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S2 Text. Estimating observation rates and unobserved outbreaks 
 
Likelihood function. 
 
We fit a function linking the simulated distribution of outbreak sizes to the reported number of 
outbreaks of each size (Table S2), corresponding to a size-dependent probability of observation. 
This function was modelled in two ways: 1) the geometric cumulative distribution function of 
outbreak size i (Pr(𝑖) = 1 − (1 − 𝑝)*), a model that assumes all individuals have equal and 
independent probabilities of being detected; and 2) as a generalized logistic function of outbreak 
size i (Pr(𝑖) = (1 + 𝑒(-.*))./). The generalized logistic linking function can be thought of as a 
geometric function where the value of p can change flexibly with i; i.e., the chance of detecting 
any one case in a cluster of size i is 1 − 01 − (1 + 𝑒-.*)./1  . The likelihood for either linking 
function was: 
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Where θ is either p or {α, β}, Ni  and Ti are the observed and expected numbers of outbreaks of 
size i, respectively (with T58+  as the number of all outbreaks larger than the cutoff), Ta is the total 
number of observed and unobserved outbreaks, and fi is the density of outbreaks of size i from 
104 outbreak simulations (with densities of zero set to the minimum nonzero density). The two 

components of the likelihood function represent 1) 𝑇7! ∗ ∏
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outbreaks of size i being drawn from Ta outbreaks given the outbreak size distribution generated 
in simulation and 2) ∏ M<1I1N
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of size i given Ti true outbreaks of size i and some probability of observing an outbreak of size i 
(Pr(i)). 
 
Likelihood estimation by coordinate descent. 
 
Because T={T1,T2…T57,T58+} is unobserved, we maximized this likelihood following a block 
coordinate descent method that iteratively optimizes T and θ. This method is similar to the 
expectation maximization (EM) meta-algorithm, which is commonly used to fit models with 
latent variables; however, due to computational constraints we optimize T at each iteration based 
on steepest descent and perturbation of local (negative log) likelihood minima rather than 
considering the expectation of all possible combinations of 58 latent variables. At each of 1000 
iterations (or until a tolerance in the difference in likelihood was reached), we maximized the 
likelihood as follows: 

1. Setting a starting estimate for the true number of outbreaks (Ta) as round(𝑇BDE 𝑓BDEO ); 
2. Setting a starting estimate for T as the medians of the binomial distributions of size Ta 

and probabilities f; 
3. Setting minimum values of each value of Ti as the observed number of outbreaks of size i 

and a minimum value of Ta as the observed number of all outbreaks; 
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4. T selection (expectation step analogue). Finding an estimate of T (𝑇P) that maximizes the 
likelihood given a fixed estimate of θ: 

a. Calculating the changes to the likelihood function of all single-outbreak increases 
or decreases in any member of 𝑇P  that satisfy the minima set in step 3; 

b. For each possible single-outbreak increase or decrease in 𝑇P , performing the 
increment or decrement that most maximizes the likelihood, then updating 𝑇P7 
accordingly; 

c. Repeating steps a and b until a local likelihood maximum is reached; 
d. To prevent returning local maxima, perturbing 𝑇P  2000 times at each of 10 

perturbation strengths. 
e. Updating 𝑇P  and returning to step a if the likelihood of any perturbed 𝑇P  is higher 

than the current maximum likelihood estimate. 
5. θ selection (maximization step). Maximizing the likelihood over θ given 𝑇P, using the 

Nelder-Mead algorithm for the logistic observation function or Brent optimization for the 
geometric observation function. 

6. Returning to step 4 and iterating until no changes improve the (negative log) likelihood 
more than the tolerance threshold of 10-10 or 1000 iterations have occurred. 

Finally, to test the globality of our maximum likelihood estimates, we performed additional 
perturbations for a random subset of 150 the final 1500 estimates. We perturbed these estimates 
of 𝑇P for an additional 4000 perturbations at each of 500 strengths. None of these perturbations 
resulted in higher likelihood estimates. We calculated AICc values for all final likelihood 
estimates and compared them across observation models; models with the geometric observation 
function consistently resulted in lower AICc values. 
 
Goodness of fit. 
 
To confirm the goodness of fit of the final models, we simulated the outbreak observation 
process 104 times. For each of these simulations, we: 

1) Sampled a distribution of outbreak sizes from simulation, based on the full outbreak 
dataset parameters, 

2) Sampled an outbreak size (i) with weights from the simulated distribution, 
3) Randomly assigned each outbreak to be reported or unreported, according to the 

corresponding estimate of Pr(i) from the fit (logistic) observation model, and 
4) Repeated steps 2 and 3 until a total of 13 outbreaks were observed. 

Fig S2 shows the results of these simulations.  
 


