (7.7) in the neighborhood of the initial solution. We denote the neighborhood of x ∈ Sq(N) as

Nd,N (x), which is the set of all vectors in Sq(N) that differs in at most d positions from x, i.e.,

Nd,N (x) , {p : p ∈ Sq(N) and 0 < ‖x− y‖0 ≤ d}, (7.8)
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where ‖x− y‖0 denotes the number of non-zero values in (x− y) and

|Nd,N (x)| =
d∑
i=1

(
N

i

)
(q − 1)i .

The pseudocode of the proposed joint design is presented in Algorithm 7.1. Note that, in the

pseudocode, at the t-th iteration, Û
(t)
(i,p) and V̂

(t)
(j,p) are obtained by replacing u

(t)
i and v

(t)
j with the

vector p in Û(t) and V̂(t), respectively.

Note that a tabu search algorithm similar to this local search was proposed in [88] to find

the near-optimal analog beamforming vectors for point-to-point mm-Wave system. This scheme

is different from our algorithm in two aspects: i) we consider multiuser uplink system and ii) we

consider the full search space Sq(N) for finding beamforming vectors whereas only steering vectors

(a(θ,N)) were used in [88].

Remark 7.1. Please note the following points regarding the motivation of the joint design proposed

in this work. The optimal closed form solution is not known even for a full digital system without

constant amplitude phase shifters constraint. An iterative solution was proposed for full digital

system in [89], but its convergence has never been studied for hybrid systems. Even if an optimal

iterative solution were available, approximating this solution with the hybrid beamforming matrix

requires high resolution phase shifters and a large number of RF chains [85]. This is in contrast to

our assumption that users have only one RF chain and low resolution phase shifters. In this case,

there will be a significant performance loss, compared to the optimal solution.

7.2.1 Complexity

The complexity of the precoder design is O(Klp(|Nd,Nt(x)|)((2K)3 +Nr)), where lp represents the

number of loops in LS, |Nd,Nt(x)| is the total number of neighbour vectors tested in each loop,

and (2K)3 + Nr is the complexity taking into account of both determinant computation and the

operations needed for updating P
σ2 H̃H̃H + VHV for every neighborhood vector (only one column

in U is updated and no updates in V).

Similarly, the complexity of the detector design is O(Kld(|Nd,Nr(x)|)((2K)3 +K)), where ld is

the number of loops in LS and |Nd,Nr(x)| is the total number of neighbour vectors tested in each

loop.
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Algorithm 7.1 The Joint Precoder and Detector Design
1: Input: H1, H2, · · · , HK

2: Initialize: û
(0)
i , v̂

(0)
j , for i, j = 1, · · · ,K

3: for t = 1 to number_of_iterations do
4: Û(t) ← Û(t−1)

5: V̂(t) ← V̂(t−1)

6: for i = 1 to K do
7: x← û

(t)
i

8: while (1) do
9: Find z← arg max

p∈Nd,Nt (x)
f(Û

(t)
(i,p), V̂

(t))

10: if f(Û
(t)
(i,z), V̂

(t)) > f(Û
(t)
(i,x), V̂

(t)) then
11: x← z
12: else
13: break
14: end if
15: end while
16: û

(t)
i ← x,

17: Û(t) ← Û
(t)
(i,x)

18: end for
19: for j = 1 to K do
20: x← v̂

(t)
j

21: while (1) do
22: Find z← arg max

p∈Nd,Nr (x)
f(Û(t), V̂

(t)
(j,p))

23: if f(Û(t), V̂
(t)
(j,z)) > f(Û(t), V̂

(t)
(j,x)) then

24: x← z
25: else
26: break
27: end if
28: end while
29: v̂

(t)
j ← x

30: V̂(t) ← V̂
(t)
(j,x)

31: end for
32: if f(Û(t),V̂(t))

f(Û(t−1),V̂(t−1))
< 2ε then

33: break
34: end if
35: end for
36: Output: û

(t)
i , v̂

(t)
j , for i, j = 1, · · · ,K
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Finally, the complexity of the joint design is NIter × CIter, where NIter is the total number of

iterations in the joint design, and

CIter = (O(Klp(|Nd,Nt(x)|)((2K)3 +Nr)) +O(Kld(|Nd,Nr(x)|)((2K)3 +K)))

is the complexity of joint design per iteration.

7.2.2 Detection

The received signal vector in (7.5) contains the transmitted signals and the colored Gaussian noise

VHn with covariance matrix Σ = VHV. Applying ML detection yields

x̂ = arg max
x∈AK

Pr(y/H̃,x)

= arg min
x∈AK

(y −
√
P H̃x)HΣ−1(y −

√
P H̃x)

= arg min
x∈AK

‖LHy −
√
PLHH̃x‖2, (7.9)

where L is the lower triangular matrix in the Cholesky decomposition of Σ−1, i.e., LLH = Σ−1. A

sphere decoding ML can be implemented to solve (7.9).

7.2.3 Upper Bound on Sum-rate

The upper bound on sum-rate is computed based upon the following setting.

1. We assume fully digital systems for users and the BS, i.e., each user has Nt RF chains and

the BS has Nr RF chains, and thus all Nr received signals are available at the BS.

2. We consider all users are cooperative and then the precoder matrix Udig is a full complex-

entry matrix. To maintain the total power constraint, we consider only the orthonormal

vectors as the columns of Udig, i.e., UH
digUdig = IK .

The received signal for the point-to-point digital system is

ydig =
√
P HUdigx + n

= Hxdig + n, (7.10)
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where xdig = Udigx and ‖x‖2 = ‖xdig‖2. The achievable rate of the system in (7.10) is given by

Cdig = log2 det
[ P
σ2

HHH + INr

]
bits/s/Hz. (7.11)

By using singular value decomposition (SVD) of H, the rate in (7.11) can be written as [28],

C ≤ Cdig =
K∑
i=1

log2

(
1 +

λ2
iP

σ2

)
bits/s/Hz, (7.12)

where λi, for i = 1, · · · ,K are the K largest singular values of H.

Through the simulation results in Sec. 7.4.1, we can observe that the sum-rate of the proposed

joint precoder and detector design is very close to the upper bound. Although the joint design

performs well, it requires high complexity. To reduce the complexity, we propose separate designs

of precoder and detector in the next section.

7.3 Separate Precoder and Detector Design

In this section, we present the two precoder designs based on SNR and SINR maximization, followed

by the two detector designs.

7.3.1 The Precoder Design

We propose two different precoder designs for limited resolution phase shifters (q = 4, 8, 16).

Conventional Precoder (CP)

For user i with its known CSI, the conventional precoder selects ui that maximizes the total effective

channel power, i.e.,

ui = arg max
x∈Sq(Nt)

‖Hix‖2, for i = 1, . . . ,K. (7.13)

This design requires a very high processing time as |Sq(Nt)| = qNt . For example, in the case of

q = 16 andNt = 16, we need to check for 1616 values, which is impractical. To reduce the complexity,

we adopt LS method to find an approximate solution to (7.13). In LS, we consider E(x) , ‖Hix‖2
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as the metric of the algorithm. The complexity of this algorithm is O(Klp|Nd,Nt(x)|), much less

than joint design in Section 7.2.

However, the performance of CP can be poor due to high correlation between the effective

channels of different users. Consequently, the BS fails to distinguish different users, since the

precoder design is based only on the respective channel of each user. To reduce such correlations

by taking advantage of other users’ CSIs, we propose below a successive estimation precoder.

Successive Estimation Precoder (SEP)

We let i1, i2, . . . , iK ∈ {1, . . . , k, . . . ,K} be the users order, for which each precoding vector is

successively computed to maximize its SINR. Here, the SINR of user ik is defined as the ratio of

the user’s total effective channel power and the interference from users i1, . . . , ik−1 together with

the noise.

Matched Filter (MF) Based SINR

For user ik, based on the MF detector weights (i.e., (Hikx)H/‖Hikx‖) for its SINR computation,

the SEP selects uik such as

uik = arg max
x∈Sq(Nt)

‖Hikx‖2
k−1∑
j=1

∣∣∣∣∣(Hikx)H

‖Hikx‖
(Hijuij )

∣∣∣∣∣
2

+Ntσ
2

,

= arg max
x∈Sq(Nt)

Zkik(x), for k = 1, . . . ,K. (7.14)

MMSE Based SINR

For user ik, assuming the interference only from users i1, i2, . . . , ik−1, we apply the MMSE detector

weights wk
ik

to (7.14) to select

uik = arg max
x∈Sq(Nt)

wk
ik

Hikx

k−1∑
j=1

∣∣∣wk
ik

Hijuij

∣∣∣2 +Ntσ
2

,

= arg max
x∈Sq(Nt)

Mk
ik

(x), for k = 1, . . . ,K. (7.15)
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By letting Heff ,

[
Hikx Hi1ui1 . . . Hik−1

uik−1

]
∈ CNr×k, the MMSE weight matrix Wk

mmse ∈

Ck×Nr can be written as

Wk
mmse , (HH

effHeff +Ntσ
2I)
−1

HH
eff . (7.16)

Therefore, wk
ik
∈ C1×Nr is the normalized version of the first row of Wk

mmse, corresponding to user

ik.

Finding the user order for precoder design: The user order can be randomly chosen. However,

to improve the performance, at stage k, we choose the ik-th user as the one which has the least

maximum SINR from the user index set Uk =
{
{1, 2, . . . ,K}−{i1, i2, . . . , ik−1}

}
. We name this order

as minimum order (see more detailed discussions about alternative user ordering in Section 7.4).

At the initial stage, we choose the i1-th user which has the least maximum effective channel

power, since we disregard the interference from others. This is because, as the number of stages

increases, the number of interference terms increases, which puts more constraints on the selection

of precoding vector, yielding a further reduction in SNR of that user. With the user ordering, SEP

design requires K(K+1)
2 of computations in (7.14). Similar idea applies to the MMSE based scheme.

The corresponding pseudocode is given in Algorithm 7.2.

To reduce the exponential computation complexity of (7.14), we adopt the LS method in Al-

gorithm 7.2 to provide sub-optimal solutions to (7.14) prior to deciding the ik-th user order. To

further reduce the complexity of LS method, for user ik, we use the first stage solution of SEP as

the initial solution in the next stage and then update it at each stage.

Overall Algorithm 7.2 works as follows: In the first stage, the precoding vectors of all the users

are computed by maximizing their corresponding SINR using LS method. Then the user with the

least SINR is selected and its precoding vector is finalized. In the next stage, the precoding vectors

of the users except the selected user in the first stage U2 =
{
{1, 2, . . . ,K} − {i1}

}
are computed

by maximizing the modified SINR and the user with the least SINR is selected and its precoding

vector is finalized. This process continues until precoding vectors of all users are finalized. The

complexity order of Algorithm 7.2 is O(K2lp|Nd,Nt(x)|).
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Algorithm 7.2 The Successive Estimation Precoder
1: Input: H1, H2, · · · , HK

2: for k = 1 to K do
3: for l ∈ Uk do
4: pl ← LS(Zkl (x))
5: end for
6: ik ← arg min

l∈Uk
Zkl (pl)

7: uik ← pik
8: end for
9: Output: u1,u2, . . . ,uK

7.3.2 The Detector Design

In this subsection, we propose two different detectors: one provides an approximate solution to ML

detection and the other is based on successive cancellation. In both designs, we assume that the

ui’s are already made available using computations in Section 7.3.1.

Approximate ML Detector (AMLD)

Given the known received signal s ∈ CNr×1 (the received signal at the BS before phase shifters) and

assuming that the BS adopts Nr RF chains (the optimal case), the ML detection is given by

x̂ = arg min
x∈AK

‖s− H̃x‖2, (7.17)

where H̃ , [h̃1, h̃2, . . . , h̃K ] ∈ CNr×K , x̂ = [x̂1, x̂2, . . . , x̂K ]T , and x̂i is the decoded symbol corre-

sponding to user i. Considering

H̃ = QR =

[
Q1 Q2

]R1

0

 , (7.18)

where Q ∈ CNr×Nr is a unitary matrix and R ∈ CNr×K is an upper triangular matrix with the last

Nr −K rows as completely zeros, the ML detection in (7.17) can be rewritten as

x̂ = arg min
x∈AK

‖QHs−Rx‖2,

= arg min
x∈AK

‖QH
1 s−R1x‖2, (7.19)
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where Q1 ∈ CNr×K is the matrix with first K columns of Q and R1 ∈ CK×K is the matrix with

first K rows of R. From (7.19), we observe that ML detection can also be implemented by using

QH
1 s ∈ CK×1 instead of s ∈ CNr×1.

Therefore, we apply ML detection in our hybrid beamforming at the BS by i) letting the vj ’s

equal to the columns in Q1 to obtain QH
1 s in analog domain, and ii) applying (7.19) on QH

1 s in

digital domain. Unfortunately, the elements of vj ’s have a constant amplitude constraint and cannot

be made equal to those of Q1 which have different amplitudes and phases. To solve this problem,

we propose a solution that is based on the following Lemma derived in [81,82].

Lemma 7.1. Every element of Q1 can be written as a sum of two unit amplitude values. That is,

(i, j)-th element of Q1, ei,j, can be written as

ei,j = ej(cos−1(ai,j/2)+θi,j) + ej(− cos−1(ai,j/2)+θi,j), (7.20)

where, ai,j and θi,j are the amplitude and phase of ei,j respectively. �

Since a large array of antennas is used in mm-Waves to compensate path-loss, in most of the

cases, the value of ai,j is close to 0 and the difference of the angles in (7.20), 2 cos−1(ai,j/2), is

close to 1800, i.e., one angle in [0, π) and the other in [π, 2π). Therefore, [v1,v2, . . . ,vK ] = Q1

is implemented in the analog domain with 2NrK high resolution discrete phase shifters, of which

NrK covers the range [0, π) and the other NrK covers the remaining range.

We name it as approximate ML detection (AMLD), since discrete phase shifters are used rather

than continuous ones. In Section 7.4, we present the BER performance with different resolutions

of phase shifters (16, 32, 64) and show that with high resolution phases shifters, we can approach

the optimal performance. Although the performance of AMLD is close to optimal, it requires

twice amount (i.e., 2NrK) of phase shifters of high resolution, when compared to a regular hybrid

beamforming structure. To tackle this problem, in the following subsection, we present a detector

which requires much lesser phase shifters of low resolution with trade-offs in performance.
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Successive Cancellation Detector (SCD)

Similar to the SEP in Section 7.3.1, this detector is also implemented in K stages. Let

j1, . . . , jk, . . . , jK ∈ {1, 2, . . . ,K}

be the users order at which the corresponding decoding vectors {vjk}Kk=1 are successively computed.

At stage k, we select the detection vector for user jk as

vjk = arg max
x∈Sq(Nr)

|xH h̃jk |2
K∑

i=k+1

|xH h̃ji |2 +Nrσ
2

,

= arg max
x∈Sq(Nr)

Dkjk(x), for k = 1, . . . ,K. (7.21)

Note that the interference term in (7.21) only takes into account those users for which decoding

vectors are not computed. Similar to (7.13), the computation of (7.21) requires qNr comparisons,

which is impractical for large values of Nr (32, 64). We thus use the local search to find the

approximate solution to (7.21) with metric Dkjk(x).

Finding user order for detector design: At stage k, we choose user jk as the one with the

highest maximum SINR, i.e., max
l∈Vk

(
max

x∈Sq(Nr)
Dkl (x)

)
, from the user set Vk =

{
{1, 2, . . . ,K} −

{j1, j2, . . . , jk−1}
}
. We name this order as maximum order. As the stage increases, fewer inter-

ference terms are involved in (7.21) and also the interference from high SINR users j1, . . . , jk−1 is

removed, leading to improved performance for users with low SINR.

The corresponding pseudocode is given in Algorithm 7.3. The LS method is used to find sub-

optimal solution to max
x∈Sq(Nr)

Dkl (x) for a given l ∈ Vk. The complexity order of this algorithm is

O(K2ld|Nd,Nr(x)|).

Detection Rule: The detector follows the same order as above to detect the transmitted signals

xj1 , . . . , xjk , . . . , xjK . In particular, the detection rule for signal xjk is

x̂jk = arg min
z∈A

∣∣vHjk(s−
k−1∑
i=1

h̃ji x̂ji)− vHjk h̃jkz
∣∣2,

= arg min
z∈A

∣∣yjk − k−1∑
i=1

vHjk h̃ji x̂ji − vHjk h̃jkz
∣∣2, (7.22)
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Algorithm 7.3 The Successive Cancellation Detector
1: Input: h̃1, h̃2, · · · , h̃K
2: for k = 1 to K do
3: for l ∈ Vk do
4: pl ← LS(Dkl (x))
5: end for
6: jk ← arg max

l∈Vk
Dkl (pl)

7: vjk ← pjk
8: end for
9: Output: v1,v2, . . . ,vK

where
(
s−∑k−1

i=1 h̃ji x̂ji

)
denotes the received signal after canceling the interference from users

j1, · · · , jk−1. Here, we can see that the interference from users jk+1, . . . , jK in vHjk is neglected,

simply because we design vHjk based on reducing the interference from these set of users (see (7.21)).

Different from [95], our detector uses LS to select vi for low-resolution phase shifters, whereas in [95],

the detector was designed for high resolution phase shifters by considering only the detection vectors

(vi) of structure a(φ,Nr), i.e., one parameter φ decides the entire vector vi.

7.4 Simulation Results And Discussion

In this section, we first present the sum-rate of the proposed joint precoder and detector design and

compare with the upper bound achieved by the point-to-point digital system. We then compare BER

performance using our proposed joint design as well as separate precoder and detector designs. We

also compare our system performance with the performance of other existing schemes in [95,96,98],

as well as a fully digital system with ML detection.

7.4.1 Joint Precoder and Detector Design

In simulations, we adopt the following setting: K = 4, Nt = 20, Nr = 60, and QPSK signalling for

transmission. The channel between the BS and each user has L = 3 propagation paths, where one

path is LoS and the other two are NLoS paths. For LoS path, we assume the path gain as αi1 = 1,

for i = 1, . . . ,K, and for NLoS paths, the path gain as (αil) ∼ CN (0, 1√
L

), where l = 2, . . . , L and

i = 1, . . . ,K [95]. The AoD (θil) is uniformly distributed in [0, 2π) and the AoA (φil) is uniformly

distributed in [−π/3,+π/3) due to sectorization at BS. For LS, we adopt d = 1 in (7.8) to list the

neighborhood of x.
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Figure 7.2: The sum-rate of the proposed joint design as a function of number of iterations at
different SNR’s with Nt = 20, Nr = 60,K = 4, q = 16, and L = 3.

In Fig. 7.2, we illustrate the variation of the sum-rate of the proposed joint design with the

number of iterations at different SNRs for low resolution phase shifter q = 16. We observe that the

proposed joint design approaches the maximum sum-rate in only 3 iterations. In this simulation,

we found the average number of loops in LS are lp = 30 for precoder design and ld = 90 for detector

design, respectively.

Figs. 7.3 and 7.4 show the variation of sum-rate as a function of number of iterations and

neighborhood size (d) with different number of users (K = 1, 2, 5, 8) with Nt = 20, Nr = 60,

P/σ2 = −10 dB, and L = 3, respectively. We can see that the joint design is converging in 3

iterations for different number of users. This behavior may be heuristically explained by the fact

that the neighborhood size is large enough to avoid the local traps in the search. We also observe

that the increase in value of d does not effect the performance as the size of neighborhood is large

even with d = 1, i.e., Nt(q − 1) or Nr(q − 1). Finally, convergence analysis of the local search

algorithm is an interesting open problem that has not been solved yet in the literature.

Figs. 7.5 and 7.6 illustrate the sum-rate of the proposed joint design at different SNRs and for

different number of users, respectively, with low resolution phase shifters q = 4, 8, 16. In both

figures, we also compare the sum-rate of our design with the corresponding upper bound Cdig and

those of the iterative hybrid precoder and combiner design (HPC) [98]. We observe that the sum-
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Figure 7.3: The sum-rate of the proposed joint design as a function of number of iterations for
different number of users with Nt = 20, Nr = 60, P/σ2 = −10 dB, and L = 3.
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Figure 7.4: The sum-rate of the proposed joint design as a function of neighborhood size d for
different number of users (K) with Nt = 20, Nr = 60, P/σ2 = −10 dB, and L = 3.
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Figure 7.5: The sum-rate of the proposed joint design at different SNR’s with Nt = 20, Nr =
60,K = 4, and L = 3.
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Figure 7.7: The BER performance of CP, SEP-MF, and SEP-MMSE precoders with SCD detector
for different values of q with Nt = 20, Nr = 60,K = 4, and L = 3.

rate of our design outperforms HPC by approximately 5 bits/s/Hz thanks to fully exploitation of

all possible combinations for precoders and detectors (Sq(Nt) and Sq(Nr)) rather than constraining

to the form of a(θ,N) as in [98]. We also see that our design with q = 8, 16 is the closest to the

upper bound among all, though the joint design has overall high complexity, as discussed in Section

7.2.1.

7.4.2 Separate Precoder and Detector Design

In the simulations, we consider the settings presented in the subsection 7.4.1. For BER computa-

tions, we consider the SNR as Eb/σ2.

Fig. 7.7 shows the BER of the joint precoder and detector design with low resolution phase

shifters of q = 4, 8, 16. We observe that the performance improves as q increases. We also see that

the joint design with q = 8 and q = 16 significantly outperforms that with q = 4.

Fig. 7.8 compares the BER performance of CP and SEP using MF and MMSE weights for SINR

computations, denoted by SEP-MF and SEP-MMSE. We observe that: i) SEP-MMSE outperforms

CP and SEP-MF (more than 4 dB gain at 10−4 BER), ii) performance improves as q increases,

and iii) all the schemes exhibit an error floor at high SNRs due to the residual correlations. This

is due to the sparsity of mm-wave channels, where there are more chances of having correlations
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Figure 7.8: The BER performance of CP, SEP-MF, and SEP-MMSE precoders with SCD detector
for different values of q with Nt = 20, Nr = 60,K = 4, and L = 3.

between the channels of different users. If the users’ channels are highly correlated, the base station

fails to recognize different users and cannot detect the signal, even at high SNR with any precoding

and detection scheme. This is why there is flooring effect in all plots. Note that this flooring effect

occurs at different BERs for different detection schemes, mainly depending on their interference

cancellation capability.

The performance of SEP-MMSE precoder using different user orders is illustrated in Fig. 7.9.

The SCD proposed in Section 7.3.2 is used at the BS. Three different precoder users orders are

considered: i) maximum order: the user with the largest maximum SINR at every stage (considered

arg max at line number 6 in Algorithm 7.2), ii) fixed order: the user order of 1, 2, · · · ,K, iii)

minimum order: the user with the least maximum SINR at every stage, as in Algorithm 7.2. We

can observe that, at high SNRs, the precoder with the minimum order performs the best.

In Fig. 7.10, we compare the performance of a fully digital system using ML detection and our

system using SEP-MMSE precoder with SCD and AMLD at the receiver, respectively. The AMLD

uses 480 (60 × 4 × 2) phase shifters of resolutions q = 16, 32, 64 with 240 covering the range [0, π)

and the other 240 covering [π, 2π). We can see that the BER of AMLD with q = 64 is closest to the

fully digital performance, when compared to the others, while the SCD achieves reasonably good

performance with 240 low resolution phase shifters.
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Figure 7.9: The BER performance of SEP-MMSE precoder with SCD detector for different user
orders with Nt = 20, Nr = 60,K = 4, q = 16 and L = 3.
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Figure 7.10: The BER performance of SEP-MMSE precoder with SCD and AMLD detectors for
different values of q with Nt = 20, Nr = 60,K = 4, and L = 3.
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Figure 7.11: The BER performance of SEP-MMSE precoder with SCD detector, SIC, HBF-GS,
MHP, and HPC for Nt = 20, Nr = 60,K = 4, and L = 3.

In Fig. 7.11, we compare the performance of various systems: i) using a SEP-MMSE precoder

at transmitter but different detection schemes at receiver: a fully digital one with ML detection, our

system using SCD, the systems using the ordered successive interference cancellation (SIC) method

in [95], and Gram-Schmidt (HBF-GS) method in [96] for receive beamforming design, ii) two-stage

multiuser hybrid precoder (MHP) in [92] , iii) the HPC design in [98], and iv) joint precoder and

detector design. Here, we assume that ordered SIC uses 240 phase shifters with q = 256 resolution,

HBF-SC uses 240 phase shifters of full resolution (FR), i.e., it covers all continuous range of angles,

MHP uses q = 16 resolution phase shifters, and HPC uses q = 128 resolution phase shifters.

Complexity Comparison: The schemes in [95,96] only design the detector assuming the precoding

vectors are already available. The complexity order of both designs is O(NrK
2), which is similar

to our SCD when K << Nr. The HPC design in [98] is a joint precoder and detector design with

complexity order O(NrNtK
2), which is also similar to our joint design. Through simulations, we

observe the similar average CPU running times for all these methods.

From Fig. 7.11, we see that the joint design performs closely to the fully digital one, and better

than all the other designs. We also observe various detector designs together with our SEP-MMSE

precoder have better performance than MHP [92] and HPC [98], where an error floor occurs at 10−3

BER. This is due to the fact that MHP selects the analog beamforming vectors of a user based on its
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own channel and the interference between users is handled only by the digital stage at BS. Further,

hybrid precoder and combiner (HPC) design in [98] aims at maximizing the multiuser sum-rate,

when a linear MMSE linear detector is adopted at the receiver. The BER of HPC is mainly limited

by this linear MMSE detector, while other schemes are non-linear and able to cancel the interference

more effectively.

Moreover we see that our SCD detector with low resolution phase shifters (q = 16) outperforms

the SIC system [95] and HBF-GS [96] with FR phase shifters by 1 dB and 2 dB, respectively, at BER

of 10−4. This performance gain is because of the exploration of more combinations for beamforming

vectors (Sq(N)) rather than constrained to a particular form of a(θ,N).



Chapter 8

Conclusions and Future Directions

In this thesis, we studied two efficient physical layer techniques for the next generation wireless

systems, namely, waveform design and mm-Wave systems. In the first part, we investigated several

aspects of the recently proposed OTFS modulation, such as OTFS with practical waveforms and

channel estimation, and showed that it outperforms the current OFDM system. In the second part,

we studied the design of best beamforming weight vectors for the practically feasible low resolution

phase shifters for mm-Wave point-to-point and multiuser uplink systems. In the following, we

summarize our key contributions and then some possible future directions.

8.1 Contributions

8.1.1 OTFS Modulation

In Chapter 2, we analyzed the input–output relation describing OTFS mod/demod over delay–

Doppler channels. We studied in detail the cases of ideal waveforms and rectangular waveforms.

In particular, we characterized IDI, ICI, and ISI using sparse representation of the channel in the

delay–Doppler domain. A low-complexity yet efficient MP algorithm for joint interference cancel-

lation and symbol detection was proposed, which is suitable for large-scale OTFS with inherent

channel sparsity. In the MP algorithm, the ISI and ICI can be cancelled by using appropriate phase

shifting, while the IDI can be mitigated by accounting for a small number of significant interference

terms only. The proposed MP algorithm can effectively compensate for a wide range of channel

Doppler spreads. Moreover, we demonstrated that it is possible to achieve the performance of OTFS

117



8.1 Contributions 118

with ideal yet non-realizable waveforms using practical rectangular waveforms. Through simulations,

we showed that OTFS has significant error performance gains over OFDM under various commu-

nications scenarios including ideal and non-ideal channel estimation, low-latency communications

etc.

In Chapter 3, we analyzed the input–output relation of OTFS system for arbitrary pulse-shaping

waveforms using a block-circulant matrix decomposition. We showed that the OTFS has a simple

sparse input-output relation which enables the use of low-complexity detection algorithms. Simula-

tion results, comparing the error performance of OTFS with different waveforms, showed a tradeoff

between out-of-band radiation and BER.

In Chapter 4, we developed embedded pilot-aided OTFS channel estimation schemes. In partic-

ular, we arranged pilot, guard, and information symbols in the delay–Doppler grids to suitably avoid

interference between pilot and data symbols. We designed such arrangements for OTFS with ideal

and rectangular pulses over channels with integer or fractional Doppler paths, respectively. At the

receiver, channel estimation was performed based on a threshold method and the estimated channel

information was used for data detection via MP algorithm proposed in Chapter 2. We compared

by simulations the error performance of OTFS using the proposed channel estimation schemes and

OTFS with perfectly known channel information and observed only a marginal performance loss.

Further, we showed that OTFS with our channel estimation significantly outperforms OFDM with

ideal channel information.

Finally, in Chapter 5, we studied OTFS in static multipath channels and showed that its struc-

ture is equivalent to A-OFDM. Further, we derived a necessary and sufficient condition in OTFS

to guarantee that all the transmitted symbols experience uniform channel gains, as in CPSC. We

applied low-complexity MP detection algorithm in Chapter 2 to OTFS and showed that OTFS with

MP detection performs similarly to CPSC, but better than OTFS/A-OFDM with ZF and MMSE

detections. We also showed that the performance of OTFS using channel estimation with embedded

pilots approaches the performance with ideal channel state information at the receiver.

Table 8.1 briefly summarize the differences between OTFS and OFDM systems.
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Parameter OFDM OTFS

Transform Fourier transform Zak transform

Operating domain Time–frequency Delay–Doppler

Maximum PAPR M N

CP (L− 1)N L− 1

Tx complexity MN log2M MN log2N

Rx complexity MN log2M MN log2N

Detector complexity O(NM) MP – O(niterNMPQ)

Maximum Doppler al-
lowed

< 10% of ∆f ∆f

Diversity gain 1 Almost P (no. of paths)

Table 8.1: Comparison between OFDM and OTFS systems

8.1.2 Millimeter Wave Communications

In Chapter 6, we proposed a hierarchical codebook design for analog beamforming with low resolu-

tion phase shifters. The beamforming vectors in our codebook are grouped into multiple levels. At

each level, the preferred beamforming vector is constructed to approach the corresponding ampli-

tude beamforming gain mask using a low complexity local search algorithm. Through simulations,

we showed that our codebooks with low resolution phase shifters outperform an existing scheme

with high resolution phase shifters.

In Chapter 7, we considered a mm-Wave multiuser uplink system for low resolution phase shifters

(q = 4, 8, 16). We proposed a joint precoder and detector design to maximize the sum-rate of the

uplink system. Although the joint design approaches the sum-rate of a fully digital system, the

computation complexity to determine the good beamforming vectors is high. Hence, we separately

designed precoders and detectors, to provide a tradeoff between complexity and performance. For

the precoder designs, the preferred transmit beamforming vectors were chosen to maximize either

SNR or SINR of each user, using a low complexity LS method. For detector designs, the receiver

beamforming vectors were selected using AMLD and SCD, respectively. Although AMLD has similar

performance to the fully digital system, it requires to double the number of phase shifters and a

higher phase resolution, when compared to a regular hybrid beamforming receiver. In contrast,

the SCD uses only low resolution phase shifters without doubling their number. We showed by
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simulations that both joint design and separate designs with low resolution phase shifters outperform

the traditional methods using steering vectors as beamforming vectors with high resolution phase

shifters.

8.2 Future Directions

We now discuss some of the possible future extensions to the work reported in this thesis.

8.2.1 OTFS Modulation

We analyzed the system model and channel estimation aspects of single input single output (SISO)

OTFS system. A list of suggestions for future research are provided below.

• Analyse the theoretical BER and capacity of OTFS with the ideal ML detector and the

proposed MP detector. This analysis can also be extended to address the impact of channel

estimation errors on the BER performance.

• Study on the effect of hardware impairments on the OTFS system model. This may include

CFO, timing synchronization, sampling clock offset, and phase noise.

• Methods to reduce the memory requirement of the proposed MP detection with a compromise

in performance as the proposed MP detection has a high memory requirement for larger

constellations.

• Hardware implementation of our MP detection using the state-of-the-art processors.

• Extensions of the proposed system to MIMO, multiuser, and massive MIMO cases. This may

need investigating the precoding techniques that can be applied in the delay–Doppler plane

rather than the current techniques in the time–frequency plane. The precoding techniques

may also be used to reduce the detection complexity at the receiver.

• Explore the uses of OTFS in the areas other than communications.
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8.2.2 Millimeter Wave Communications

In this thesis, we provided several beamforming design methods based on the local search algorithm

for point-to-point and multiuser systems. A list of suggestions for future research are provided

below.

• Study on the performance of the proposed methods to other antenna arrangements, such as

uniform planar arrays.

• Extension of the proposed method to the mm-Wave multiuser downlink system.

• Theoretical analysis of the proposed method to guarantee the minimum beamforming gains.

• In this work, we consider the frequency flat mm-Wave channel models. However, mm-Wave

systems can operate over huge bandwidths for which the channel will be frequency selective.

At the same time, OTFS modulation provides a better solution to operate at the frequency

selective and high Doppler (doubly dispersive) channels. Finding the optimum beamforming

vector designs for the frequency selective mm-Wave systems with OTFS modulation will be

very attractive future direction.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Theorem 2.1: OTFS Input–Output Relation in Time–

Frequency Domain

The received signal after Wigner transform Y (t, f), from (2.4), can be written as in (A.1). It can

be further expanded as in (A.2) and (A.3) using the transmitted signal s(t) in (2.3) and some re-

ordering of summations and integrations. Therefore, the sampled version of Y (t, f), i.e., Y [n,m],

can be written as

Y [n,m] =
N−1∑
n′=0

M−1∑
m′=0

X[n′,m′]Hn,m[n′,m′],

where Hn,m[n′,m′] is given in (A.4). By applying the change of variable t′ − τ − n′T → t′′ in the

inner integral and some simple algebraic calculations, we can write Hn,m[n′,m′] as in (A.5) and

(A.6), respectively. Finally, we obtain Hn,m[n′,m′] as in (A.7), by replacing the square bracket in

(A.6) with cross-ambiguity function in (2.1), which completes the proof.

Y (t, f) =

∫
t′
g∗rx(t′ − t)

[∫
τ

∫
ν
h(τ, ν)s(t′ − τ)ej2πν(t′−τ)dτdν

]
e−j2πf(t′−t)dt′ (A.1)

=

∫
t′
g∗rx(t′ − t)

[ ∫
τ

∫
ν
h(τ, ν)

{
N−1∑
n′=0

M−1∑
m′=0

X[n′,m′]gtx(t′ − τ − n′T )ej2πm
′∆f(t′−τ−n′T )

}

ej2πν(t′−τ)dτdν

]
e−j2πf(t′−t)dt′. (A.2)
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=
N−1∑
n′=0

M−1∑
m′=0

X[n′,m′]

[ ∫
τ

∫
ν
h(τ, ν)

{∫
t′
g∗rx(t′ − t)gtx(t′ − τ − n′T )ej2πm

′∆f(t′−τ−n′T )

ej2πν(t′−τ)e−j2πf(t′−t)dt′
}
dτdν

]
. (A.3)

Hn,m[n′,m′] =

∫
τ

∫
ν
h(τ, ν)

[ ∫
t′
g∗rx(t′ − nT )gtx(t′ − τ − n′T )ej2πm

′∆f(t′−τ−n′T )ej2πν(t′−τ)

e−j2πm∆f(t′−nT )dt′
]
dτdν (A.4)

=

∫
τ

∫
ν
h(τ, ν)

[ ∫
t′′
g∗rx(t′′ − (n− n′)T + τ)gtx(t′′)ej2πm

′∆ft′′ej2πν(t′′+n′T )

e−j2πm∆f(t′′+(n−n′)T+τ)dt′′
]
dτdν (A.5)

=

∫
τ

∫
ν
h(τ, ν)

[∫
t′′
g∗rx(t′′ − (n− n′)T + τ)gtx(t′′)e−j2π((m−m′)∆f−ν)(t′′−(n−n′)T+τ)dt′′

]
ej2π(ν+m′∆f)((n−n′)T−τ)ej2πνn

′Tdτdν (A.6)

=

∫
τ

∫
ν
h(τ, ν)Agrx,gtx((n−n′)T −τ, (m−m′)∆f −ν)ej2π(ν+m′∆f)((n−n′)T−τ)ej2πνn

′Tdτdν. (A.7)

y[k, l] =
1

NM

N−1∑
n=0

M−1∑
m=0

Hn,m[n,m]

[
N−1∑
k′=0

M−1∑
l′=0

x[k′, l′]ej2π
(
nk′
N
−ml

′
M

)]
e−j2π

(
nk
N
−ml
M

)
(A.8)

=
1

NM

N−1∑
k′=0

M−1∑
l′=0

x[k′, l′]

[
N−1∑
n=0

M−1∑
m=0

Hn,m[n,m]e−j2πnT
(
k−k′
NT

)
e
j2πm∆f

(
l−l′
M∆f

)]
(A.9)

=
1

NM

N−1∑
k′=0

M−1∑
l′=0

x[k′, l′]hw[k − k′, l − l′]. (A.10)

hw(ν, τ) =

N−1∑
n=0

M−1∑
m=0

[∫
τ ′

∫
ν′
h(τ ′, ν ′)ej2πν

′nT e−j2π(ν′+m∆f)τ ′dτ ′dν ′
]
e−j2πnTνej2πm∆fτ (A.11)

=

∫
τ ′

∫
ν′
h(τ ′, ν ′)

[
N−1∑
n=0

M−1∑
m=0

e−j2π(ν−ν′)nT ej2π(τ−τ ′)m∆f

]
e−j2πτ

′ν′dτ ′dν ′ (A.12)

=

∫
τ ′

∫
ν′
h(τ ′, ν ′)w(ν − ν ′, τ − τ ′)e−j2πτ ′ν′dτ ′dν ′. (A.13)
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y[k, l] =
1√
NM

N−1∑
n=0

M−1∑
m=0

[
M−1∑
m′=0

Hn,m[n,m′]X[n,m′] +
M−1∑
m′=0

Hn,m[n− 1,m′]X[n− 1,m′]

]

e−j2π
(
nk
N
−ml
M

)
.

(A.14)

yici[k, l] =
1

NM

N−1∑
n=0

M−1∑
m=0

M−1∑
m′=0

Hn,m[n,m′]

[
N−1∑
k′=0

M−1∑
l′=0

x[k′, l′]ej2π
(
nk′
N
−m
′l′
M

)]
e−j2π

(
nk
N
−ml
M

)

=
1

NM

N−1∑
k′=0

M−1∑
l′=0

x[k′, l′]

[
N−1∑
n=0

M−1∑
m=0

M−1∑
m′=0

Hn,m[n,m′]e−j2πn
(
k−k′
N

)
ej2π

(
ml−m′l′

M

)]

=
1

NM

N−1∑
k′=0

M−1∑
l′=0

x[k′, l′]hicik,l[k
′, l′]. (A.15)

hicik,l[k
′, l′] =

N−1∑
n=0

M−1∑
m=0

M−1∑
m′=0

[ ∫
τ

∫
ν
h(τ, ν)Agrx,gtx(−τ, (m−m′)∆f − ν)e−j2π(ν+m′∆f)τej2πνnT

dτdν

]
e−j2πn

(
k−k′
N

)
ej2π

(
ml−m′l′

M

)
(A.16)

=
1

M

N−1∑
n=0

M−1∑
m=0

M−1∑
m′=0

 P∑
i=1

hi

M−1−lτi∑
p=0

e−j2π((m−m′)∆f−νi)(p(T/M)+τi)e−j2π(νi+m
′∆f)τiej2πνinT


e−j2πn

(
k−k′
N

)
ej2π

(
ml−m′l′

M

)
(A.17)

=
P∑
i=1

hi

[
N−1∑
n=0

e−j2πn
(
k−k′−kνi−κνi

N

)] [
1

M

M−1−lτi∑
p=0

e
j2π p

M

(
kνi+κνi

N

)M−1∑
m=0

e−j2π(p+lτi−l)
m
M

M−1∑
m′=0

ej2π(p−l′)m
′

M

]
.

=
P∑
i=1

hiGici(νi)F ici(τi, νi). (A.18)

F ici(τi, νi) = M

M−1−lτi∑
p=0

e
j2π p

M

(
kνi+κνi

N

)
δ([p+ lτi − l]M )δ([p− l′]M ). (A.19)

yici[k, l]=
1

N

P∑
i=1

hi

M−1∑
l′=0

M−1−lτi∑
p=0

e
j2π p

M

(
kνi+κνi

N

)
δ([p+ lτi − l]M )δ([p− l′]M )

N−1∑
k′=0

Gici(νi)x[k′, l′]


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≈ 1

N

P∑
i=1

hi

[M−1−lτi∑
p=0

e
j2π p

M

(
kνi+κνi

N

)
δ([p+ lτi − l]M )

Ni∑
q=−Ni

(
ej2π(−q−κνi ) − 1

ej
2π
N

(−q−κνi ) − 1

)

x[[k − kνi + q]N , p]

]
. (A.20)

yici[k, l]≈


P∑
i=1

Ni∑
q=−Ni

hi

[
1

N
βi(q)

]
e
j2π

(
l−lτi
M

)(
kνi+κνi

N

)
x [[k − kνi + q]N , [l − lτi ]M ] l ≥ lτi ,

0 otherwise.

(A.21)

yisi[k, l] =
1

NM

N−1∑
n=0

M−1∑
m=0

M−1∑
m′=0

Hn,m[n− 1,m′]

[
N−1∑
k′=0

M−1∑
l′=0

x[k′, l′]ej2π
(

(n−1)k′
N

−m
′l′
M

)]
e−j2π

(
nk
N
−ml
M

)

=
1

NM

N−1∑
k′=0

M−1∑
l′=0

e−j2π
k′
N x[k′, l′]

[
N−1∑
n=0

M−1∑
m=0

M−1∑
m′=0

Hn,m[n− 1,m′]e−j2πn
(
k−k′
N

)
ej2π

(
ml−m′l′

M

)]

=
1

NM

N−1∑
k′=0

M−1∑
l′=0

e−j2π
k′
N x[k′, l′]hisik,l[k

′, l′]. (A.22)

hisik,l[k
′, l′] =

P∑
i=1

hi

[
N−1∑
n=1

e−j2πn
(
k−k′−kνi−κνi

N

)] [
1

M

M−1∑
p=M−lτi

e
j2π( p−MM )

(
kνi+κνi

N

)

M−1∑
m=0

e−j2π(p+lτi−l+M)m
M

M−1∑
m′=0

ej2π(p−l′)m
′

M

]

=
P∑
i=1

hiGisi(νi)F isi(τi, νi). (A.23)

yisi[k, l] =
1

N

P∑
i=1

hi

[
M−1∑
l′=0

M−1∑
p=M−lτi

e
j2π( p−MM )

(
kνi+κνi

N

)
δ([p+ lτi − l]M )δ([p− l′]M )·

N−1∑
k′=0

Gisi(νi)e−j2π
k′
N x[k′, l′]

]
(A.24)

=
1

N

P∑
i=1

hi

 M−1∑
p=M−lτi

e
j2π( p−MM )

(
kνi+κνi

N

)
δ([p+ lτi − l]M )

N−1∑
k′=0

Gisi(νi)e−j2π
k′
N x[k′, p]


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≈ 1

N

P∑
i=1

hi

[
M−1∑

p=M−lτi

e
j2π( p−MM )

(
kνi+κνi

N

)
δ([p+ lτi − l]M )


Ni∑

q=−Ni

(βi(q)− 1) e−j2π
[k−kνi+q]N

N x[[k − kνi + q]N , p]−
N−1∑
k′=0,

k′ 6=[k−kνi+q]N ,q∈[−Ni,Ni]

e−j2π
k′
N x[k′, p]


]

(A.25)

≈ 1

N

P∑
i=1

hi

[
M−1∑

p=M−lτi

e
j2π( p−MM )

(
kνi+κνi

N

)
δ([p+ lτi − l]M )

Ni∑
q=−Ni

(βi(q)− 1) e−j2π
[k−kνi+q]N

N

x[[k − kνi + q]N , p]

]
. (A.26)

yisi[k, l]≈



P∑
i=1

Ni∑
q=−Ni

hi

[
1

N
(βi(q)− 1)

]
e−j2π

[k−kνi+q]N
N e

j2π
(
l−lτi
M

)(
kνi+κνi

N

)

x [[k − kνi + q]N , [l − lτi ]M ] l < lτi ,

0 otherwise.

(A.27)

A.2 Proof of Proposition 2.2: OTFS Input–Output Relation in

Delay–Doppler Domain for Ideal Pulses

The received signal y[k, l] for the ideal pulses, from (2.11) and (2.13), can be written as

y[k, l] =
1√
NM

N−1∑
n=0

M−1∑
m=0

Hn,m[n,m]X[n,m]e−j2π
(
nk
N
−ml
M

)
.

By substituting the ISFFT equation from (2.2), y[k, l] can be expanded as in from (A.8) to (A.10).

Here, hw[k − k′, l − l′] can be seen as the value of hw(ν, τ) sampled at ν = k−k′
NT , τ = l−l′

M∆f . The

value of hw(ν, τ) can be obtained as from (A.11) to (A.13), by substituting Hn,m[n,m] from (2.10),

which completes the proof.
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A.3 Proof of Theorem 2.2: OTFS Input–Output Relation in Delay–

Doppler Domain for Rectangular Pulses

We start with expanding y[k, l] in (2.11) using the Y [n,m] for rectangular pulses in (2.21) as in

(A.14). We write y[k, l] as

y[k, l] = yici[k, l] + yisi[k, l],

where yici[k, l] and yisi[k, l] contains the first term and the second term of the summation in square

brackets of (A.14), respectively. We analyze these ICI and ISI terms as below.

Analysis of yici[k, l]: The value of yici[k, l] can be written as in (A.15) using the ISFFT of X[n,m]

given in (2.2). Now, hicik,l[k
′, l′] is expanded in (A.16) by using the Hn,m[n,m′] value in (2.10). This

can be further written as in (A.17) from the channel assumption in (2.5) and the cross-ambiguity

function in (2.22).

To write the expression in (A.17) to a simple form, let us separate the terms related to n,m,m′,

and p. The terms related to n are

ζn = e−j2πn
(
k−k′
N

)
ej2πνinT

= e−j2πn
(
k−k′−kνi−κνi

N

)
.

Here, we used the delay and Doppler taps defined in (2.6). Similarly, the terms related to m and

m′ are

ζm = e−j2πm∆f(p(T/M)+τi)ej2πl
m
M = e−j2π(p+lτi−l)

m
M .

ζm′ = ej2πm
′∆f(p(T/M)+τi)e−j2πm

′∆fτie−j2πl
′m′
M = ej2π(p−l′)m

′
M .

Finally, the terms related to p are

ζp = ej2πνi(p(T/M)+τi)e−j2πνiτi = e
j2π p

M

(
kνi+κνi

N

)
.

Therefore, from the above terms, the value of hicik,l[k
′, l′] can be written as in (A.18), where Gici(νi)
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and F ici(τi, νi) denote the terms in the first and second square brackets. The value of Gici(νi) is the

same as the one studied in (2.18) for ideal pulses case. Similar to the analysis of (2.17), F ici(τi, νi)

can be written as in (A.19). Hence, by substituting (A.18) and (A.19) in (A.16), yici[k, l] can be

approximated as in (A.20). From (A.20), we can easily see that it is non-zero only if the following

conditions satisfied

p = [l − lτi ]M and 0 ≤ p ≤M − 1− lτi .

These conditions are satisfied only if l ≥ lτi and p = l− lτi . Finally, with the conditions on l and p,

yici[k, l] can be obtained as in (A.21), where βi(q) is defined in (2.25).

Analysis of yisi[k, l]: Similar to yici[k, l] in (A.15), yisi[k, l] can be expanded as in (A.22). By

substituting the value of Hn,m[n−1,m′] from (2.10), cross-ambiguity function in (2.23), and similar

analysis of separating terms for hicik,l[k
′, l′], the value of hisik,l[k

′, l′] can be obtained as in (A.23). Here,

the summation n starts from 1 as the first symbol does not have previous symbol to experience ISI.

Therefore, the value of Gisi(νi) is equal to Gici(νi) − 1. Using the value of Gisi(νi), yisi[k, l] can be

approximated as in (A.25). Further, the expression in (A.25) can be approximated as in (A.26) by

neglecting the signals x[k′, p] for which k′ 6= [k − kνi + q]N , q ∈ [−Ni, Ni], as their coefficients are

very small (1/N) for practical values of N (e.g., N = 64, 128).

Now, (A.26) is non-zero only if the following conditions are satisfied

p = [l − lτi ]M and M − lτi ≤ p ≤M − 1.

These conditions are satisfied only if l < lτi and p = l − lτi +M . With these conditions, the value

of yisi[k, l] is written in (A.27).

Finally, by combining (A.21) and (A.27), the value of y[k, l] in (A.14) can be obtained as in

(2.24), which completes the proof.



Appendix B

Proofs for Chapter 3

B.1 Proof of Theorem 3.1

From (3.11), since (FN ⊗ IM ) is a unitary matrix, the effective channel matrix can be written as

Hrect
eff =

P∑
i=1

hi

[
(FN ⊗ IM )Πli(FH

N ⊗ IM )
]

︸ ︷︷ ︸
P(i)

·

[
(FN ⊗ IM )∆ki(FH

N ⊗ IM )
]

︸ ︷︷ ︸
Q(i)

=
P∑
i=1

hiP
(i)Q(i) (B.1)

(a) Evaluation of P(i) – Since Π is a permutation matrix, Πli is also a permutation matrix

with 1s in (p, [p − li]MN )th entries, for 0 ≤ p ≤ MN − 1, and zeros elsewhere. Further, Πli is a

circulant matrix which can also be seen as block-circulant with the form (3.13), in which An = Πli
n

for n = 0, . . . , N − 1. Therefore, application of Lemma 3.1 shows that P(i) has the block-diagonal

form (3.16), with N ×N diagonal blocks denoted by P
(i)
0 , . . . ,P

(i)
N−1 .

Since li < M , Πli
2 , · · · ,Πli

N−1 are all-zero matrices (0), and Πli
0 and Πli

1 has 1s in rows from

li to M − 1 and 0 to li − 1, respectively and all zeros in the remaining rows. Therefore, applying

(3.17) in Lemma 3.1, and considering that the vector a(u, v) has only one nonzero element (which
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equals to 1), we obtain

P(i)
n (u, v) =


1 if u ≥ li and v = u− li

e−j2π
n
N if u < li and v = [u− li]M

0 otherwise

(B.2)

for 0 ≤ n ≤ N − 1 and 0 ≤ u, v ≤ N − 1. Here, we obtain the values 1 and e−j2π
n
N by applying the

DFT to vectors a = [1, 0, · · · , 0]T and its cyclic shifts by n, respectively.

Finally, the (p, q)th entry of P(i) for 0 ≤ p, q ≤MN − 1 is

P(i)(p, q) =


1 if m ≥ li, q = [m− li]M + nM

e−j2π
n
N if m < li, q = [m− li]M + nM

0 otherwise

(B.3)

where, n =
⌊ p
M

⌋
andm = p−nM . The values in (B.3) are obtained from (B.2) with the substitutions

p = nM + u, q = nM + v and u = m.

(b) Evaluation of Q(i) – Observing that the diagonal matrix ∆ki can be viewed as a block-

diagonal matrix, and using (3.15), we can easily see that Q(i) is a block-circulant matrix of the

form (3.13).

Since the M ×M blocks ∆ki
0 , · · · ,∆ki

N−1 are diagonal, from (3.18) we have

Q(i)
n (u, v) = 0, for u 6= v, 0 ≤ n ≤ N − 1 (B.4)

and the diagonal entries of Q
(i)
0 , · · · ,Q(i)

N−1 are related to the elements of ∆(i) as

[
Q

(i)
0 (u, u), · · · ,Q(i)

N−1(u, u)
]T

=

(
1√
N

)
FN

[
∆ki

0 (u, u), · · · ,∆ki
N−1(u, u)

]T
=

(
1√
N

)
FN

[
zkiu, · · · , zki(M(N−1)+u)

]T
= zkiu[0, · · · , 1︸︷︷︸

(ki+1)th entry
, 0, · · · , 0]T (B.5)



B.1 Proof of Theorem 3.1 142

Therefore, we can write Q
(i)
n as

Q(i)
n (u, v) =


zkiu if n = ki and u = v

0 otherwise
(B.6)

for 0 ≤ n ≤ N − 1 and 0 ≤ u, v ≤ N − 1. Further, the (p, q)th entry of Q(i), for 0 ≤ p, q ≤MN − 1,

is equal to

Q(i)(p, q) =


zkim

′ if p = m′ +M [n′ + ki]N

0 otherwise
(B.7)

where, n′ =
⌊ q
M

⌋
and m′ = q − n′M .

Now, the (p, q)th entry of T(i) = P(i)Q(i), for 0 ≤ p, q ≤MN − 1, can be written as

T(i)(p, q) =

MN−1∑
e=0

P(i)(p, e)Q(i)(e, q) (B.8)

From (B.3), (B.7), and (B.8), we can see that T(i)(p, q) has nonzero value only for

[m− li]M + nM = m′ +M [n′ + ki]N , (B.9)

which implies m′ = [m − li]M and n′ = [n − ki]N , or q = [m − li]M + M [n − ki]N . Moreover, the

value at T(i)(p, q) depends on m and it is equal to e−j2πn/Nzki([m−li]M ) and zki([m−li]M ) for m < li

and m ≥ li, respectively.

Finally, from (B.1) and (3.20), we see that there exists only one nonzero element in each row

of T(i). Further, based on the assumption that in different paths at least one of the ki or li is also

different, exactly P nonzero elements exist in each row and column of Hrect
eff .
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Proofs for Chapter 5

C.1 Proof of Theorem 5.1

(If) – For M ≥ L, the entries of the vectors u(i,j), 0 ≤ i, j ≤M − 1, become

u(i,j) =


[hi−j , 0, · · · , 0] if 0 ≤ (i− j) ≤ (L− 1)

[0, hL+(i−j), · · · , 0] if − (L− 1) ≤ (i− j) < 0

[0, 0, · · · , 0] otherwise

Taking the FFT’s of the above we have

v(i,j) =



[hi−j , hi−j , · · · , hi−j ] if 0 ≤ (i− j) ≤ (L− 1)

hL+(i−j) · [e−j2π
0
N , e−j2π

1
N , · · · , e−j2πN−1

N ]

if − (L− 1) ≤ (i− j) < 0

[0, 0, · · · , 0] otherwise

(C.1)
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According to Lemma 5.1 and (C.1), we obtain

H̆n =



h0 0 · · · h1e
−j2π n

N

h1 h0 · · · h2e
−j2π n

N

...
. . . . . .

...

0 · · · h1 h0


(C.2)

Hence, from (5.8) and (C.2), we can conclude that OTFS input-output relation is equivalent to N

parallel CPSCs of length M over identical channels, except for an additional phase shift e−j2π
n
N .

Moreover, there are only P non-zero entries in each row and column of H̆n.

(Only if) – For M < L, we can easily see that u(i,j) has at least two non-zero entries for some

0 ≤ i, j ≤M − 1. For example, for M = 2, the value of H̆n becomes

H̆n =

v(0,0)(n) v(1,0)(n)e−j2π
n
N

v(1,0)(n) v(0,0)(n)


where, v(0,0) and v(1,0) are the FFT’s of u(0,0) = [h0, h2, · · · , 0] and u(1,0) = [h1, h3, · · · , 0], respec-

tively.

Therefore, due to FFT operation, the entries of H̆n differ in both amplitude and phase for each

n, and lower gain channels effect the overall system performance (similar to OFDM).



Appendix D

Proofs for Chapter 6

D.1 Proof of Lemma 6.1

The spectral norm of AH is defined as ‖AH‖2 = max‖x‖=1 ‖AHx‖ = λmax, where λmax is the largest

singular value of AH . Since FN = PAH and P−1 = PH , we have, AAH = FH
N (P−1)HP−1FN =

FH
NFN = R IN and λmax =

√
R. Let us consider the value of ‖g(`, i)‖ = ‖AHw(`, i)‖ = c`

√
R/K`.

Therefore, according to the spectral norm definition, c`
√
R/K` ≤

√
Nλmax =

√
NR. Hence we

obtain c` ≤
√
NK`.

D.2 Proof of Proposition 6.1

Let f(`, i) = AHw(`, i) represent the gain pattern of the ith beamforming vector at the `th level for

1 ≤ i ≤ K`. The vector f(`, p), for 2 ≤ p ≤ K`, is simply the right circular shifted version of f(`, 1)

with a shift of R(p−1)
K` . That is, for 2 ≤ p ≤ K`,

fn(`, 1)=


f
n+

R(p−1)

K`
(`, p) if 1 ≤ n ≤ R− R(p−1)

K`

f
n+

R(p−1)

K` −R(`, p) if R−R(p−1)
K` +1 ≤ n ≤ R

(D.1)

where fn(`, i), for 1 ≤ n ≤ R, denotes the nth element in the vector f(`, i).

For 1 ≤ n ≤ R− R(j−1)
K` , 2 ≤ p ≤ K`, we have
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f
n+

R(p−1)

K`
(`, p) =

N−1∑
r=0

e−jrπ(−1+ 2n
R )e−jr2π

(
p−1

K`

)
ws(`, p). (D.2)

Similarly, for R− R(p−1)
K` + 1 ≤ n ≤ R, 2 ≤ p ≤ K`, we have

f
n+

R(p−1)

K` −R(`, p) =

N−1∑
r=0

e−jrπ(−1+ 2n
R

)ejr2πe
−jr2π

(
p−1

K`

)
ws(`, p).

Finally, we obtain fn(`, 1) =
∑N−1

r=0 e−jrπ(−1+ 2n
R

)ws(`, 1). Therefore, the condition in (D.1) is

satisfied for

ws(`, p) = ws(`, 1)e
jr2π

(
p−1

K`

)
. (D.3)

Assuming w(`, 1) ∈ Sq(N), then the beamforming vector w(`, p) found from the above equation

will be in Sq(N) if the phase shift r
(p−1
K`

)
falls in the allowed q uniformly spaced angles in [0, 2π).

This condition is satisfied if K` divides q as r and p are integers.
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