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Background: Method: A Multi-Scale Approach to Dynamic Optimization Application: Thinning trees to slow
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(Notholithocarpus densiflorus), a species with traditional dynamic optimization techniques from natural resource economics. This allows Property managers seek to conserve host tree
important ecological and cultural values in optimization of the mean behavior of an IBM, even if it can only be accessed as a "black box". populations under the threat of constant or increasing
coastal forests of California and Oregon. disease propagule pressure from the surrounding
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Thus, an individual-based model (IBM) is that maximizes.. using resource resource to A = >hadow value” of resource competition, or stochastic extinction. For this
o . . . future profits (contribution to future profits) bl [ defi h - bles in the Hamilton:
useful in simulating disease dynamics. | problem, I define the variables in the Hamiltonian
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However, analysis of IBMs is challenging, h — O . .
as many are n gt well represented at tg; . 5 , o , — The methods described here are being developed as
population scale with closed-form equations. Numerically optimize o f%nd the 5 h an R/C++ package, eqnfree, which also implements
: control level (h) that maximizes methods described in Kevrekidis and Samaey (2009).
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