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Performance of proton exchange membrane 0

fuel cells (PEMFC) with low Pt loading

MECHANICAL ENGINEERING

»  Motivation:

—~ DOE goal: 0.125 mg/cm? or
0.15 mg/kW by 2020

— Unexplained losses with
lower Pt loading

— Complex structure-property
relationships in electrolyte
material

» Approach:

— Development of PEMFC
models

— Thin film experiments on
complex electrolyte
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Multi-scale overview of PEMFC systems: full 0

cell, cathode, and catalyst layer structures o _
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Observed catalyst layer microstructures O
within PEMFC cathodes
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» Microstructure can be categorized as a cluster of particles or
single particle depending on scale

Flooded-
agglomerate




Differences in PEMFC catalyst layer models: O
microstructures, domains, and transport MlNEé..
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PEMFC model assumptions
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a k~ DN PRF

Isothermal and steady-state

Water is in equilibrium between Nafion and gas phases
Fast electron transport, I.e., uniform Pt/C potential

No local potential gradients in radial Nafion shells
Uniform microstructure throughout the catalyst layer



Governing equations for PEMFC models '’
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 Gas diffusion layer (GDL):

Gas channel with constant TPY as BC
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Governing equations for PEMFC models 0
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MECHANICAL ENGINEERING THERMAL-FLUID SYSTEMS
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Nafion structure-property relationships are 0
influenced by multiple factors
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» Structure-property dependencies:

— Temperature SO; ...
Ht % P
— Relative humidit 52 TR w b
y e ~.:,‘"~:'t < I'Trn }_**. .-:;L & B u-"-.r'}
— Substrate i . jr"’
— Thickness 1nm % SOy

» Literature shows:
— Water absorption
— Surface interactions
— Confinement

— Lamellae

[2]




Structure-property relations: an approach to
determine relevant CL transport MINE;
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» lonic Conductivity (o;,) » Diffusion Coefficient (Dg,)
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S. C. DeCaluwe, A. M. Baker, P. Bhargava, J. E. Fischer, and J. A.
Dura, “Structure-property relationships at Nafion thin-film
interfaces: Thickness effects on hydration and anisotropic ion
transport,” Nano Energy, vol. 46, pp. 91-100, 2018.

D. K. Paul, R. McCreery, and K. Karan, “Proton Transport Property
in Supported Nafion Nanothin Films by Electrochemical
Impedance Spectroscopy,” Journal of The Electrochemical

Society, vol. 161, no. 14, 2014,



Submodel for physically-based transport O
properties within CL Nafion MINES
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» Method 1: lamellae — data (0;,) and series resistor network (Dg>)
» Method 2: no lamellae — weight by bulk-like water fraction

» Method 3: mix of lamellae (on Pt) and no lamellae (on C)

ﬁg\

Method 2 Method 3



Mixed-based approach captures transport 0
property effects as Pt loading changes AT
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Validation of PEMFC core-shell model at 0
higher Pt loading MINES
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» Crude fitting by adjusting the membrane resistance and Butler-
Volmer exchange current density shows good agreement
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Core-shell model at lower Pt loadings does 0
not capture activation overpotentials MINE;‘,
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» Reasonable adjustments made to the solubility, capture angle (0),
exchange current density (i,), and membrane resistance (Ryar)
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Adding an additional resistance term 0

improves core-shell fits at high currents MINES
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Hand fitting the kinetics at low Pt loadings 0

provides improvement in core-shell model -
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How does the Nafion thickness impact cell
performance in core-shell model?
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Ojo, eff [S/M]

ENGINEERING
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D. K. Paul, R. McCreery, and K. Karan, “Proton Transport Property
in Supported Nafion Nanothin Films by Electrochemical
Impedance Spectroscopy,” Journal of The Electrochemical
Society, vol. 161, no. 14, 2014,
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transport,” Nano Energy, vol. 46, pp. 91-100, 2018. 15



Thicker Nafion shells can outperform 0
thinner ones at relevant currents M'NEg
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Thinner shells require a larger overpotential

near the PEM interface
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How do the different transport models 0
affect predicted polarization curves? MINES
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» Method 1: lamellae — data (0;,) and series resistor network (Dg>)
» Method 2: no lamellae — weight by bulk-like water fraction

» Method 3: mix of lamellae (on Pt) and no lamellae (on C)

ﬁg\

Method 2 Method 3
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Bulk-like method outperforms others for 0
core-shell model due to higher D, AT
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» The different transport property models primarily influence
limiting current with bulk-like having the best performance
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Conclusions 0
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» Low Pt loading

— Current core-shell model does not capture activation overpotentials

» Thickness-dependent transport properties

— Thicker Nafion shells in the CL may improve cell performance

» Physically-based scaling of transport properties

— Transport losses are captured well in the core-shell model, but are
overpredicted in flooded-agglomerates
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Next steps 0
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» Incorporate more complex surface chemistry at Pt interface
» Remove model assumptions about water transport

» Look at other modeling microstructures (e.g. multi-diameter
core-shell or multi-scale core-shell with agglomerate)

» Neutron reflectometry (NR) experiments to capture species
gradients across Nafion and calculate transport properties
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Questions? O

MINES.

v @CORESresearch
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