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• Legacy data of variable interpretation quality

• Core is stored around the world in public and private repositories 

• In the age of big data, core photos are underutilized

• Logging core is a manual, time consuming, subjective process
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Probably a core repository, courtesy of Indiana Jones

The Problem

Clark Gilbert and Wylie Walker logging at 
USGS Core research Center
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The Solution
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• 11 Wells chosen from Schiehallion Area, West 
of Shetlands

• Ten wells from reservoir intervals

• One non-reservoir well

• All data freely available with unencumbered 
licensing

• Core images downloaded from the British 
Geological Survey

• Wireline information from UK Oil and Gas 
Authority
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Test Case: Quadrant 204, UKCS

Geologic Map from Freeman et al. 2008



Martin and Macdonald, DEVEX 2010
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Quadrant 204 Geology

• Conventional hydrocarbon system, 
produced ~400 Million BOE, projected end 
of life in 2035

• Reservoir targets are T25 to T35 sands in 
the Vaila Formation

• 25-30% Porosity sands, 500-1500 mD

• Interpreted to be a confined submarine 
channel system (Ward 2017)

• Turbidites, hybrid event beds are present in 
the cores



• BGS stores all geologic material from 
offshore hydrocarbon wells

• Entire inventory was imaged under the 
same conditions

• Automated workflow to go from core tray to 
stacked core column

• All pixels are depth registered

• Manual QC of depths and some tray editing 
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Pre-Processing Raw Core Images

Above: Typical BGS core tray. 

Right: Processed core column. 



• Each 32 (high) by 600 (wide) pixel wide image is compared to training data for 
texture, color, and patterns. This is done on a sliding window, and predictions are 
row-averaged where the windows overlap.

• Differences in lighting minimized due to consistent image acquisition techniques

• Affected by shadows, dirt and dust on core
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Core Image Data

Example of one image subset, each chunk is ~0.5cm 
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• For each pixel row, the mean and variance is calculated for red, green, blue 
and brightness 

• XGBoost ML Models use mean/variance values averaged over ~0.5 cm (32 
pixels) 

• Wavenet (CNN) uses each pixel row individually, but bins the label to 32 
pixel high sections
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“Pseudo Gamma” Data
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• Standard wireline data from UK OGA website

• Not depth shifted

• Standardizing on the entire dataset per curve
• GR is normalized with GR
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Wireline Data

co
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• Used LabelImg, a graphical interface to label 
the core

• Allows for fine scale label divisions (<1cm)
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Labeling Data

Example of LabelImg



• High quality representative labeled data is needed for 
supervised learning

• 11 Wells, 500 meters of core material labeled

• 5 Lithologies, 4 of them discussed in Haughton et al. 2009
• Sandstone
• Clay-prone sandstone

• Sandy Mudstone
• Mudstone
• Oil Stained

• No core

• Labeling on the sub centimeter level
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Labeled Data

No Core

Sandstone

Sandstone

Clay-prone sandstone

Mudstone

Sandy Mudstone
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• “A field of study that gives computers the ability to learn 
without being explicitly programmed” – Arthur Samuel

• XGBoost (Chen and Guestrin 2016)

• Boosted Tree Algorithm 

• Flexible data input

• Fast

• Can take into account context, did not improve scores 

• Bi-Directional WaveNet (Oord et al. 2016)

• Specific type of Convolutional neural network

• Developed for text-to-speech

• Context is important
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Machine Learning Models

Upper: https://towardsdatascience.com/ 
Lower : https://deepmind.com/



• All models are run on a single NVIDIA 1080 GPU in a standard 
Linux desktop workstation

• Possible to run on a higher end laptop

• Each epoch (iteration) runs from 5s to 60s

• From data load to prediction for most wells is under 5 
minutes 

• Limited by memory for larger image datasets
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Computational Expense 



• Well dependent, more laterally homogenous the better

• Training data needs to be representative of testing data!

• Wireline ~ 20% Accuracy

• As good as guessing!

• RGB-G Pseudo Gamma 60-75% Accuracy

• Sand category is 5-10% more accurate than overall score

• N:G overall is within ~5%

• Image 60-75% Accuracy

• Similar results, but much more computationally expensive

• Some wells image is better than RGB-G Pseudo Gamma
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Early Results

Core column, PGR, predictions, labels
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Current Work

• 70%+  Accuracy is a great start!

• Explore combined datasets more

• Explore different labeling schemes (facies, 
flow unit, spatial patterns, etc.)

• Natural extension to other data types like 
hyperspectral, CT, UV, image logs

Example of hyperspectral data input and  mineralogy output. 
http://www.specim.fi/hyperspectral-imaging-in-geology/ 
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Implications

• Reservoir property statistics

• Coming up to speed on data trades

• Re-examining legacy datasets

• Augmented interpretation 

• Workflow used for other deposit types (carbonates, tidal, etc.) 

DOI: 10.6084/m9.figshare.8023835


