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The Problem

Legacy data of variable interpretation quality

Core is stored around the world in public and private repositories §

In the age of big data, core photos are underutilized

Logging core is a manual, time consuming, subjective process

Probably a core repository, courtesy of Indiana Jones

Photo: Walt Disney Company

Clark Gilbert and Wylie Walker logging at
USGS Core research Center
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Test Case: Quadrant 204, UKCS

11 Wells chosen from Schiehallion Area, West
of Shetlands

¢ Ten wells from reservoir intervals
¢ One non-reservoir well

All data freely available with unencumbered
licensing

Core images downloaded from the British
Geological Survey

Wireline information from UK Oil and Gas
Authority
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Geologic Map from Freeman et al. 2008




Conventional hydrocarbon system,
produced ~400 Million BOE, projected end
of life in 2035

Reservoir targets are T25 to T35 sands in
the Vaila Formation

25-30% Porosity sands, 500-1500 mD

Interpreted to be a confined submarine
channel system (Ward 2017)

Turbidites, hybrid event beds are present in
the cores

Martin and Macdonald, DEVEX 2010




Above: Typical BGS core tray.

Right: Processed core column.
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BGS stores all geologic material from
offshore hydrocarbon wells

Entire inventory was imaged under the
same conditions

Automated workflow to go from core tray to
stacked core column

All pixels are depth registered

Manual QC of depths and some tray editing



~80cm

* Each 32 (high) by 600 (wide) pixel wide image is compared to training data for
texture, color, and patterns. This is done on a sliding window, and predictions are

row-averaged where the windows overlap.

 Differences in lighting minimized due to consistent image acquisition techniques

» Affected by shadows, dirt and dust on core

Example of one image subset, each chunk is ~0.5cm



~80cm

* For each pixel row, the mean and variance is calculated for red, green, blue

and brightness

* XGBoost ML Models use mean/variance values averaged over ~0.5 cm (32

pixels)

* Wavenet (CNN) uses each pixel row individually, but bins the label to 32

pixel high sections
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* Standard wireline data from UK OGA website
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* Not depth shifted

» Standardizing on the entire dataset per curve
* GRis normalized with GR
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* Used Labellmg, a graphical interface to label
the core
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Example of Labellmg



Labels

%// No Core

E— Clay-prone sandstone

High quality representative labeled data is needed for
supervised learning

11 Wells, 500 meters of core material labeled Sandstone

5 Lithologies, 4 of them discussed in Haughton et al. 2009
* Sandstone
* Clay-prone sandstone
* Sandy Mudstone
* Mudstone
* QOil Stained
* No core

Mudstone

~80cm

Sandy Mudstone

Labeling on the sub centimeter level

Sandstone

11



* “Afield of study that gives computers the ability to learn
without being explicitly programmed” — Arthur Samuel

* XGBoost (Chen and Guestrin 2016)
* Boosted Tree Algorithm
* Flexible data input
* Fast
* Can take into account context, did not improve scores

* Bi-Directional WaveNet (Oord et al. 2016)
* Specific type of Convolutional neural network
* Developed for text-to-speech
* Context is important
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Upper: https://towardsdatascience.com/
Lower : https://deepmind.com/
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All models are run on a single NVIDIA 1080 GPU in a standard
Linux desktop workstation

Possible to run on a higher end laptop

Each epoch (iteration) runs from 5s to 60s

From data load to prediction for most wells is under 5
minutes

Limited by memory for larger image datasets



Well dependent, more laterally homogenous the better
* Training data needs to be representative of testing data!

Wireline ~ 20% Accuracy
* As good as guessing!

RGB-G Pseudo Gamma 60-75% Accuracy
* Sand category is 5-10% more accurate than overall score
* N:G overall is within ~5%

Image 60-75% Accuracy
* Similar results, but much more computationally expensive
* Some wells image is better than RGB-G Pseudo Gamma
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~80cm

|

Core column, PGR, predictions, labels
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70%+ Accuracy is a great start!

Explore combined datasets more

Explore different labeling schemes (facies,
flow unit, spatial patterns, etc.)

Natural extension to other data types like
hyperspectral, CT, UV, image logs
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Example of hyperspectral data input and mineralogy output.
http://www.specim.fi/hyperspectral-imaging-in-geology/



« Reservoir property statistics

« Coming up to speed on data trades
« Re-examining legacy datasets

« Augmented interpretation

« Workflow used for other deposit types (carbonates, tidal, etc.)
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