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1 Operators in first quantization form

We employed second quantization in our developments. However, the energy operators can

also be expressed in first quantization, leading to the same results we derived in the main

body. In terms of the position operator, the electron-electron repulsion operator for domain

X can be written as:

ŴX =
1

2

∑

n 6=m

wX(r̂n)wX(r̂m)

|r̂m − r̂n|
. (1)

This interaction operator is a variation of the standard Coulomb repulsion operator:

Ŵ =
1

2

∑

n 6=m

1

|r̂m − r̂n|
. (2)
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The kinetic and electron-nuclei attraction energy operators can be expressed in the usual

form:

T̂ = −
1

2

N
∑

n=1

∇2
r̂n

V̂ =
N
∑

n=1

v(r̂n) ,

(3)

where N is the total number of particles. The operator ŴX,Y also reads:

ŴX,Y =
1

2

∑

n 6=m

wX(r̂n)wY (r̂m)

|r̂n − r̂m|
. (4)

2 Note on the wave functions Ψ̃, Φ̃, and Φ̃0

These wave functions were employed to define the partial HXC functionals. Recall the

definition of the functional Gl,X :

Gl,X [ρ] = min
Φ→ρ
Φ∈L

〈Φ|T̂ + ŴX |Φ〉 , (5)

for a given density ρ, and L = S. We denoted Φ̃ as a wave function that minimizes the right

hand side of the above equation. This can also be expressed as:

Φ̃[ρ] = argmin
Φ→ρ,Φ∈S

〈Φ|T̂ + ŴX |Φ〉 , (6)

where argmin stands for the solution of the minimization problem shown on the right hand

side of Eq. (5). Similarly, for the wave functions Ψ̃ and Φ̃0 we can write:

Φ̃0[ρ] = argmin
Φ→ρ,Φ∈S

〈Φ|T̂ |Φ〉

Ψ̃[ρ] = argmin
Ψ→ρ,Ψ∈H

〈Ψ|T̂ + Ŵ |Ψ〉 .

(7)
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As we mentioned in the main document, these wave functions are functionals of ρ, the reason

being the density constraint shown in the above relations. With a wave function such as

Φ̃[ρ] we can express, for instance, Es,X
Hx as Es,X

Hx [ρ] = 〈Φ̃[ρ]|ŴX |Φ̃[ρ]〉 .

3 Expansion based on KS-DFT for the functional Gs,X

We can express the functional Gs,X as follows:

Gs,X [ρ] = 〈Φ̃|T̂ + ŴX |Φ̃〉 , (8)

an alternative form of the above reads:

Gs,X [ρ] = Ts[ρ] + E s,X
Hxc[ρ] , (9)

where

E s,X
Hx [ρ] = 〈Φ̃|T̂ + ŴX |Φ̃〉 − 〈Φ̃0|T̂ |Φ̃0〉

= 〈Φ̃|ŴX |Φ̃〉+ (〈Φ̃|T̂ |Φ̃〉 − 〈Φ̃0|T̂ |Φ̃0〉) .

(10)

The term in parenthesis resembles a kinetic correlation term. However, the interpretation is

different because Φ̃ is not a correlated wave function, it is the obtained when the constrained

search defining Gs,X is formally carried out over the space of Slater determinants.

In the case where the wave functions Φ̃0 and Φ̃ are close to each other, we can assume

shown in parenthesis in Eq. (10) is negligible. Therefore

E s,X
Hx [ρ] ≈ 〈Φ̃|ŴX |Φ̃〉 . (11)

This is a functional that can be approximated in the uniform electron gas limit, and by

employing standard plane wave functions.
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4 Treatment of Spin

For the case of single-determinants, the starting point is the constrained search:

Gs,X [ρ↑, ρ↓] = min
Φ→ρ↑,ρ↓

〈Φ|T̂ + ŴX |Φ〉 . (12)

The formal definition of the HXC functionals can be performed following the procedure

shown in the main text. Here we only focus on practical aspects of the implementation.

To simplify the expression of energies, it is convenient to introduce the spin density

matrix:

DX,σµν =
∑

j

Cj,σ
µ Cj,σ

ν , (13)

if both indices µ and ν are associated to the atom (or atoms) contained in regionX, otherwise

DX,σµν = 0 (we denote the spin-dependent LCAO coefficients as {Cj,σ
µ }). In coordinate

representation, we approximate the density matrix γX,σ(r
′, r) as

γX,σ(r
′, r) = wX(r

′)wX(r)γσ(r
′, r)

≈
∑

µν∈X

DX,σµνφµ(r
′)φν(r) ,

(14)

where γσ(r
′, r) =

∑

i ψiσ(r
′)ψiσ(r), and {ψiσ} are the spin orbitals, so ψiσ(r) =

∑

µC
i,σ
µ φµ(r).

With the above density matrices the spin decomposed exchange matrix, KX,σµν reads:

KX,σµν =

∫

dµX(r) dµX(r
′) φµ(r

′)
γσ(r, r

′)

|r− r′|
φν(r)

≈

∫

d3r d3r′ φµ(r
′)
γX,σ(r, r

′)

|r− r′|
φν(r) .

(15)

The exchange energy for spin σ is thus expressed as:

KX,σ =
∑

µν

Dσ,µνKX,σµν , (16)
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with Dσ,µν denoting the full spin density matrix, Dσ,µν =
∑

j C
j,σ
µ Cj,σ

ν . Following similar

steps as in the spin-unpolarized case, it can be shown that the ground-state energy reads:

E0 =
∑

iσ

fiσ

∫

d3r ψiσ(r)
[

−
1

2
∇2 + v(r)

]

ψiσ(r) + EH[ρ0]−K ′
X + Ēs

xc[ρ↑, ρ↓] , (17)

where

K ′
X =

1

2

(

KX,↑ +KX,↓

)

, (18)

and fiσ = 1 for occupied orbitals. The partial XC energy is decomposed as:

Ēs
xc[ρ↑, ρ↓] = Ec[ρ↑, ρ↓] +

1

2

{

Es,X
x [2ρX,↑] + Es,X

x [2ρX,↓]
}

, (19)

where Es,X
x is the functional shown in Eq. (27) of the main text, and ρX,σ(r) = γX,σ(r, r).

Minimization of the above functional leads to the eigenvalue equation:

{

−
1

2
∇2 + ĵ↑ + ĵ↓ − k̂X,σ + ūsxc,σ(r) + v(r)

}

ψiσ(r) = ǫiσψiσ(r) , (20)

where

ĵτψiσ(r) =

(

∫

d3r′

∑

j |ψjτ (r
′)|2

|r− r′|

)

ψiσ(r) , (21)

with τ =↑ or ↓, and

k̂X,σψiσ(r) =
∑

j

[

∫

dµX(r
′)
ψiσ(r

′)ψjσ(r
′)

|r− r′|

]

wX(r)ψjσ(r) . (22)

A matrix element of the above operator is KX,σµν = (φµ|k̂X,σ|φν), and is approximated as

shown in Eq. (15). The partial XC potential reads:

ūsxc,σ(r) =
δEc

δρσ(r)
+

δEs,X
x

δρX,σ(r)
. (23)
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5 Hydrogen dissociation energy data

The calculations for the radicals, including the hydrogen atom, proceeded as described in

the previous section. The local spin-density approximation (LSDA) was employed for the

correlation energy (VWN-5 form).

Table S1: Ground-state energies calculated by several methods (with 6-31G basis) for the
molecules involved in the dissociation reaction CH4 → CH3 + H. Energies expressed in
atomic units, except the row below DEH, which expressed in eV units.

Energies LDA-nLE CCSD(T) LDA HF

CH3 -40.0267 -39.6298 -39.4038 -39.5325
H -0.4819 -0.4760 -0.4819 -0.4760

CH4 -40.7355 -40.2999 -40.0898 -40.1802
DEH 0.2269 0.1941 0.2041 0.1717

DEH (eV) 6.17 5.28 5.55 4.67
Deviation (%) 16.9 – 5.1 11.6

The deviation percentage is calculated as 100 %×|(EY−ECCSD(T))/ECCSD(T)|, where EY

is the ground-state electronic energy determined with method Y , which is LDA-nLE, LDA,

or HF.

Table S2: Same as in Table 1, but for the reaction C2H4 → C2H3 +H

Energies LDA-nLE CCSD(T) LDA HF

C2H3 -77.2761 -77.5462 -77.1206 -77.3498
H -0.5205 -0.4760 -0.4819 -0.4760

C2H4 -78.0074 -78.2165 -77.8027 -78.0028
DEH 0.2108 0.1943 0.2002 0.1769

DEH (eV) 5.74 5.29 5.45 4.81
Deviation (%) 8.5 – 3.0 9.0
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