Punjab University Journal of Mathematics Vol. xxx (1997) pp.109 - 123

# A REPRESENTATION OF THE PROLONGATIONS OF A G-STRUCTURE

Ebrahim Esrafilian, Mehdi Nadjafikhah
Department of Mathematics, Iran University of Science and Technology,
Narmak, 16-Tehran, Iran.
[September 2, 1995]

ABSTRACT: In this paper, we describe the general group of order

two  $GP_n^2$  . We prove an arbitrary prolongation of a Lie subgroup of

 $GL(n,\Re)$  is a direct sum of additive Lie group of the form  $\Re^n$  and a Lie sub-group of  $GL(n,\Re)$ . Then we show that an arbitrary prologation of a Lie subalgebra of  $Mat(n\times n)$  is a direct sum of an additive Lie subalgebra of the form  $\Re^n$  and a Lie subalgebra of  $Mat(n\times n)$ . In conclusion structure group of every k'th order Geometric structure on a given n dimmential manifold is isomorphic to an additive standard

group  $\Re^n$ , with  $0 \le \tilde{n} \le k \times \frac{n^2(3n-1)}{2}$ , and a Lie subgroup of  $GL(n,\Re)$ .

**Key Words:** G-structure, Matrix Lie group, Prolongation, Vector bundle. 1991 MSC: 53 C 15.

# 1. INTRODUCTION

In this paper, all manifolds are finite dimentional paracompact and, all mappings and functions are smooth.

Let M and M' be two manifolds and  $\phi: M \rightarrow M'$  be an immersion, and also assume that  $m \in Dom(\phi)$ ,  $\phi(m) = m'$ , (x, U) is a chart contains m, and

((x',U')) is a chart around of m'. The k'th order jet  $j_m^k \phi$  of  $\phi$  at m is denoted by the following coordinates:

where  $i, i_1, i_2, ..., i_k$  vary in the set  $\{1, 2, ..., dimM'\}$ . The  $x_{i_1, ..., i_k}^j$  will not change by any permutations in the lower indices.

Let G be a Lie subgroup of  $GL(n,\Re)$  (the general linear group) and G a Lie subalgebra of  $Mat(n \times n)$  (Lie algebra of  $n \times n$  square matrices with real entries). We denote the k'th prolongation of G and G, by  $G^{(k)}$  and  $G^{(k)}$  respectively.

The group of all invertible k-jets with source and target in 0 (the zero of  $\mathfrak{R}^n$ ), is denoted by  $GP_n^k$  This is a Lie group which is proved that  $GP_n^k \cong [GL(n,\mathfrak{R})]^k$ 

By Reinhart's notation, an element of  $GP_n^k$  can be represented by an n-tuple  $(f_1, f_2, ..., f_n)$ , where  $f_i$ , for i = 1, 2, ..., n, is a polynomial of variables of the form

$$f_i(0) = 0$$
, det  $\left[\frac{\partial f_i}{\partial x_j}\right] \neq 0$ 

In this notation, the operation in  $GP_n^k$  is

$$(f_1,...,f_n) \bigstar (g_1,...,g_n) = (f_1(g_1,...,g_n),...,f_n(g_1,...,g_n)).$$

# 2. STRUCTURE OF $GP_n^2$

# Proposition 1

Let n be a natural number. Then there exist Lie group isomorphism

$$GP_n^2 \cong \Re^{\frac{n^2(3n-1)}{2}} \bigoplus GL(n,\Re),$$

where 
$$\Re \frac{n^2(3n-1)}{2}$$
 is standard additive Lie group of  $\Re \frac{n^2(3n-1)}{2}$ 

## **Proof**

Let 
$$M: = \left\{ j_0^2 \phi \in GP_n^2 \mid j_0^1 \phi = [\delta_{ij}] \right\},$$
  
 $N: = \left\{ j_0^2 \phi \in GP_n^2 \mid j_0^2 \phi = j_0^1 \phi \right\}.$ 

We prove this proposition in steps (a) to (g).

a) M is Lie subgroup of  $GP_n^2$ .

For, let  $j_0^2 \phi$  and  $j_0^2 \psi$  are in M. Then  $(j_0^2 \phi)^* (j_0^2 \psi) = j_0^2 (\phi \circ \psi)$  and we have

$$j_0^{1}(\phi \circ \psi) = (j_0^{1}\phi)*(j_0^{1}\psi) = [S_{ij}]$$

Moreover, since  $(j_0^2 \phi)^{-1} = j_0^2 (\phi^{-1})$  we obtain

$$j_0^{-1}(\phi^{-1}) = (j_0^{-1}\phi)^{-1} = [S_{ii}]$$

Therefore M is a subgroup of  $GP_n^2$ , and furthermore with charts

$$M \ni j_0^2 \phi - \left(\frac{\partial^2 \phi^j}{\partial x_{i_1} \partial x_{x_2}}\right) \in \Re^{\frac{n^2(3n-1)}{2}},$$

is a Lie subgroup of  $GP_n^2$ .

b) M is a normal subgroup in  $GP_n^2$ 

For, let  $j_0^2 \phi$  belongs to M and  $j_0^2 \psi$  be a member of  $GP_n^2$ , then

$$(j_0^2 \psi^{-1}) \star (j_0^2 \phi) \star (j_0^2 \psi) = j_0^2 (\psi^{-1} \circ \phi \circ \psi).$$

On the other hand,

$$j_0^{1}(\psi^{-1}\phi\psi) = (j_0^{1}\psi)^{-1}) \star (j_0^{1}\phi) \star (j_0^{1}\psi) 
= (j_0^{1}\psi^{-1}) \star [\delta_{ij}] \star (j_0^{1}\psi) 
= [\delta_{ii}]$$

therefore  $(j_0^2\psi)^{-1}\star(j_0^2\phi)\star(j_0^2\psi)$  belongs to M.

c) M is isomorphic with the additive Lie group  $\Re^{\frac{n^2(3n-1)}{2}}$ 

For, we define the function  $\eta: M \to \Re^{\frac{n^2(3n-1)}{2}}$  as follow:

$$M\ni \left(\delta_{ij}, \frac{\partial^2 \Phi^j}{\partial x_{i_1} \partial x_{i_2}} \mid 0\right) \rightarrow \left(\frac{\partial^2 \Phi^j}{\partial x_{i_1} \partial x_{i_2}} \mid 0\right) \in \Re^{\frac{n^2(3n-1)}{2}}$$

The smoothness of function is easily proved. Then it is just enough to prove that it is a "group isomorphism".

For this, suppose that

$$(...,x_k+a_{i_1i_2}^kx_{i_1}x_{i_2},...),(...,x_1+b_{j_1j_2}^lx_{j_1}x_{j_2},...),$$

two elements of M. Then

$$\eta \left( \left( ..., x_{k} + a_{i_{1}i_{2}}^{k} x_{i_{1}} x_{i_{2}}, ... \right) \star \left( ..., x_{1} + b_{j_{1}j_{2}}^{l} x_{j_{1}} x_{j_{2}}, ... \right) \right),$$

$$= \eta \left( ..., \left( x_{k} + b_{j_{1}j_{2}}^{l} x_{j_{1}} x_{j_{2}}^{k} x_{j_{2}} \right) + a_{i_{1}i_{2}}^{k} \left( x_{i_{1}} + b_{j_{1}i_{2}j_{2}}^{i_{1}} x_{j_{1}i_{1}} x_{j_{2}i_{1}} \right) \right)$$

$$\times \left( x_{i_{2}} + b_{j_{1}i_{2}j_{2}}^{i_{2}} x_{j_{1}i_{2}} x_{j_{2}i_{2}} \right), ....$$

$$= \eta \left( ..., x_{k} + b_{j_{1}i_{1}j_{2}}^{k} + a_{i_{1}i_{2}}^{k} x_{i_{1}} x_{i_{2}}, ... \right)$$

$$= \eta \left( ..., x_{k} + \left( a_{i_{1}i_{2}}^{k} + b_{i_{1}i_{2}}^{k} \right) x_{i_{1}} x_{i_{2}}, ... \right)$$

$$= \left( ..., a_{i_{1}i_{2}}^{k} + b_{i_{1}i_{2}}^{k}, ... \right)$$

$$= \eta \left( ..., x_{k} + a_{i_{1}i_{2}}^{k} x_{i_{1}} x_{i_{2}}, ... \right) + \eta \left( ..., x_{k} + b_{i_{1}i_{2}}^{k} x_{i_{1}} x_{i_{2}}, ... \right)$$

d) N is a normal Lie subgroup of  $GP_n^2$ 

For, let  $j_0^2 \phi$  and  $j_0^2 \psi$  are in N. Then  $(j_0^2 \phi) \star (j_0^2 \psi) = j_0^2 (\phi \circ \psi)$  and

$$j_0^2(\phi \circ \psi) = (j_0^2 \phi) \star (j_0^2 \psi)$$
$$= (j_0^1 \phi) \star (j_0^1 \psi)$$
$$= j_0^1(\phi \circ \psi)$$

also  $(j_0^2\phi)^{-1} = j_0^2(\phi^{-1})$ , and

$$j_0^2(\phi^{-1}) = (j_0^2\phi)^{-1} = (j_0^1\phi)^{-1} = j_0^1(\phi^{-1})$$

therefore N is a subgroup of  $GP_n^2$ 

Let  $j_0^2 \phi$  belongs to N and  $j_0^2 \phi$  belongs to  $GP_n^2$ . Then

$$(j_0^2 \psi)^{-1} \star (j_0^2 \phi) \star (j_0^2 \psi) = j_0^2 (\psi^{-1} \circ \phi \circ \psi).$$

Since  $j_0^1 \phi = j_0^2 \phi$ , then  $(j_0^1 \phi) \star (j_0^2 \psi) = (j_0^2 \phi) \star (j_0^2 \psi)$ ; but  $(j_0^1 \phi) \star (j_0^2 \psi) = (j_0^1 \phi) \star (j_0^1 \psi)$ , therefore  $(j_0^1 \phi) \star (j_0^1 \psi) = (j_0^2 \phi) \star (j_0^2 \psi)$ . Hence we have

$$(j_0^{1}\phi) \star (j_0^{1}\psi) = (j_0^{2}\psi) \star [(j_0^{2}\psi^{-1}) \star (j_0^{2}\phi) \star (j_0^{2}\psi)]$$
$$= (j_0^{1}\psi) \star [(j_0^{2}\psi^{-1}) \star (j_0^{2}\phi) \star (j_0^{2}\psi)].$$

Hence  $j_0^1(\psi^{-1} o \phi o \psi) = j_0^2(\psi^{-1} o \phi o \psi)$ , and N is normal in  $GP_n^2$ . On the other hand the function

$$\eta: N \ni j_0^2 \phi \rightarrow j_0^1 \phi \in GL(n,\Re) \subseteq \Re^{n^2}$$

induced a Lie subgroup structure on N.

e) N is isomorphic with  $GL(n,\Re)$ .

For, Let  $\eta$  be a function which is defined in (d) step. We

have 
$$\eta((..., a_i^k x_i, ...)) + (..., b_i^k x_i, ...) = \eta(..., \sum_j a_j^k b_i^j x_i, ...)$$

$$= \left[ \sum_j a_j^k b_i^j \right]$$

$$= \left[ a_j^k \right] \left[ b_j^k \right]$$

$$= \eta(..., a_i^k x_i, ...) \eta(..., b_i^k x_i, ...)$$

therefore  $\eta$  is a Lie group isomorphism from N onto  $GL(n,\Re)$ .

- f)  $M \cap N = \{j_0^2 \ id\}$ , where id is identity function on  $\mathfrak{R}^n$ . For, let  $j_0^2 \phi \in M \cup N$ . Then  $j_0^2 \phi \in M$  and  $j_0^1 \phi = j_0^1 \ id$ . On the other hand  $j_0^2 \phi \in N$  and  $j_0^2 \phi = j_0^1 \phi$ . Therefore  $j_0^2 \phi = j_0^2 id$ .
- g)  $GP_n^2$  as a Lie group, is isomorphic to  $M \oplus N$ .

For, let 
$$j_0^2 \phi = (..., a_i^k x_i + a_{i_1 i_2}^2 x_{i_1} x_{i_2},...)$$
 belongs to  $GP_n^2, \quad j_0^2 \zeta = (..., A_i^k x_i, ...)$  belongs to  $N$  and  $j_0^2 \psi = (..., x_k + A_{i_1 i_2}^k x_{i_1} x_{i_2}, ...)$  belongs to  $M$  such that

$$j_0^2 \Phi = \left( j_0^2 \Psi \right) * \left( j_0^2 \zeta \right),$$

then we have

$$A_i^k = a_i^k, \sum_{i_1,i_2} A_{i_1i_2}^k A_j^{i_1} A_l^{i_2} = a_{jl}^k,$$

thus, for all k, l and j

$$\sum_{i_1,i_2} A_{i_1i_2}^k a_j^{i_1} a_l^{i_2} = a_{jl}^k.$$

Let *l* be fixed, then

$$\left[\sum_{i_1} A_{i_1 i_2}^k a_j^{i_1}\right] \left[a_l^{i_2}\right] = \left[a_{jl}^k\right],$$

and

$$\sum_{i_1} A_{i_1,i_2}^k a_l^{i_1} = \sum_s a_{js}^k (a^{-1})_s^{i_2},$$

now if  $i_2$  is fixed, then

$$[A_{i_1 i_2}^k] [a_j^{i_1}] = [\sum_s a_{js}^k (a^{-1})_s^{i_2}],$$

therefore

$$A_{i_1i_2}^k = \sum_t \sum_s a_{ts}^k (a^{-1})_s^{i_2} (a^{-1})_t^{i_1}.$$

Where  $\left[a_{i}^{i}\right]^{-1} = \left[\left(a^{-1}\right)_{i}^{i}\right]$ . Hence  $GP_{n}^{2}$ , as an abstract group, is a direct sum of M and N.

Finally by corollary at page 96 of [3], we access which we required.  $\Box$ 

# Corollary 1

Let G be a Lie subgroup of  $GL(n,\Re)$ . Then there exists a Lie subgroup

 $\tilde{G}$  of  $GL(n,\Re)$  and an integer  $\tilde{n}$  such that  $0 \le \tilde{n} \le \frac{n^2(3n-1)}{2}$ , and the

Lie group  $G^{(1)} \cong \Re^{\tilde{n}} \oplus \tilde{G}$ , where  $\Re^{\tilde{n}}$  is the standard additive Lie group of  $\tilde{\Re}^{\tilde{n}}$ 

# 3. STRUCTURE OF $GP_n^{k}$

## Lemma 1

Let G and H be two Lie subalgebras of  $Mat(n \times n)$ , then

$$(H \oplus G)^{(1)} \cong H^{(1)} \oplus G^{(1)}$$

## **Proof**

We note that (refer to [1])

$$G^{(1)} \cong Hom(\Re^n, G) \cap (\Re^n \otimes S^2(\Re^{n^*}))$$
 (1)

therefore

$$(G \oplus H)^{(1)} \cong Hom(\mathfrak{R}^{n}, G \oplus H) \cap (\mathfrak{R}^{n} \otimes S^{2}(\mathfrak{R}^{n^{*}}))$$

$$\cong (Hom(\mathfrak{R}^{n}, G) \oplus Hom(\mathfrak{R}^{n}, H))$$

$$\cap [(\mathfrak{R}^{n} \otimes S^{2}(\mathfrak{R}^{n^{*}})) \oplus (\mathfrak{R}^{n} \otimes S^{2}(\mathfrak{R}^{n^{*}}))]$$

$$= [Hom(\mathfrak{R}^{n}, G) \cap (\mathfrak{R}^{n} \otimes S^{2}(\mathfrak{R}^{n^{*}}))]$$

$$\oplus [Hom(\mathfrak{R}^{n}, H) \cap (\mathfrak{R}^{n} \otimes S^{2}(\mathfrak{R}^{n^{*}}))]$$

$$= G^{(1)} \otimes H^{(1)}. \square$$

## Example 1

We have proved that  $< \mathfrak{R}^n, +>^{(1)} \cong < \mathfrak{R}^n, +>$ .

- a) It is proved that  $L(\langle \mathfrak{R}^n, + \rangle) \cong (\mathfrak{R}^n, +)$ .
- b) As a Lie algebra  $< \Re^n, +>$  is isomorphic to  $\Delta Mat(n \times n)$ , where  $\Delta Mat(n \times n)$  is the Lie subgroup of all  $n \times n$  diagonal matrices of  $Mat(n \times n)$ .

For we define

$$\Psi: \langle \mathfrak{R}^{n+}, \times \rangle \to \Delta Mat(n \times n)$$

$$(x_1, \dots, x_n) \to [\delta_{ij} x_i].$$

c) We prove that "as a vector space  $< \Re^n, +>^{(1)}$  (prolongation of Lie algebra  $< \Re^n, +>$ ) is isomorphic to  $< \Re^n, +>$ ".

For this let T belongs to  $(\mathfrak{R}^n)^{(1)}$ . Therefore T is a linear mapping of  $\mathfrak{R}^n \times \mathfrak{R}^n$  into  $\mathfrak{R}^n$ . Let  $T(e_i.e_j) \sum_{ij} T_{ij}^k e_k$ , where  $\{e_1, \ldots, e_2\}$  is standard basis for  $\mathfrak{R}^n$ , and by definition,  $T_{ij}^k = 0$ 

 $T_{ji}^{k}$  and  $T_{ij}^{k} \in \Delta Mat(n \times n)$  for all i, j, k. Thus  $T_{ij}^{k} = \delta_{jk}$  and  $T_{ij}^{k} \neq 0 \Leftrightarrow i = j = k$ . To see the result we define the mapping

$$\Gamma: \langle \mathfrak{R}^{n}, + \rangle^{(i)} \ni [T_{ij}^{k}] \rightarrow (T_{ii}^{i}) \in \langle \mathfrak{R}^{n}, + \rangle$$

e) By [4], if G is a Lie subgroup of  $GL(n,\Re)$ , then Lie group  $G^{(1)}$  is isomorphic with group of all linear mappings of  $\Re^n + G$  of the form  $a_T$  (for  $T \in G^{(1)}$ ) where

$$a_{\mathsf{T}}(A,\nu) = (\nu,A+T(\nu,.)), \ A \in G, \ \nu \in \Re^{\mathsf{n}}$$

Therefore prolongation of Lie group  $(\Re^n, +> \text{consist of all linear mappings of } \Re^n + L(\Re^n) \cong \Re^n \text{ of the form } a_T \text{ (for } T = [T_i^k] \in (\Re^n)^{(1)} \cong \Re^n \text{) where}$ 

$$\begin{split} a_{\mathsf{T}}(A, v) &= (v, A + [T_{ij}^{\ k}](v, .)) \\ &= \left(v, A + tras \sum_{i} \left(T_{ii}^{\ i} v_{i} + a_{i}\right) \vec{e}_{i}(.)\right) \\ &= \left(\sum_{i} v_{i} \vec{e}_{i}, trans \sum_{i} \left(t_{ii}^{\ i} v_{i} + \right) \vec{e}_{i}(.)\right) \end{split}$$

Here the  $trans_{\vec{\omega}}$  (.) is translation by  $\vec{\omega}$  in  $\Re^n$ . It completes the proof.

#### Lemma 2

Let G and H be two matrix Lie subgroups. Then

$$[H \oplus G]^{(1)} \cong H^{(1)} \oplus G^{(1)}.$$

#### Proof

Suppose that H be a Lie subgroup of GL(n, V) with  $L(H) = \mathcal{H}$  and G be a Lie subgroup of GL(n, W) with L(G) = G, and let  $(v_1 \oplus \omega_1) \otimes (s_1 \oplus t_1) = (v_1 \otimes s_1) \oplus (\omega_1 \otimes t_1)$  be an elements of  $(V \oplus W) \otimes S^{*+1}((V \oplus W)^*)$  and  $(v_2 \oplus w_2) \otimes (s_2 \oplus t_2) = (v_2 \otimes s_2) \oplus (w_2 \otimes t_2)$  be an elements of  $(V \oplus W) \otimes S^{*+1}((V \oplus W)^*)$ .

Now, we define the bracket of these two elements (denoted by symbol"[,]") as follows:

$$(v_{2} \oplus w_{2}) \otimes D_{(v_{1} \oplus w_{1})} (s_{2} \oplus t_{2}) \circ (s_{1} \oplus t_{1})$$

$$- (v_{1} \oplus w_{1}) \otimes D_{(v_{1} \oplus w_{1})} (s_{1} \oplus t_{1}) \circ (s_{2} \oplus t_{2})$$

$$= [v_{2} \otimes D_{v_{1}} s_{2} \circ s_{1} - v_{1} \otimes D_{v_{2}} s_{1} \circ s_{2}]$$

$$\oplus [w_{2} \otimes D_{w_{1}} (t_{2} \circ t_{1}) - w_{1} \otimes D_{w_{2}} (t_{1} \circ t_{2})].$$

Note that this lies in  $(V \oplus W) \otimes S^{k+1+1}((V \oplus W)^*)$ .

"[,]" extends a bilinear mapping of  $((V \oplus W) \otimes S^{k+1}((V \oplus W)^*) \times (V \oplus W) \otimes S^{l+1}((V \oplus W)^*)$ ) into  $(V \oplus W) \otimes S^{k+l+1}((V \oplus W)^*)$ . Recalling (1), this induces a bilinear mapping of  $(\mathcal{H} \oplus G)^{(k)} \otimes (\mathcal{H} \oplus G)^{(l)} = (\mathcal{H}^{(k)} \otimes \mathcal{H}^{(l)}) \oplus G^{(k)} \otimes G^{(l)}$  into  $(V \oplus W) \otimes S^{k+l+1}((V \oplus W)^*)$ , which is in fact a bilinear mapping into  $(\mathcal{H} \oplus G)^{(k+l)} = \mathcal{H}^{(k+l+1)} \oplus G^{(k+l+1)}$ . Moreover "[,]" makes the vector space

$$(V \oplus W) + (\mathcal{H} \oplus G) + (\mathcal{H} \oplus G)^{(1)} + \dots$$
  
=  $[V + \mathcal{H} + \mathcal{H}^{(1)} + \dots] \oplus [W + G + G^{(1)} + \dots].$ 

into a Lie algebra. But, the bracket operation on the Lie algebra  $(G \oplus H)^{(1)}$  coincides with the bracket operation already defined on

$$(\mathcal{H} \oplus G) + (\mathcal{H} \oplus G)^{(1)} + \ldots + (\mathcal{H} \oplus G) + (\mathcal{H} \oplus G)^{(k)} + (\mathcal{H} \oplus G)^{(k+1)} + \ldots$$

truncated at degree k (refer to [1]). Thus as a Lie algebra

$$L((\mathcal{H} \oplus G)^{(1)}) \cong L(H)^{(1)} \oplus L(G)^{(1)}.$$

This proves the lemma.

## Lemma 3

Let G be a Lie subalgebra of  $Mat(n \times n)$ . There exist a Lie subalgebra

$$\tilde{G}$$
 of  $Mat(n \times n)$  and an integer  $\tilde{n}$  such that  $0 \le \tilde{n} \le \frac{n^2(3n-1)}{2}$  and the

Lie algebra  $G^{(1)} = \Re^{\bar{n}} \oplus \tilde{G}$ , where  $\Re^{\bar{n}}$  is the standard additive Lie algebra of  $\Re^{\bar{n}}$ .

## Proof

Let G be a Lie subgroup of  $GL(n,\Re)$  where it's Lie algebra is G (in this case we write L(G) = G). Now we have, by corollary 1:

$$G^{(1)} \cong \Re^{n'} \oplus \tilde{G}, \ \tilde{G} \leq GL(n,\Re), \ 0 \leq n' \leq \frac{n^2(3n-1)}{2}$$

On the other hand (refer to [1]) we know that  $L(G^{(1)}) \cong G \oplus G^{(1)}$ ; therefore

$$zG \oplus G^{(1)} \cong L(\mathfrak{R}^n) \oplus L(\tilde{G})$$

Hence, there exists a Lie subalgebra G of  $L(\tilde{G})$  (and Lie subalgebra of

 $Mat(n \times n)$  and an integer n' with  $0 \le n' \le n$  such that  $G^{(1)} = \Re^{n'} \oplus (\tilde{G})$ .  $\square$ 

# **Proposition 2**

Let n and m are two natural numbers. Then there exists Lie group isomorphism

$$GP_n^m = \Re^{m \times \frac{n^2(3n-1)}{2}} \oplus GL(n,\Re),$$

where 
$$\Re^{m \times \frac{n^2(3n-1)}{2}}$$
 has standard Lie group structure.

# **Proof**

Let m be an integer greater than 2. Assume that result is proved for m-1. Then

$$GP_n^m \cong \left(GP_n^{m-1}\right)^{(1)}$$

$$\cong \left[\Re^{\frac{n^2(3n-1)}{2}} \oplus GL(N,\Re)\right]^{(1)}$$

$$\cong \left[\Re^{\frac{n^2(3n-1)}{2}}\right]^{(1)} \oplus \left[GL(n,\Re)\right]^{(1)}$$

$$\cong \Re^{\frac{n^2(3n-1)}{2}} \oplus GP_n^{m-1} \qquad \text{(by example 1)}$$

$$\cong \Re^{m-1} \times \frac{n^2(3n-1)}{2} \oplus GL(n,\Re) \qquad \text{(by assumption)}$$

# Corollary 2

Let G be a Lie subgroup of  $GL(n,\Re)$ , and k be an integer. Then there exists a Lie subgroup  $\tilde{G}$  of  $GL(n\Re)$  and an integer  $\tilde{n}$  such that

 $0 \le \tilde{n} \le \frac{n^2(3n-1)}{2}$ , and the Lie group  $G^{(1)} = \Re^{\tilde{n}} \bigoplus \tilde{G}$ , where  $\Re^{\tilde{n}}$  is the standard additive Lie group of  $\Re^{\tilde{n}}$ .  $\square$ 

## Example 2

We study the  $GP_1^3 = \{ax^3 + bx^2 + cx \mid a, b, c \in \Re, c \neq 0\}$  where proved that

$$(ax^3 + bx^2 + cx) * (Ax^3 + Bx^2 + Bx^2 + Cx)$$
  
=  $(aC^3 + 2bBC + cA)x^3 + (bC^2 + cB)x^2 + cCx$ .

Let  $M = \{ax^3 + bx^2 + x \mid a, b \in \Re\}$  and  $N = \{ax \mid a \in \Re - \{0\}\}$ . Then N and M are normal subgroup of  $GP_1^3$  and  $GP_1^3 \cong M \oplus N$ . On the other hand we have proved that N is isomorphic with multiplicative group  $\Re - \{0\}$ . For M, assume  $T = \{ax^3 + x \mid a \in \Re\}$  and  $S = \{a^2x^3 + ax^2 + x \mid a \in \Re\}$ . We know that T and S are normal subgroups of M and  $M \cong S \oplus T$ . But with respect to above operation we have

$$(a^2x^3 + ax^2 + x) * (A^2x^3 + Ax^2 + x) = (A+a)^2x^3 + (A+a)x^2 + x,$$
  
$$(ax^3 + x) * (Ax^3 + x) = (A+a)x^2 + x$$

Therefore S and T are isomorphic with additive group  $\Re$ . In conclusion

$$GP_1^3 \cong (\Re^2, +) \oplus (\Re - \{0\}, x)$$

# Corollary 3

Structure group of every k'th order geometric structure on a given n dimmential manifold is isomorphic with an additive standard group  $\Re^m$ ,

where 
$$0 \le m \le k \times \frac{n^2(3n-1)}{2}$$
, and Lie subgroup of  $GL(n,\Re)$ .

# Proposition 3

Let G be a Lie subalgebra of  $Mat(n \times n)$ , and k be a natural number.

Then there exists a Lie subalgebra  $\tilde{G}$  of mat(n×n) and an integer  $\tilde{n}$ 

such that  $0 \le \tilde{n} \le k \times \frac{n^2(3n-1)}{2}$  and the Lie algebra where  $G^{(1)} \cong \Re^{\tilde{n}} \oplus \tilde{G}$ 

Rn has the standard Lie algebra structure. □

## REFERENCES

- 1. Guilemin, V.; The integrability problem for G-structures; *Tran. Am. Math. Soc.*, Vol. 116, 1965, pp. 544-560.
- 2. Molino, P.; Teorie des G-structures: Le problem d'equivalence; L.M.N., Springer Verlag, 1979.
- 3. Postnikov, M.; Lie groups and Lie algebras; Lectures in geometry, semester V, Mir Pub., Moscow, 1986.
- 4. Strenberg, S.; Lectures on Differential Geometry; Chelsea Pub. Co., New York, 1983.
- 5. Yang, K.; Exterior Differential Systems and Equivalence problems; Kluwer Academic Publishers, Netherland, 1992.