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Setup

This is a case study presented to an audience with very diverse
backgrounds.

• Please stop me if I use jargon you don’t understand!
• My goal is that through this case study, you can learn something
about:
1. this particular event
2. extreme river floods in general
3. quantitative tools for dealing with uncertain climate forecasts

I’ll be delighted to follow up more detailed questions – look for
contact info on last slide!
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NDJF 2015-16

Figure 1: ≈ 170 000 displaced in Paraguay, also Uruguay, Argentina, Brasil [1].
Images: BBC & Affiliates
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Study Area
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Figure 2: The study area. (L): all of South America. (R): The Paraguay River
and its tributaries, from the Natural Earth database
www.naturalearthdata.com
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Figure 3: River stage (height; in m) for the Paraguay River at four gauges
along the Paraguay River. (a) Seasonality (black) and time series of 2015-16
observations (orange) at each stream gauge. The seasonality was fit using
local polynomial regression as implemented in the locfit package in the R
statistical programming environment [4]. (b) Time series of daily stage
measurements from 1929 to 2016.
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Data Sources

• Reanalysis data: NCEP-NCAR I [3]
• Rainfall: CPC Unified [9]
• Streamflow: Paraguay Navy
• Sub-seasonal forecasts: ECMWF [8]
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Observed Anomalies
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Figure 4: Monthly circulation anomalies during NDJF 2015-16. Top: 200 hPa
wind (m/s) anomaly. Middle: 850 hPa GPH (m) and wind (m/s) anomaly.
Bottom: rainfall anomalies in mmd−1. For reference:
8mmd−1 × 30 d ≈ 9.4 in.
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Weather Typing

Clustering daily weather patterns sacrifices inter-cluster variation
but allows examination of sequences. See Muñoz et al. [7] for
discussion. Basic procedure:

Dimension Reduction Project Z850 (over red box) onto leading
principal components

Cluster Cluster using k-means with random starting points;
repeat many times.

Optimize For each set of clusters, compute classifiability index
[6]; basically a stability criterion. Select best
assignment.

Assign Assign each day of record to a weather type.
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Study Area Again
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Weather Types

Weather Type 1: 22.4% of days Weather Type 2: 20.7% of days Weather Type 3: 18.6% of days Weather Type 4: 15.3% of days Weather Type 5: 13.4% of days Weather Type 6: 9.6% of days
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Figure 5: Circulation anomalies associated with each weather type. Top:
200 hPa wind (m/s) anomaly. Middle: 850 hPa GPH (m) and wind (m/s)
anomaly. Bottom: rainfall anomalies in mmd−1.
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Weather Types: NDJF 2015-16
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Figure 6: Time series of area-averaged rainfall and weather type for each
day of NDJF 2015-16. Dashed lines indicate the climatological 50th, 90th, and
99th percentiles of NDJF area-averaged rain.
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Study Area Again

We’re going to be concerned with daily rainfall averaged over black
box:
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What did the S2S Model Forecast?
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Figure 7: Forecast time series from the ECMWF S2S model are shown for
several lead times of each individual ensemble member (gray), the
ensemble mean (black, dashed), and smoothed observed (blue) rainfall.
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Can We Improve? MOS or Statistical-Dynamical Modeling

Idea: models capture large-scale circulation patterns better than
local/regional rainfall [i.e. 2].

Model (Y0,Y1,X0,X1) Final predictor(s) selected

Raw (-39,-17,-66,-49) Ensemble mean, computed using members from the
two initializations. No correction performed.

XLR (-39-17,-66,-49) Ensemble mean, computed using members from the
two initializations

PCR (-60,0,-80,-30) Linear combination of model’s EOFs, computed using
both initializations as independent predictors (10 EOFs).

CCA (-60,0,-80,-30)
Canonical modes computed using both initializations as
independent predictors. (10 predictor EOFs, 4
predictand EOFs, 4 canonical modes)
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Preliminary Model Results

Raw XLR PCR CCA
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Figure 8: Preliminary results computed using IRI CPT [5]. Each column is a
different model. Top: probability of 90th percentile exceedance, divided by
climatology (10%). Observed 90th percentile exceedances are shaded.
Bottom: 2AFC skill score.
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Flood Drivers

• Repeated sequences of intense rainfall over relatively flat region
• Low-frequency variability?
• Low-level (850 hPa) injection of moisture and energy precede
intense rainfall (Weather Type 1)

• Related to ENSO and MJO (not shown but I can!)
• Jet (850 hPa wind) exit region aligns with rainfall anomaly
• Remaining question: why didn’t the jet penetrate further South
(as typical for El Niño conditions)?
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Statistical-Dynamical Models

• Goal: maximizing signal from numerical models for
decision-making

• Raw model excels at weather timescales; skill decreases with
lead time

• Models with spatial component promising but application is
nontrivial

• Novel: using model rainfall (not GPH or wind) is a promising
predictor

• Work presented is ongoing!
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Thanks!

james.doss-gollin@columbia.edu
Twitter:@JamesDossGollin
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Climatology
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Figure 9: Climatology



Lagged Rainfall Plot
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Figure 10: Lagged composite for 99th percentile exceedances of rainfall



ENSO
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Figure 11: Mean anomalies during strong El Niño years.



MJO
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Figure 12: Mean anomalies during strong (amplitude > 1) MJO events



MJO NDJF 2015-16
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Figure 13: Time series of MJO during NDJF 2015-16. Numbers indicate days
beginning on 01 November 2015.



Full Fields NDJF 2015-16
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Figure 14: Full (not anomaly) fields observed during NDJF 2015-16.
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