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Supplementary Figures 4 

 5 

 6 
 7 
Supplementary Figure 1. Results of pilot study and simulated data. Top row: Means (and 95% confidence 8 
intervals) in the pilot data for each measure of mnemonic information plotted by retention interval and 9 
clustering condition; A. Total information content, ܫ௧. B. Accessibility information content, ܫ௣. C. Precision 10 
information content, ܫ௞. Individual datapoints represent participant scores after controlling for random 11 
intercepts (n=73 in both the clustered and non-clustered conditions within each panel). Bottom row: Mean 12 
estimates for the clustered and non-clustered conditions at each of the 7 retention internals in the main 13 
experiment; D. Total information content (ܫ௧) E. Accessibility (ܫ௣) and F. Precision (ܫ௞). Estimates are based on 14 
fitting the pilot data to the exponential model of forgetting in Eq S12. 15 
  16 
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Supplementary Tables 17 

 18 

Supplementary Table 1. Statistical analysis of pilot data. Standardised effect sizes and Bayes factors for 19 
hypotheses 1-5. As effect sizes were uncertain a priori, the Bayes factors were calculated using a Cauchy scale 20 
factor of √0.5. 21 

  22 

 Cohen’s D BF10 

Hypothesis 1 0.486  6.573 

Hypothesis 2 0.545 7.238 x102 

Hypothesis 3 0.523 23.40 

Hypothesis 4 0.596 5.116 x105 

Hypothesis 5 0.645 10.93 
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Supplementary Methods 23 

Mixture model estimation 24 

We first compute the angular error of each response in radians (denoted ݔ௜). This is taken as the 25 

angular difference between the target location seen at study (ߠ), and the retrieved location entered 26 

at test (ߠ෠). 27 

௜ݔ  = ప෡ߠ) − (௜ߠ mod  Eq. S1 ߨ2

Given these errors, estimation via the EM algorithm starts by first assigning arbitrary random values 28 

to the parameters being estimated. The algorithm then progresses in two steps (an E-step and an M-29 

step) that are repeated in sequence across multiple iterations. During the E-step, we compute a set 30 

of weightings (ݓ௜) representing the probability that individual responses were based on memory 31 

retrieval (von Mises distributed errors). These weightings are dependent on the angular error ݔ௜  as 32 

well as the two model parameters ݌ and ݇. 33 

,݌	|	௜ݔ)௜ݓ  ݇) = ݌ ⋅ ௩݂௠(ݔ௜|݇)݌ ⋅ ௩݂௠(ݔ௜|݇) + (1 − (݌ ⋅  ଵ Eq. S2ି(ߨ2)

The quantity ௩݂௠(ݔ௜|݇) denotes the probability density function for a von Mises distribution at angle 34 ݔ௜  with a mean of 0 and concentration of ݇, see1). Note that term (2ߨ)ିଵ reflects the probability 35 

density function of the circular uniform distribution for any value of	ݔ௜. Given the weighing ݓ௜ for 36 

each response, we compute new values for each model parameter (the M-step). The parameter ݌ is 37 

computed as follows: 38 

݌  = ෍ ௜݊௡ݓ
௜ ୀ ଵ  Eq. S3 

To re-estimate the parameter	݇, we first compute the population resultant vector (ݎ), the average of 39 

all response errors weighted by the probability that they belong to the von Mises distribution (ݓ௜). 40 

ݎ  = real ቆ∑ ௜ݓ) ∙ exp(݆ ∙ ௜))௡௜ୀଵݔ ∑ ௜௡௜ୀଵݓ ቇ Eq. S4 

Where ݆ denotes the imaginary unit. The statistic ݎ is then converted into the concentration 41 

parameter	݇, using an approximation provided by Fisher1. 42 
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 ݇ =
۔ۖەۖ
ۓ ݎ2 + ଷݎ + ହ6ݎ5 , ݎ < 0.53−0.4 + ݎ1.39 +	 0.431 − ݎ , 0.53	 ≤ ݎ < ݎ0.8513 − ଶݎ4 + ଷݎ , ݎ ≤ 0.85  Eq. S5 

This approximation of ݇ is known to be heavily biased when it is based on fewer than 15 data points 43 

(i.e., when ݌ is low2). As such, in a final step, we apply the following correction to estimates of ݇ as 44 

suggested by Best and Fisher2: 45 

 ݇∗ = ۔ۖەۖ
ۓ ݇ , ݊ ∙ ݌ > 15
۔ۖەۖ
ۓ (݊ ∙ ݌ − 1)ଷ ∙ ݇݊ ∙ ଶ݊)݌ ∙ ଶ݌ + 1) , ݇ ≥ 2max(݇ − 2݊ ∙ ݌ ∙ ݇ , 0), ݇ < 2 , ݊ ∙ ݌ ≤ 15 Eq. S6 

Where ݊ is the number of word-location trails (in this case 100), and ݇∗is the adjusted estimate of	݇. 46 

These estimation steps repeat until the negative log-likelihood (ܰܮܮ) of the model (i.e., the 47 

goodness-of-fit), converges to a stable value. The EM algorithm is sensitive to the starting values 48 

assigned to each parameter and can converge at local minimum values of the ܰܮܮ function. As such, 49 

each estimation will be run with 17 unique starting points using 17 linearly spaced values of ݌ and a 50 

starting value of ݇ = 2 each time. These starting points were found to yield the most accurate results 51 

when analysing pilot data. The iteration with the lowest ܰܮܮ will then be selected as the final model. 52 

Assessing model fit  53 
In cases where a participants retrieval probability is low (0.2 ≳ ݌), the EM algorithm may fail to 54 

converge or may incorrectly fit a wide von Mises distribution that is indistinguishable from a uniform 55 

(݇ ≈ 0.1). This latter case results in overinflated estimates of retrieval probability since the similarly 56 

shaped uniform and von Mises distributions will provide equal weightings to all data points (i.e., 57 ≈ ݓ 

0.5 in all cases). This pathological case can be identified by comparing complexity-adjusted measures 58 

of goodness-of-fit between the final mixture model and a reduced model that describes all data 59 

points with a single uniform distribution. Here, we use the difference in the Bayesian information 60 

criterion (denoted	∆ܥܫܤ) to make this comparison3. Given that the mixture model has 2 free 61 

parameters, ݌ and ݇, and the reduced model has no free parameters, the ∆ܥܫܤ is computed as 62 

follows: 63 

ܥܫܤ∆  = 2 ∙ ൫log(݊) − log൫ܮ෠௠൯ + log(ܮ௨)൯ Eq. S7 
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The term, log(ܮ෠௠) denotes the log-likelihood of the mixture model, and log(ܮ௨) denotes the log-64 

likelihood of the reduced model, in this case, a constant value of	−݊ ∙ log(2ߨ). As such, lower (more 65 

negative) values of ∆ܥܫܤ indicate that the mixture model provides a better fit to the data than the 66 

reduced model after accounting for the additional complexity. We will take ∆ܥܫܤ values of -10 or 67 

below to indicate that the model has properly converged and the parameters are reliable. This 68 

threshold is often used to represent strong evidence for the more complex model4 and we found it 69 

to reliably distinguish pathological and valid solutions in our pilot data. 70 

Alternative fitting procedure 71 
In cases were the EM algorithm returns a ∆ܥܫܤ greater than the -10 threshold, or fails to converge 72 

altogether, we attempt to identify a valid fit via an alternative search procedure. At first, this 73 

involves explicitly varying the retrieval probability (݌) over a number of steps (from 0.02 = ݌ to 0.3; 74 

2-30 words) before estimating ݇ and the ܰܮܮ (as above) from the ݌ ∙ ݊ most accurate responses (a 75 

so-called ‘hard-clustering’ approach). This often identifies local minimum values of the ܰܮܮ function 76 

that are missed by the EM algorithm. We will accept mixture model estimates identified in this way 77 

as long as the corresponding ∆ܥܫܤ statistic is below our -10 threshold. Importantly however, this 78 

procedure often returns estimates of ݇ that are not reliable when based on fewer than 8 responses, 79 

even after applying the correction expressed in Eq. S6 (singularities can result, causing ݇ to become 80 

arbitrary large). We will therefore exclude the data from participants when this is the case. If no 81 

mixture model can be fit to a participant’s data such that the ∆ܥܫܤ statistic is less than -10, the 82 

participant will be excluded from further statistical analyses. 83 

Linear contrasts 84 

Hypotheses 1, 3, and 5, involve testing for differences or interactions across the 7 retention 85 

intervals. As stated in the main text, this entails contrasts that are sensitive to linear changes in the 86 

GLMM parameter estimates over time. To implement this, we specify a 1-by-6 contrast vector, 87 ܪ = [ℎଵ, ℎଶ, ℎଷ, ℎସ, ℎହ, ℎ଺], that evaluates differences between pairs of parameter estimates, and 88 

weights these differences by the time between retention intervals. Each element of ܪ is given by the 89 

following expression: 90 

 ℎ௜ = ෍ ൬ ௔ܶ − 76 ∙ ௜ܶ൰଺
௔ୀଵ  Eq. S8 

Where, ܶ is a 6D vector encoding the retention time (in hours) of each delayed interval: ܶ = [3,91 6, 12, 24, 48, 96]. The scaling factor of 7/6 ensures that each delayed retention interval (݅) is 92 

compared to the immediate retrieval condition (represented by the intercept term) as well as every 93 
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other delayed condition. The resulting vector is then scaled to have a unit length by dividing each 94 

element by the overall magnitude. This results in a set of contrast weights that linearly decrease as a 95 

function of time. Consequently, performing a matrix multiplication between the contrast vector and 96 

a column vector of parameter estimates (i.e., ߚܪ) yields a scalar value representing the degree of 97 

co-linearity between ܪ and ߚ. Note that this matrix multiplication is equivalent to taking the dot 98 

product between ܪ and ߚ which returns the magnitude of the projection of ߚ onto 99 .ܪ 

Hypotheses 2 and 4, involve testing for differences between clustered and non-clustered conditions 100 

averaged over the 7 retention intervals. Accordingly, contrast vectors for these hypotheses should 101 

weight parameter estimates by their relative contributions to the clustered vs non-clustered effect. 102 

In both hypotheses 2 and 4, one fixed effect parameter contributes to the effect of clustering across 103 

all retention intervals and so is weighted with a factor of 7. Six other parameters each contribute to 104 

one of the delayed retention conditions and so are weighted by a factor of 1. Given these 105 

weightings, the contrast vector is then scaled to have a unit length by dividing each element by the 106 

overall magnitude. 107 

Bayesian inference 108 

In testing our a priori hypotheses, we compute BF10 as follows: 109 

ଵ଴ܨܤ  = ׬ Pr(ܪ|ܽݐܽܦଵ, (ߠ ∙ (ߠ)ଵߨ ఏ∈஀ߠ݀ Pr(ܪ|ܽݐܽܦ଴)  Eq. S9 

Pr(ܪ|ܽݐܽܦଵ,  under 110 ߠ is a normal distribution encoding the likelihood of the model parameters in (ߠ

the alternative hypothesis (H1), and Θ denotes the set of all possible parameters for H1 (i.e., the 111 

parameter space). Additionally, ߨଵ refers to the prior distribution of these parameters. We will use a 112 

Cauchy distribution as the prior ߨଵ, see5: 113 

(ߠ)ଵߨ  = Γ(1 + ݀2 ) ∙ Γߛ ቀ12ቁ ∙ ௗଶߨ ∙ ଶߛ) + ∑ ௜ଶ)ௗ௜ୀଵߠ ଵାௗଶ  Eq. S10 

Where Γ denotes the gamma function, ݀ is the dimensionality of the Cauchy distribution (i.e., the 114 

model degrees of freedom which is 1 for all a priori hypotheses), and ߛ is the Cauchy scale 115 

parameter. Note that ߨ on the right-hand side of Eq. S10 refers to the circle constant. Across each of 116 

our hypotheses, we will fix ߛ = 0.555. 117 

In order to evaluate Pr(ܽݐܽܦ) in both the denominator and numerator of Eq. S9, the parameters 118 

returned by each GLMM (ߚ) needed to be multiplied by the contrast vector under test (ܪ, i.e., the 119 
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vectors listed in tables 1 and 2). This results in a raw effect size (ݖ =  that must be standardised 120 (ߚܪ

in order to be consistent with our Cauchy prior. This is achieved by dividing out the standard 121 

deviation of ݖ that is obtained by multiplying the population covariance matrix (denoted ࡯) with 122 ,ܪ 

and then taking the square root: √(்ܪ࡯ܪ), where ܶ represents the transpose operator. Finally, the 123 

variance for the normal distribution that encodes Pr(ܽݐܽܦ) is given by scaling the variance of the 124 

sampling distribution by the same standard deviations used previously. Given these statistics both 125 Pr(ܪ|ܽݐܽܦଵ,  can be evaluated with the latter being the height of this 126 (଴ܪ|ܽݐܽܦ)and Pr (ߠ

distribution at the zero vector. 127 

As well as providing Bayes factors, we will report Cohen’s D effect sizes for each hypothesis. This 128 

statistic is given by the following: 129 

 ݀ = ඨ(ߚܪ)ଶ்ܪ࡯ܪ  Eq. S11 

MATLAB functions implementing all the above computations are available at http://osf.io/8mzyc/. 130 

Pilot study 131 

We performed a lab-based, pilot study with 73 participants to validate our experimental design and 132 

generate estimated effect sizes for a sample size computation. This first involved parametrising the 133 

rate of forgetting for each measure of mnemonic information, in each condition. Subsequently, we 134 

used this parametrisation to simulate the main experiment and estimate the level of statistical 135 

power for a given number of participants. 136 

The pilot study involved a similar task to that described above but did not include a subjective 137 

memory judgment at the end of each test trial. Also, instead of collecting data across 7 retention 138 

intervals, the pilot was limited to 3 retention intervals; one immediate test condition (0 hrs; n = 36), 139 

and two delayed test conditions - 24 hrs (n = 17) and 168 hrs (i.e., 7 days, n = 20). Given this data, we 140 

then performed the statistical analyses described previously with the exception that each mixed-141 

effects model only included two delayed retention regressors. Supplementary Figure 1 displays 142 

mean estimates of ܫ௧, ܫ௣ and ܫ௞ in each condition, and test statistics relating to each of our principal 143 

hypotheses are listed in Supplementary Table 1. These pilots’ results provide evidence in favour of 144 

each of our a priori hypotheses (BFs > 5).  145 

We also acquired online pilot data for the immediate test condition (0 hrs; n = 27), that showed 146 

comparable levels of performance and variability (in standard deviation units) relative to the lab-147 
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based pilot data: Clustered condition - Online: ܫ௣= 0.493 (0.202), ܫ௞= 1.187 (0.379); In-lab: ܫ௣= 0.587 148 

 ௞= 1.404 (0.566); In-149ܫ ,௣= 0.377 (0.166)ܫ :௞= 1.346 (0.455); Non-clustered condition - Onlineܫ ,(0.392)

lab: ܫ௣= 0.499 (0.355), ܫ௞= 1.404 (0.518). 150 

Parametrisation of forgetting 151 

Given the pilot data, we used a model of exponential decay to predict the rate of forgetting for ܫ௧, ܫ௣ 152 

and ܫ௞  for the main proposed experiment. Exponential decay is commonly used to model forgetting 153 

and is known to provide a good fit to behaviour in both short-term and long-term memory 154 

experiments6. Based on our mean estimates of ܫ௣ and ܫ௞  at each timepoint, we fitted the following 155 

model to these measures for clustered and non-clustered conditions (separately): 156 

(ݐ)ݕ  = ߙ + ߚ ∙ exp(−ߣ ∙  Eq. S12 (ݐ

Where, ݐ denotes the length of the retention interval (in hours), and ݕ denotes the measure of 157 

mnemonic information being modelled (i.e., ܫ௧, ܫ௣ or ܫ௞ in either the clustered or non-clustered 158 

condition). The free parameters ߚ ,ߙ, and ߣ were estimated via the nonlinear least squares fitting 159 

method implemented in the MATLAB curve fitting toolbox. The fit of this model across each measure 160 

and condition was good; R2 = .984. 161 

Sample size computation 162 

We ran simulations of the main experiment to estimate the sample size that would be required to 163 

achieve Bayes factors greater than 10 in favour of our a priori hypotheses. To do this, we used the 164 

above parametrisation of forgetting to generate mean estimates of ܫ௧, ܫ௣ and ܫ௞ for the clustered 165 

and non-clustered conditions across all 7 retention intervals (Supplementary Figure 1). These means 166 

were then converted into hypothesised parameter estimates for the two GLMMs that will constitute 167 

the main analysis. Variance-covariance matrices for these parameter estimates were also computed 168 

from the pilot analyses. Here, covariance components relating to each model term were pooled 169 

across retention intervals, and then redistributed into a larger matrix that included additional rows 170 

and columns for each of the 7 retention intervals. Finally, we rescaled these covariance matrices to 171 

reflect different samples sizes and performed Bayesian test for each of our five hypotheses. This 172 

revealed that a sample size of ~26 participants per retention interval condition should yield BF10 173 

statistics greater than 10. 174 

  175 
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