Supporting Information

The Gas-Phase Reaction Between CF_2O and $CF_3C(O)OH$: Characterization of $CF_3C(O)OC(O)F$.

Matias Berasategui, Gustavo A. Argüello and Maxi A. Burgos Paci*

Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) CONICET-UNC,

Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de

Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Córdoba,

*Corresponding Author: mburgos@fcq.unc.edu.ar

Figure S1. Experimental set-up of the reaction cell. It was connected to a vacuum line where the gases were manipulated, and it was placed in the optical path of a Bruker IFS66V FTIR equipment to record the infrared spectra.

Figure S2. Test for first-order reaction for the $CF_2O + CF_3C(O)OH$ series at constant $[CF_2O]_0$ concentration and τ_{res} at four different temperatures (513, 533, 553 and 573 K). The red straight lines are least-squares fits; correlation coefficients are indicated in the plots.

Figure S3. Energy of the hydrogen bond as a function of X - H distance. At the minimum energy, the distance of H - F is 2,26 Å, and the dimer stabilizes at approximately 9.7 kJ mol⁻¹. As alculations were performed at B3LYP/6-31++G(d,p), the energies are not identical to the G4MP2.

Figure S4. a) Syn conformer, **b)** Anti conformer. The Syn conformer is 3.81 kJ mol⁻¹ more stable than anti. The population (from a Boltzmann distribution) at 543 K is 56.3 % syn and 43.7 % anti.

Figure S5. Reaction progression at 543 K and different initial concentrations of HF: a) Under the experimental conditions of section 3.2 ($[CF_2O]_i \approx 1,5 \times 10^{17}$ and $[CF_3C(O)OH]_i \approx 1,5 \times 10^{18}$ molec cm⁻³). b) Under the conditions of the experiment in section 3.4 ($[CF_2O]_i \approx 2,0 \times 10^{19}$ and $[CF_3C(O)OH]_i \approx 2,0 \times 10^{18}$ molec cm⁻³).

Table S1. Experimental and Calculated Vibrational Wavenumbers for the two more stable conformers (syn and anti) of the $CF_3C(O)OC(O)F$ at B3LYP/6-311++G(3df,2pd) level of theory.

IR Gas ^a	Calculated ^b		assignment/approximate
	syn	anti	description of mode
1953(15)	1960(16)	1952(17)	$v_1 / v(C=O)$ sym. stretch
1883(7)	1882(5)	1894(11)	$v_2 / v(C=O)$ asym. stretch
	1307(1)	1311(3)	$v_3 / v(CF_3)$ umbrella
1229(15)	1228(13)	1228(15)	$v_4 / v(CF_3)$ asym. bend
1199(9)	1191(15)		$v_5 / v(F-C-O)$ asym. stretch
1171(11)	1168(14)	1171(14)	$v_6 / v(CF_3)$ asym. bend
		1164(3)	$v_{6'} / v(F-C=O)$ sym. stretch
1094(41)	1087(28)	1091(31)	$v_7 / v(C-O-C)$ asym. stretch
945(<1)	940(2)	937(1)	$v_8 / v(F-C-O)$ sym. stretch
	881(1)	883(1)	$v_9 / v(C-O-C)$ sym. stretch
	773(1)	768(1)	v_{10} / v(C-O-C) twist
	764(<1)	765(1)	$v_{11} / v(CF_3)$ sym. stretch
	733(1)	705(1)	V ₁₂
	644(1)	642(1)	v_{13} / v(F-C=O) sym. bend
	572(<1)	563(1)	$v_{14}/v(CF_3)$ bend
	516(<1)	530(<1)	$v_{15} / v(CF_3)$ asym. bend
	481(<1)	507(<1)	v ₁₆
	396(<1)	407(<1)	v ₁₇
	326(<1)	331(<1)	v ₁₈
	252(<1)	251(<1)	V ₁₉
	239(<1)	228(<1)	v_{20} / v(C-O-C) sym. bend
	140(<1)	141(<1)	v ₂₁
	84(<1)	64(<1)	$v_{22} / v(C-O-C)$ wagg
	44(<1)	55(<1)	V ₂₃
	32(<1)	32(<1)	V ₂₄
^a Relative absorbance at band maximum in parentheses, ^b Relative IR band intensities in			
parentheses.			