57-gram Overlaps with "Tracking the rotor time constant"

The following duplicate 57-grams are found in "Tracking the rotor time constant of an induction motor traction drive for HEVs" (Wang et al 2004a) and in later works (Wang et al 2004b) (Wang et al 2005a) (Wang et al 2005b) (Wang et al 2005c) (Wang et al 2007) derived from "Real-Time Estimation of the Parameters and Fluxes of Induction Motors" (Stephan 1992).

Wang et al 2004a	Wang et al 2004b	Wang et al 2005a	Wang et al 2005b	Wang et al 2005c	Wang et al 2007
	solving systems	fluxes and their		solving systems	and voltages as
	of polynomial	derivatives the		of polynomial	well as the
	equations the	four equations		equations the	position of the
	question at hand	can be used to		question at hand	rotor are
	is given two	solve for but one		is given two	assumed to be
	polynomial	is left without		polynomial	available velocity
	equations and	another		equations and	is then
	how does one	independent		how does one	reconstructed
	solve them	equation to set		solve them	from the position
	simultaneously	up a regressor		simultaneously	measurements
	to eliminate say	system for the		to eliminate say	however the
	a systematic	identification		a systematic	rotor flux
	procedure to do	algorithm a new		procedure to do	linkages are not
	this is known as	set of		this is known as	assumed to be
	elimination	independent		elimination	measured
	theory and uses	equations are		theory and uses	standard
	the notion of	found by		the notion of	methods for
	resultants briefly	differentiating		resultants briefly	parameter
	one considers	equations and to		one considers	estimation are
	and as	obtain next		and as	based on
	polynomials in	equations are		polynomials in	equalities where
	whose	solved for and		whose	known signals
	coefficients are	substituted into		coefficients are	depend linearly
	polynomials in	equations and to		polynomials in	on unknown
	then for example	obtain		then for example	parameters
	letting			letting	however the
					induction motor
					model described

Wang et al 2004a	Wang et al 2004b	Wang et al 2005a	Wang et al 2005b	Wang et al 2005c	Wang et al 2007
		as when the			
		system model is			
		overparameteriz			
		ed as in the			
		application here			
		the expression			
		will lead to an ill			
		conditioned			
		solution for that			
		is small changes			
		in the data lead			
		to large changes			
		in the value			
		computed for to			
		get around this			
		problem a			
		nonlinear least			
		squares			
		approach is			
		taken which			
		involves			
		minimizing			
		subject to the			
		constraints			

References

(Stephan 1992)	Stephan, Jennifer. Real-Time Estimation of the Parameters and Fluxes of In- duction Motors. M.S. Project Report, Electrical and Computer Engineering Department, Carnegie Mellon University (1992).
(Wang et al 2004a)	Wang, Kaiyu, John Chiasson, Marc Bodson, and Leon M. Tolbert. Tracking the rotor time constant of an induction motor traction drive for HEVs. Power Electronics in Transportation, pp. 83-88 (2004), IEEE.
(Wang et al 2004b)	Kaiyu Wang, J. Chiasson, M. Bodson and L. M. Tolbert. A nonlinear least- squares approach for identification of the induction motor parameters, 43rd IEEE Conference on Decision and Control (CDC), Nassau, Bahamas (2004), pp. 3856-3861, Vol. 4.
(Wang et al 2005a)	Wang, Kaiyu, J. Chiasson, M. Bodson, and L. M. Tolbert. "An online rotor time constant estimator for induction machine." International Conference on Electric Machines and Drives (2005), pp. 608-614. IEEE.
(Wang et al 2005b)	Wang, Kaiyu, John Chiasson, Marc Bodson, and Leon M. Tolbert. An on-line method for tracking the rotor time constant of an induction machine. In Proceedings of the American Control Conference (2005), pp. 2739-2744. IEEE.
(Wang et al 2005c)	Wang, Kaiyu, John Chiasson, Marc Bodson, and Leon M. Tolbert. A nonlinear least-squares approach for identification of the induction motor parameters. IEEE Transactions on automatic Control 50, no. 10 (2005): 1622-1628.

(Wang et al 2007) Wang, Kaiyu, John Chiasson, Marc Bodson, and Leon M. Tolbert. An online rotor time constant estimator for the induction machine. IEEE Transactions on Control Systems Technology 15, no. 2 (2007): 339-348.