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Performance of proton exchange membrane 
fuel cells (PEMFC) with low Pt loading
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‣ Motivation:

– DOE goal: 0.125 mg/cm2 or 

0.15 mg/kW by 2020

– Unexplained losses with 

lower Pt loading

– Complex structure-property 

relationships in electrolyte 

material

‣ Approach:

– Development of PEMFC 

models

– Thin film experiments on 

complex electrolyte J. P. Owejan, J. E. Owejan, and W. Gu, “Impact of Platinum Loading 
and Catalyst Layer Structure on PEMFC Performance,” Journal of 
The Electrochemical Society, vol. 160, no. 8, 2013.

Lower performance 
with lower Pt-loading
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Well known properties 
and relationships with 
bulk Nafion

Thin films harder to 
study – less known

Gas diffusion

K. L. More, R. Borup, and K. S. Reeves, 
“Identifying Contributing Degradation Phenomena 
in PEM Membrane Electrode Assemblies Via 
Electron Microscopy,” ECS Transactions 3(1) pp. 
717-733 2006 [doi:10.1149/1.2356192]
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Multi-scale overview of PEMFC systems: full 
cell, cathode, and catalyst layer structures



Observed catalyst layer microstructures 
within PEMFC cathodes
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‣ Microstructure can be categorized as a cluster of particles or 

single particle depending on scale

[1]

Flooded-
agglomerate

Core-shell
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Differences in PEMFC catalyst layer models: 
microstructures, domains, and transport
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PEMFC model assumptions
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1. Isothermal and steady-state

2. Water is in equilibrium between Nafion and gas phases

3. Fast electron transport, i.e., uniform Pt/C potential

4. No local potential gradients in radial Nafion shells

5. Uniform microstructure throughout the catalyst layer



• Gas diffusion layer (GDL):

• Catalyst layer (CL):
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Dependent on 
Nafion properties

• Gas diffusion layer (GDL):

• Catalyst layer (CL):
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Nafion structure-property relationships are 
influenced by multiple factors
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‣ Structure-property dependencies: 

– Temperature

– Relative humidity

– Substrate

– Thickness

‣ Literature shows:

– Water absorption

– Surface interactions

– Confinement

– Lamellae [2]
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‣ Ionic Conductivity (σio)

– Triple interpolation from data 

taken with varied thicknesses, 
temperature, and relative 

humidity

D. K. Paul, R. McCreery, and K. Karan, “Proton Transport Property 
in Supported Nafion Nanothin Films by Electrochemical 
Impedance Spectroscopy,” Journal of The Electrochemical 
Society, vol. 161, no. 14, 2014.

Structure-property relations: an approach to 
determine relevant CL transport
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‣ Diffusion Coefficient (DO2)

– Series resistor network

– Weight layers by H2O and scaling 

based on NR data

S. C. DeCaluwe, A. M. Baker, P. Bhargava, J. E. Fischer, and J. A. 
Dura, “Structure-property relationships at Nafion thin-film 
interfaces: Thickness effects on hydration and anisotropic ion 
transport,” Nano Energy, vol. 46, pp. 91–100, 2018.

Lamellae

Bulk-like



Submodel for physically-based transport 
properties within CL Nafion
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‣ Method 1: lamellae – data (σio) and series resistor network (DO2)

‣ Method 2: no lamellae – weight by bulk-like water fraction

‣ Method 3: mix of lamellae (on Pt) and no lamellae (on C)

Method 1 Method 2 Method 3



Mixed-based approach captures transport 
property effects as Pt loading changes
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All lamellaeMix



Validation of PEMFC core-shell model at 
higher Pt loading
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‣ Crude fitting by adjusting the membrane resistance and Butler-

Volmer exchange current density shows good agreement

J. P. Owejan, J. E. Owejan, and W. Gu, “Impact of Platinum 
Loading and Catalyst Layer Structure on PEMFC 
Performance,” Journal of The Electrochemical Society, vol. 
160, no. 8, 2013.

Pt loading = 0.2 mg/cm2

Data from:



Core-shell model at lower Pt loadings does 
not capture activation overpotentials
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‣ Reasonable adjustments made to the solubility, capture angle (𝜃), 

exchange current density (𝑖𝑜), and membrane resistance (𝑅Naf)

0.2 mg/cm2

0.1 mg/cm2

0.05 mg/cm2

0.025 mg/cm2



Adding an additional resistance term 
improves core-shell fits at high currents
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0.2 mg/cm2

0.1 mg/cm2

0.05 mg/cm2

0.025 mg/cm2

𝑦 = 0.8736 𝑥−1.083

𝑅2 = 0.9937



Hand fitting the kinetics at low Pt loadings 
provides improvement in core-shell model
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0.2 mg/cm2

0.1 mg/cm2

0.05 mg/cm2

0.025 mg/cm2

𝑦 = 23.4𝑒10 𝑥 − 0.61𝑒10

𝑅2 = 0.9849



How does the Nafion thickness impact cell 
performance in core-shell model?
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S. C. DeCaluwe, A. M. Baker, P. Bhargava, J. E. Fischer, and J. A. 
Dura, “Structure-property relationships at Nafion thin-film 
interfaces: Thickness effects on hydration and anisotropic ion 
transport,” Nano Energy, vol. 46, pp. 91–100, 2018.

Lamellae

Bulk-like

D. K. Paul, R. McCreery, and K. Karan, “Proton Transport Property 
in Supported Nafion Nanothin Films by Electrochemical 
Impedance Spectroscopy,” Journal of The Electrochemical 
Society, vol. 161, no. 14, 2014.



Thicker Nafion shells can outperform 
thinner ones at relevant currents
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Constant A𝑃𝑡
′′′ and A𝐶

′′′

with changing CL porosity

Pt loading = 0.2 mg/cm2

𝜺𝐠 = 𝟎. 𝟏

𝜺𝐠 = 𝟎. 𝟓

𝜺𝐠 = 𝟎. 𝟕

Nafion shell thickness



Thinner shells require a larger overpotential 
near the PEM interface
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Current = 2.2 A/cm2

Outer shells

Inner shells

PEM GDL

0 15

Pt loading = 0.2 mg/cm2



How do the different transport models 
affect predicted polarization curves?
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‣ Method 1: lamellae – data (σio) and series resistor network (DO2)

‣ Method 2: no lamellae – weight by bulk-like water fraction

‣ Method 3: mix of lamellae (on Pt) and no lamellae (on C)

Method 1 Method 2 Method 3



Bulk-like method outperforms others for 
core-shell model due to higher DO2
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‣ The different transport property models primarily influence 

limiting current with bulk-like having the best performance

Pt loading = 0.2 mg/cm2



Conclusions
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‣ Low Pt loading

– Current core-shell model does not capture activation overpotentials

‣ Thickness-dependent transport properties

– Thicker Nafion shells in the CL may improve cell performance

‣ Physically-based scaling of transport properties 

– Transport losses are captured well in the core-shell model, but are 

overpredicted in flooded-agglomerates



Next steps
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‣ Incorporate more complex surface chemistry at Pt interface

‣ Remove model assumptions about water transport

‣ Look at other modeling microstructures (e.g. multi-diameter 

core-shell or multi-scale core-shell with agglomerate)

‣ Neutron reflectometry (NR) experiments to capture species 

gradients across Nafion and calculate transport properties



Questions?
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‣ Thank you!

@CORESresearch
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