Extreme Rainfall in Paraguay during the
2015-16 Austral Summer

Causes and S2S Predictive Skill

James Doss-Gollin  Angel G. Munoz  Simon J. Mason  Max Pastén
10 September 2017

Columbia University (JDG)



This is a case study presented to an audience with very diverse
backgrounds.

- Please stop me if | use jargon you don’t understand!
- My goal is that through this case study, you can learn something
about:

1. this particular event
2. extreme river floods in general
3. quantitative tools for dealing with uncertain climate forecasts

I'll be delighted to follow up more detailed questions - look for
contact info on last slide!



Figure 1: =~ 170 000 displaced in Paraguay, also Uruguay, Argentina, Brasil [1].
Images: BBC & Affiliates



Study Area
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Figure 2: The study area. (L): all of South America. (R): The Paraguay River
and its tributaries, from the Natural Earth database
www.naturalearthdata.com
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Figure 3: River stage (height; in m) for the Paraguay River at four gauges
along the Paraguay River. (a) Seasonality (black) and time series of 2015-16
observations (orange) at each stream gauge. The seasonality was fit using
local polynomial regression as implemented in the Tocfit package in the R
statistical programming environment [4]. (b) Time series of daily stage
measurements from 1929 to 2016.



- Reanalysis data: NCEP-NCAR | [3]

- Rainfall: CPC Unified [9]

- Streamflow: Paraguay Navy

- Sub-seasonal forecasts: ECMWF [8]



Observed Anomalies

February 2016
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Figure 4: Monthly circulation anomalies during NDJF 2015-16. Top: 200 hPa
wind (m/s) anomaly. Middle: 850 hPa GPH (m) and wind (m/s) anomaly.
Bottom: rainfall anomalies in mmd~". For reference:

8mmd~"' x30d~ 9.4in.



Weather Typing

Clustering daily weather patterns sacrifices inter-cluster variation
but allows examination of sequences. See Mufoz et al. [7] for
discussion. Basic procedure:

Dimension Reduction Project Zgso (over red box) onto leading
principal components

Cluster Cluster using k-means with random starting points;
repeat many times.
Optimize For each set of clusters, compute classifiability index
[6]; basically a stability criterion. Select best
assignment.

Assign Assign each day of record to a weather type.



Study Area Again
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Weather Types
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Figure 5: Circulation anomalies associated with each weather type. Top:
200 hPa wind (m/s) anomaly. Middle: 850 hPa GPH (m) and wind (m/s)
anomaly. Bottom: rainfall anomalies in mmd~".
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Figure 6: Time series of area-averaged rainfall and weather type for each
day of NDJF 2015-16. Dashed lines indicate the climatological 50th, 90th, and
99th percentiles of NDJF area-averaged rain.



Study Area Again

We're going to be concerned with daily rainfall averaged over black
box:
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What did the S2S Model Forecast?

Daily Rainfall [mm/d]
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Figure 7: Forecast time series from the ECMWF S2S model are shown for
several lead times of each individual ensemble member (gray), the
ensemble mean (black, dashed), and smoothed observed (blue) rainfall.



Can We Improve? MOS or Statistical-Dynamical Modeling

Idea: models capture large-scale circulation patterns better than
local/regional rainfall [i.e. 2].

el (YOY1,X0,X1) Final predictor(s) selected

Raw (-39,-17-66,-49) Ensgmplelmelan, computed u§|ng members from the
two initializations. No correction performed.

XLR (39-17-66,-49) Ense.m_b-le.megn, computed using members from the
two initializations
Linear combination of model’'s EOFs, computed using

PCR = -80,- T . .

¢ CE00E020) both initializations as independent predictors (10 EOFs).

Canonical modes computed using both initializations as

CCA (-60,0,-80,-30) independent predictors. (10 predictor EOFs, &4

predictand EOFs, 4 canonical modes)




Preliminary Model Results
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Figure 8: Preliminary results computed using IRI CPT [5]. Each column is a
different model. Top: probability of 90th percentile exceedance, divided by
climatology (10%). Observed 90th percentile exceedances are shaded.

Bottom: 2AFC skill score.
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Flood Drivers

- Repeated sequences of intense rainfall over relatively flat region

- Low-frequency variability?

- Low-level (850 hPa) injection of moisture and energy precede
intense rainfall (Weather Type 1)

- Related to ENSO and MJO (not shown but | can!)

- Jet (850 hPa wind) exit region aligns with rainfall anomaly

- Remaining question: why didn’t the jet penetrate further South
(as typical for EL Nifio conditions)?



Statistical-Dynamical Models

- Goal: maximizing signal from numerical models for
decision-making

- Raw model excels at weather timescales; skill decreases with
lead time

- Models with spatial component promising but application is
nontrivial

- Novel: using model rainfall (not GPH or wind) is a promising
predictor

- Work presented is ongoing!
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Thanks!

james.doss-gollinacolumbia.edu
Twitter:aJamesDossGollin


james.doss-gollin@columbia.edu
Twitter: @JamesDossGollin

Climatology
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Figure 9: Climatology



Lagged Rainfall Plot

Figure 10: Lagged composite for 99th percentile exceedances of rainfall
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Figure 11: Mean anomalies during strong El Nino years.
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MJO Phase 3 " MJO Phase 4

Figure 12: Mean anomalies during strong (amplitude > 1) MJO events
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MJO NDJF 2015-16
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Figure 13: Time series of MJO during NDJF 2015-16. Numbers indicate days
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Full Fields NDJF 201

February 2016
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Figure 14: Full (not anomaly) fields observed during NDJF 2015-16.
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