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ABSTRACT 

Author: Shellhamer, Nathaniel, J. MSCE 

Institution: Purdue University 

Degree Received: May 2019 

Title: Direct Demand Estimation for Bus Transit in Small Cities 

Major Professors: Samuel Labi and Jon Fricker 

 

Public transportation is vital for many people who do not have the means to use other forms of 

transportation.  In small communities, transit service is often limited, due to funding constraints 

of the transit agency.  In order to maximize the use of available funding resources, agencies 

strive to provide effective and efficient service that meets the needs of as many people as 

possible.  To do this, effective service planning is critical. 

 

Unlike traditional road-based transportation projects, transit service modifications can be 

implemented over the span of just a few weeks. In planning for these short-term changes, the 

traditional four-step transportation planning process is often inadequate.  Yet, the characteristics 

of small communities and the resources available to them limit the applicability of existing 

transit demand models, which are generally intended for larger cities. 

 

This research proposes a methodology for using population and demographic data from the 

Census Bureau, combined with stop-level ridership data from the transit agency, to develop 

models for forecasting transit ridership generated by a given geographic area with known 

population and socioeconomic characteristics.  The product of this research is a methodology 

that can be applied to develop ridership models for transit agencies in small cities.  To 

demonstrate the methodology, the thesis built ridership models using data from Lafayette, 

Indiana. 

 

A total of four (4) ridership models are developed, giving a transit agency the choice to select a 

model, based on available data and desired predictive power.  More complex models are 

expected to provide greater predictive power, but also require more time and data to implement.  

Simpler models may be adequate where data availability is a challenge.  Finally, examples are 
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provided to aid in applying the models to various situations.   Aggregation levels of the 

American Community Survey (ACS) data provided some challenge in developing accurate 

models, however, the developed models are still expected to provide useful information, 

particularly in situations where local knowledge is limited, or where additional information is 

unavailable.
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1. INTRODUCTION 

 Introduction 

The predominant transportation mode is the private automobile in most small cities.  A small city 

is defined for this thesis as any city having a population no larger than 200,000 persons.  Many 

of these cities are planned and built with this assumption in mind. The effect of such auto-centric 

planning is that it is difficult for those without access to a vehicle to get around.  In addition, 

other modes of transport, including shared mobility modes such as ridesharing are often less 

accessible in small cities than they are in larger cities.  Additionally, in smaller cities, less 

expensive pooled rideshare options (such as “Uber Pool” or “Lift Line”) are not generally 

available, meaning that the only rideshare options available are more expensive single-party 

point-to-point options. For these reasons, public transportation in these communities is often a 

lifeline for those who do not have access to a vehicle.  In order to be effective, public 

transportation must adequately serve those who most rely on the service it provides.  At the same 

time, it must operate under the constraints of increasingly limited financial resources, meaning 

that efficient service is also important.  Therefore, service planning, or determining when, where, 

and how often an agency will provide service, is of utmost importance to many agencies.   

 

Yet, many agencies have limited time and resources to adequately develop a comprehensive 

service planning program.  Some make judgments about where to provide service based on 

where new developments are opened, such as apartment complexes or shopping centers.  This 

method can work, but requires that the agency have significant prior experience understanding 

the ridership trends that these types of development can cause, in order to approximate the 

ridership that they may generate.  This can be a challenge for smaller agencies, and those with 

less experience in service planning.  Furthermore, factors such as the lifestyles of the residents of 

a new apartment complex or the type of shopping available at a shopping complex can have a 

significant impact on the ridership that can be expected.  Finally, some agencies have the 

resources to purchase expensive service planning software, but not all agencies have the 

resources to make such investments.   
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Nearly all agencies maintain extensive archives of data required for federal reporting.  This data 

can include information about ridership, fare payment method, vehicle load factors, and schedule 

adherence.  Additionally, a wealth of data about the communities that these transit agencies serve 

is readily available from the Census Bureau (American Community Survey (ACS) 2015).  It is 

believed that combining the agency-level service and ridership data with ACS data will prove 

useful for estimating transit ridership, and this can be an aid to transit agencies in completing 

service planning tasks. 

 

Ridership prediction is useful to agencies for several reasons.  It provides agencies with 

additional information to be used for current service planning tasks, such as modifying existing 

transit service, or adding new transit routes.  Additionally, it provides agencies with a basis with 

which to assess the productivity of existing service.  For example, if the actual ridership on a 

transit route is significantly higher than what is expected from ridership prediction, that route 

could be regarded as “highly performing” and may perhaps be a candidate for future service 

expansions or enhancements.  Ridership prediction also gives agencies a way to forecast what 

ridership may look like should a significant change in population, land use, or transportation in 

an area change.  For example, an agency could use ridership prediction to estimate the change in 

ridership resulting from the opening of a new apartment complex near an existing route.  These 

tasks are essential for any agency to appropriately plan and operate service, and ridership 

prediction methods can aid in more accurately and efficiently completing them. 

 Research Significance 

Existing work on transit demand estimation tends to be limited in scope and generally focused on 

larger cities (generally with populations greater than 1,000,000 persons), which makes it difficult 

to apply to smaller cities.  This research is expected to prove useful to transit agencies in small 

cities for estimating ridership during service planning, an area that is not well represented in 

existing work.  Additionally, the work is expected to demonstrate the usefulness of linking transit 

agency data with other publicly available data sources, such as American Community Survey 

(ACS) data.  It is hoped that this research thesis will provide motivation for additional future 

work in this area. 
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 Study Objectives  

This research proposes a methodology for directly estimating demand for transit using Census 

Bureau data.  The research will use spatial analysis to relate stop-level ridership data to block 

group level ACS data through an aggregation process.  Regression techniques will then be used 

to develop models that estimate yearly block group level ridership using ACS data for the block 

group.  This methodology will be applied to ACS data for the Lafayette/West Lafayette, Indiana 

metropolitan area, and corresponding ridership data from the Greater Lafayette Public 

Transportation Corporation (GLPTC), which provides public transportation service to the area.  

The results of the research will be a set of models that can be used to predict ridership.  These 

models could be used for estimating ridership in areas where transit service is currently not 

provided.  One such area is the Wabash Avenue neighborhood south of downtown Lafayette.  

Beyond the Lafayette/West Lafayette area, it is intended that the methodology and modeling 

process be clear enough so that it can be readily applied to other communities, which may have 

geographic, demographic, or transit service characteristics different than those of the 

Lafayette/West Lafayette area. 

 

 Overall Framework 

Chapter 2 of this thesis presents a literature review which summarizes the existing work in the 

areas of transit service planning, transit ridership estimation, and transit demand modeling.  

Chapter 2 also highlights some of the challenges with existing literature that provide a basis for 

conducting this research.   

 

Chapter 3 provides background information on the Lafayette/West Lafayette area, and the transit 

system serving the area.  It also describes the input data sources, both from GLPTC and from the 

ACS and provides basic summary statistics and information.  It also describes the necessary 

spatial analysis steps undertaken to prepare the data for modeling. 

 

Chapter 4 provides a detailed methodology for the study. It begins with an introduction to the 

regression techniques used in analyzing the data. Next, it provides a detailed description of the 
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modeling process, followed by a discussion of the calibration and validation techniques 

employed to prepare the final models.   

 

Chapter 5 presents the final models, along with all necessary information to apply them for 

ridership predictions.  It also discusses some of the necessary limitations that are associated with 

the models, which will be useful in determining their applicability beyond the Lafayette/West 

Lafayette area.  Chapter 5 concludes with a discussion of the implications of this study. 

 

Chapter 6 begins with a summary of the study, including work performed and major findings.  It 

also presents several opportunities for expansion of the study through future work.  Finally, the 

thesis closes with a thorough reference list and detailed appendices to aid in future application of 

the work. 
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2. LITERATURE REVIEW 

 Introduction 

Transportation planning traditionally begins with the four-step trip-based process to build a 

travel demand model, typically following guidelines outlined by the National Cooperative 

Highway Research Program Report 716 (2012).  This process, while thorough, is data-intensive, 

time-consuming, and has traditionally been focused on private vehicular transportation (as 

opposed to transit) as noted by Pas (1995). 

 

The time, effort, and cost required to develop a complete origin and destination travel demand 

model is not insignificant.  These factors make the process less practical for predicting and 

modeling transit demand.  Transit planning, unlike the process for planning other types of 

transportation infrastructure, is a shorter-term process, due to the shorter amount of time it takes 

to implement a transit project when compared with other infrastructure projects.  This is 

especially true for bus-based local transit systems. 

 Need for Demand Estimation 

Transit agencies are tasked with providing mobility services that are both cost efficient to 

operate, and effective for those who use them.  To do this, they set principles, or service 

standards to guide decisions that are to be made regarding service (Mistretta et. al. 2009).  These 

service standards are often driven by actual or predicted ridership, particularly in cases where 

cost efficiency is a primary goal.  In order to evaluate potential new services, or service changes, 

a predicted ridership is necessary to assess whether or not service is justified.  In these cases, a 

demand estimation process is of utmost importance.  In cases where existing service is being 

evaluated, it is sometimes necessary to predict ridership to compare with the actual ridership to 

determine the performance of a particular transit route, or transit service in a particular 

geographic area.  Additionally, federal grant programs (such as New Starts grants from the 

Federal Transit Administration (FTA)) often require agencies to assess the demand in a 

particular area that may be targeted for improvements (FTA 2018).  For these reasons, it is 

important to have a robust method for estimating transit demand. 
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 Level of Analysis 

An important consideration is the geographic level at which analysis is conducted.  Mckee and 

Miljkovic (2007) noted the important fact that at larger scales of aggregation, resolution and thus 

predictive power may be lost in the data. On this note, work has been done to develop stop-level 

ridership prediction models.  Pulugurtha and Agurla (2012) developed models to estimate bus 

boardings at the stop level in the Charlotte, NC area.  In a similar work, Dill, Schlossberg, Ma 

and Meyer (2013) developed a model to predict stop-level ridership based on the urban form and 

land use characteristics around each stop.  This work was completed for several transit agencies 

of varying size in Oregon.  These models were developed using transit data for a variety of 

system types.  Chu (2004) also developed a model to predict ridership at the stop-level, using 

data from various Census Surveys.  While more applicable to smaller service areas, these models 

are less useful when planning significant service changes, or service to new areas, because 

precise stop locations generally aren’t determined during the planning phase, but rather are 

determined based on location of major trip generators, street geometry, and other geographic 

characteristics according to Giannopoulos (1989).  Thus, too small of a geographic scale can also 

present challenges.   

 

Another factor in choosing a geographic scale is data availability.  While having finely 

aggregated data (for example, at the level of one city block) would be a nearly perfect fit for 

planning transit service, detailed data at this level is not released by the Census Bureau out of 

concern for privacy for survey respondents (ACS 2015).  For these reasons, the block group is 

chosen to be the level of analysis.  It represents a geographic scope larger than the individual 

stop level, which is more useful for preliminary service planning, where specific stop locations 

may not be known yet, and also represents the smallest available geographic unit for which data 

is readily available from the Census Bureau. 

 Analytical Techniques 

Several analytical techniques are available for analysis of transit demand.  Some focus on purely 

statistical models and techniques, while others take a more econometric modeling approach. 
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2.4.1 Statistical Techniques 

A variety of statistical models have been used in the past to evaluate transit ridership.  Li, Yao, 

and Fu (2016) used a neural network model to evaluate urban rail ridership in Shanghai.  The 

model estimated ridership with great accuracy, however it is of limited use during the planning 

phase, because it relies on information regarding an existing rail stop.  Additionally, due to 

significant operational differences between urban rail and local bus systems, this model is of 

limited use to smaller agencies.  Dajani and Sullivan (1976) evaluated ridership using census 

data and a path analysis in which a regression analysis is conducted using variables that are 

known to be correlated.  This technique is potentially useful in certain situations, however the 

analysis was limited to home-to-work trips in a large urban area.  Additionally, the authors had 

access to a complete origin and destination trip database, something that is not available to many 

small transit agencies. 

 

Koppelman (1983) uses a multinomial logit model to predict transit ridership in response to 

changes in transit service.  This approach is similar to that employed in the four-step planning 

process, which also traditionally uses logit models during the mode split phase.  However, it is 

also reliant on the availability of complete origin and destination data, much like the path 

analysis discussed above. 

 

These approaches presented unique statistical approaches for estimating ridership.  However, all 

of them rely either on data that is typically not available to small transit agencies (a complete 

origin-destination trip matrix), or model ridership for systems that have significantly different 

operating characteristics (such as rail transit) than local bus service in small cities. 

2.4.2 Econometric Techniques 

Schmenner (1796) conducted a route-level econometric analysis in which he evaluated various 

bus routes as a function of fare, auto operating costs, and various service and demographic 

characteristics.  He sought to determine the extent to which a particular route was reliant on 

operating subsidies, and what effect (if any) a change in bus company policy with regard to fare 

might have on ridership.  It was found that headway and fare charged are the most significant 

determinants of transit ridership.  While interesting, this particular study is limited in that it is 
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very focused on route revenue, as opposed to ridership.  This is of less use during planning 

phases, particularly in cases where a transit agency is evaluating coverage services, for which 

revenue is rarely a major concern. 

 

Fricker and Shanteau (1986) used a simple demand model that assessed the change in ridership 

due to changes in in-vehicle and out-of-vehicle travel time, and fare.  This model was used to 

develop an optimization program that seeks to minimize operating deficits for an entire small 

city transit network.  They emphasize the need for approaches that are not “data-hungry”, and for 

several potential solutions to aid in decision making using the results.  Both of these principles 

will be applied in this thesis. 

 Variables Considered 

It is also important to consider variable selection when evaluating ridership prediction models.  

Choosing the wrong set of variables can lead to models that either incorrectly predict ridership, 

or are not generally applicable beyond the specific dataset and region of analysis.  The study by 

Pulugurtha and Agurla (2012) made use of land use characteristics in addition to demographics 

and service characteristics.  While the inclusion of land use in the models likely increased their 

predictive power, this data is not easy to obtain, and is generally only available for larger 

metropolitan areas.  This particular study focused on Charlotte, NC.  The Dill, Schlossberg, Ma 

and Meyer (2013) study did include smaller cities as part of the analysis, but also incorporated 

land use data into the models. 

 

If land use data is available, it can be quite helpful in developing ridership models.  However, it 

is equally important to have ridership models that do not incorporate land use, particularly for 

cities where such data is not available, or is incomplete. 

 

Another interesting study is by Cervero, Murakami, and Miller (2010), who estimated ridership 

for bus rapid transit systems in the Los Angeles area.  Although this particular study appears to 

be more useful, it includes service characteristics that are specific to bus rapid transit (BRT), 

such as the availability of park and ride facilities near stations, the presence of dedicated transit 

lanes, and the number of feeder routes stopping nearby.  If this model is applied more generally 
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to local bus service, ridership is predicted to be very near to (or even less than) zero, due to the 

inclusion of BRT-specific variables.  This makes these models much less useful in predicting 

ridership on local transit routes. 

 Summary 

This thesis seeks to expand on many of the works discussed above in order to develop bus transit 

ridership models for small cities.  Estimating demand is important for a variety of reasons, most 

importantly for service planning tasks.  Additionally, it can be used as a tool for evaluating the 

performance of existing services.  In order to estimate demand, an analysis level must be chosen.  

Choosing an analysis level (such as at the stop level) that is too small can result in models that 

are not useful for early-stage service planning.  Similarly, choosing an analysis level that is too 

large (such as at the neighborhood level) can result in a model that is less accurate.  It is also 

important to consider the availability of data when choosing an analysis level. 

 

A variety of analytical techniques can be used to estimate ridership, including statistical methods 

such as regression, or econometric methods such as logit modeling.  However, it is often found 

that the complex data needs for these approaches limit their applicability to larger areas where 

such data is readily available. 

 

Selecting appropriate types of variables is important for developing models that are both accurate 

and useful across a wide variety of possible conditions.  Including data such as land use 

characteristics can render models useless in areas for which this data is unavailable.  

Additionally, including mode-specific parameters (such as those for BRT or rail systems) can 

limit the applicability of the models to areas that operate similar modes.  Choosing the correct 

number of variables is also important, and model clarity must be balanced with accuracy. 
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3. DATA COLLECTION AND PROCESSING 

 Brief overview of GLTPC Network 

The Greater Lafayette Public Transportation Corporation operates public transportation services 

in the Lafayette/West Lafayette area (GLPTC 2018).  The current system map is shown in Figure 

1.  

 

 

Figure 1. Greater Lafayette Public Transportation Corporation system map (GLPTC 2018). 
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With the exception of campus loop services, most regular routes begin and end at the CityBus 

Center, located in downtown Lafayette.  Regular routes operate at 30-minute headways during 

weekday daytime periods.  Additional weekday evening and late-night service is provided along 

select routes, typically at 60-minute headways.  Saturday daytime service is provided on some 

routes at varying headways.  Sunday daytime service is provided on some routes at 60-minute 

headways. 

 

GLPTC also provides campus service to Purdue University, in the form of high-frequency loop 

routes, as well as shuttle services to nearby student apartment complexes.  These services are 

only offered during times when Purdue classes are in session.  Paratransit service provides, as 

required, curb-to-curb service to those unable to use regular service due to a disability.  Finally, 

tripper service is provided to the West Lafayette Community School Corporation (WLCSC).  

Paratransit and WLCSC service are not considered as part of this analysis. 

 Description of GLPTC data 

Ridership data is collected by GLPTC using automated passenger count and automated vehicle 

location devices installed on each bus in the fleet.  These devices automatically count individuals 

as they pass through the door of the bus and attribute this count to the bus stop location using the 

vehicle location.  Ridership data is also recorded by the farebox installed on each bus, with the 

operator keying the type of fare each passenger pays.  The result of either method is a count of 

bus boardings at each stop in the GLPTC system.  This data is aggregated into monthly totals.  

For the purposes of this study, the monthly totals are further aggregated into yearly totals.  This 

is done to account for monthly fluctuations in ridership due to weather, road construction, Purdue 

classes being in session, or other factors outside the scope of this research.   

 

Route and schedule data are needed for each service operated by GLPTC.  This data is used both 

to link bus stops to the routes they are served by, as well as to assess the level of service 

provided to each stop.  According to the Transit Capacity and Quality of Service Manual (TCRP 

2013), two important parameters for assessing quality of transit service are headway and span of 

service.  Headway refers to the time between buses, and is the inverse of frequency.  For 

example, a frequency of 2 buses/hour implies a headway of 30 minutes between buses.  The term 
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“Span of service” (SS) refers to the number of hours per day that service is provided to a 

particular area or stop. 

 

These two parameters vary with the service day.  Service is generally provided at longer 

headways during times of lower demand (evenings and weekends), and shorter spans of service 

are typically provided during those times as well.  To account for this, an average yearly 

headway and average yearly span of service are calculated for each route.  These are shown in 

Table 1.  For example, Route 1A Market Square has a yearly average span of service of 16 hours 

per day, and a yearly average headway of 36 minutes. It is noted that 2015 was chosen for the 

analysis year because fewer ridership impacts were experienced in that year due to major 

construction projects and resulting service changes. 
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Table 1. Yearly average span and headway for all routes in 2015. 

Route 

Number Route Name 

Yearly Average Span 

(Hours:Minutes/Day) 

Yearly Average 

Headway 

(Hours:Minutes) 

1A Market Square 16:00 0:36 

1B Salisbury 16:30 0:38 

2A Schuyler 11:45 0:34 

2B Union 11:45 0:34 

3 Lafayette Square 14:04 0:40 

4A Tippecanoe Mall 15:55 0:36 

4B Purdue West 16:04 0:37 

5A Happy Hollow 13:10 0:30 

5B Northwestern 13:05 0:35 

6A South 4th Street 14:00 0:37 

6B South 9th Street 12:15 0:30 

7 South Street 16:21 0:38 

8 Willowbrook/Klondike Express 3:30 0:30 

12 Gold Loop 11:15 0:15 

13 Silver Loop 11:10 0:05 

14 Black Loop 6:20 0:30 

15 Tower Acres 11:00 0:10 

16 Bronze Loop 11:05 0:30 

17 Ross Ade 11:00 0:10 

18 Nightrider 4:00 0:20 

19 Inner Loop 10:48 0:15 

20 AvTech 10:25 0:20 

21 The Avenue 15:09 0:26 

23 Connector 12:10 0:17 

27 Outer Loop 10:48 0:15 

Summary Statistics  
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Table 2 presents summary statistics regarding the service characteristics and of GLPTC overall.  

These statistics include information about all routes included in Table 1, which includes both 

regular/city routes and campus loop service. 
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Table 2. Summary statistics for GLPTC operations in 2015. 

Parameter Value Unit 

Annual unlinked passenger trips 4,318,655 Trips 

Annual passenger miles 12,027,695 Miles 

Average headway 0:27 Hours:Minutes 

Average span of service 12:00 Hours/day 

Vehicles operated in maximum service 55 Vehicles 

Annual vehicle revenue miles 1,773,427 Miles 

Number of stops served 802 Stops 

Number of block groups served 71 Block groups 

 

Figure 2 presents ridership for each block group visually.  High ridership is indicated by areas of 

magenta and blue, while lower ridership is indicated by areas of yellow and orange.  Only block 

groups included in the study (those with bus stops in them) are shown. 

 

Figure 2. Ridership by block group. 
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Figure 3 presents population density expressed as persons/square mile for each block group.  

Together, Figure 2 and Figure 3 show why it often is not adequate to use only population density 

for ridership modeling.  An area with high population density does not necessarily guarantee 

high transit ridership, and an area with lower population density does not imply low transit 

ridership. 

 

Figure 3. Population density (persons/square mile) by block group. 

 

Figure 4 presents a plot of BG annual ridership and BG population density.  A weak positive 

trend can be observed, indicating that ridership may be positively correlated with population 

density.  This will be investigated during the modeling process. 
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Figure 4. Scatterplot of BG ridership and BG population density. 

 

Figure 5 presents a plot of BG annual ridership versus BG average span of service.  It should be 

noted that BG SS values tend to be clustered in the 12-16 hour region, due to the fact that most 

routes operate with longer spans of service (>12 hrs).  This clustering is a direct result of a policy 

decision made by GLPTC.  It can be seen that a positive correlation exists between ridership and 

span of service.  This supports the claim that higher quality transit service attracts more riders 

than lower quality transit service. 
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Figure 5. Scatterplot of BG ridership and BG average span of service. 

 Description of ACS data 

Data from the 2011-2015 American Community Survey (ACS) 5-Year Estimates for Tippecanoe 

County, Indiana was used to build models (ACS 2015).  Five-year estimates were chosen to 

achieve the greatest reliability compared with 1- or 3-year estimates.  The GLPTC service area is 

entirely contained within Tippecanoe County.  Data were obtained at the block-group level, 

because this is the smallest geographic scale for which data is available.  Block groups that are 

not currently served by transit service were excluded from analysis (for example, rural block 

groups).  There are over 300 datasets available from the Census Bureau. However, a sample of 

datasets is taken in order to make the analysis manageable.  This sample was taken such that 

information about key demographic indicators believed to influence transit ridership are included 

in the sample.  Table 3 lists these datasets. 
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Table 3. ACS datasets selected for analysis. 

ID Title 

B01003 Total Population 

B02001 Race 

B03002 Hispanic or Latino Origin by Race 

B03003 Hispanic or Latino Origin 

B08301 Means of Transportation to Work 

B08302 Time Leaving Home to go to Work 

B08303 Travel Time to Work 

B11001 Household Type 

B11016 Household Type by Household Size 

B14007 School Enrollment by Detailed Level of School for the Population 3 Years and Over 

B15003 Educational Attainment for the Population 25 Years and Over 

B16002 Household Language by Household Limited English Speaking Status 

B17021 Poverty Status of Individuals in the Past 12 Months by Living Arrangement 

B19001 Household Income in the Past 12 Months (In 2015 Inflation-Adjusted Dollars) 

B19013 Median Household Income in the Past 12 Months (In 2015 Inflation-Adjusted Dollars) 

B19025 Aggregate Household Income in the Past 12 Months (In 2015 Inflation-Adjusted Dollars) 

B19055 Social Security Income in the Past 12 Months for Households 

B19056 Supplemental Security Income (SSI) in the Past 12 Months for Households 

B19057 Public Assistance Income in the Past 12 Months for Households 

B19059 Retirement Income in the Past 12 Months for Households 

B19101 Family Income in the Past 12 Months (In 2015 Inflation-Adjusted Dollars) 

B19301 Per Capita Income in the Past 12 Months (In 2015 Inflation-Adjusted Dollars) 

B21002 Period of Military Service for Civilian Veterans 18 Years and Over 

B23025 Employment Status for the Population 16 Years and Over 

B23027 

Full-Time, Year-Round Work Status in the Past 12 Months by Age for the Population 16 

Years and Over 

B25001 Housing Units 

B25002 Occupancy Status 

B25003 Tenure 

B25004 Vacancy Status 

B25006 Race of Householder 

B25008 Total Population in Occupied Housing Units by Tenure 

B25010 Average Household Size of Occupied Housing Units by Tenure 

B25017 Rooms 

B25024 Units in Structure 

B25041 Bedrooms 

B25056 Contract Rent 

B25063 Gross Rent 

B25070 Gross Rent as a Percentage of Household Income in the Past 12 Months 

B25075 Average Home Value (Dollars) 

B25077 Median Home Value (Dollars) 

B25081 Mortgage Status 

B27010 Types of Health Insurance Coverage by Age 

C15010 Field of Bachelor’s Degree for First Major for the Population 25 Years and Over 

C17002 Ratio of Income to Poverty Level in the Past 12 Months 

C24010 Sex by Occupation for the Civilian Employed Population 16 Years and Over 
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 Data Limitations 

Ideally, data for a planning-level study would be available at a geographic scale of adequate 

granularity (such as block-level) so that more spatially precise ridership estimations could be 

made.  This is particularly an issue for lower density areas located further from the downtown 

area, because these tend to be represented by larger block groups in the census data.  However, 

due to concerns about privacy, census data is only available at the aggregated block group level.  

This impedes estimation of ridership for larger block groups, since these block groups likely 

exhibit greater heterogeneity in land use, socioeconomic, and demographic trends.  To 

accommodate the fact that block groups are of varied geographic size, many of the ACS data 

points are converted to densities using the area of each block group for use in the modeling 

process. 

 

Also, ACS data does not adequately represent the student population well.  Due to the fact that 

the student population is much more transient than the non-student population, it is difficult to 

obtain accurate data about the student population from the ACS.  By the time a student 

completes an ACS survey and that data is included in a published dataset, it is very likely that the 

student has moved and is no longer a part of the study population.  For these reasons, it is 

difficult to make accurate ridership estimations for Purdue’s campus, and the surrounding 

student housing areas.  To overcome this, it can be assumed that the outgoing student who 

completed the ACS survey would have similar characteristics and background with the incoming 

student who replaced them.  A separate study focusing on estimating ridership for campus areas 

at a smaller geographic scale would present a good direction of future work in this domain. 

 Spatial Analysis 

Ridership data is geocoded, meaning that a particular ridership value can be associated with the 

bus stop (and location) where the boarding occurred.  ACS data can also be displayed spatially 

via the use of shapefiles and geographic information systems (GIS) software, which allow the 

data to be overlaid on maps of transportation networks, natural features, or other useful maps.  

This is necessary in order to relate ridership with the characteristics of nearby block groups.  

Additionally, this can also be useful in conjunction with the ridership predictions developed as a 
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result of this research when used for detailed route planning that may occur later in the service 

planning process.  Information about ridership and demographic characteristics for block groups 

is obtained from this spatial analysis, and is overlaid on the existing transportation (road) 

network using GIS software.  This can be very useful after it is determined (through ridership 

estimation) that a particular service change is feasible in planning the precise route and stop 

locations to serve a particular area. 

 Proportional Ridership Allocation 

Ridership and schedule data from GLPTC is represented at the bus stop level.  While this is 

useful for analysis of current service, it is less useful for service planning tasks, because precise 

bus stop locations are typically not determined during the initial planning phase.  Additionally, 

ACS data are represented at the block group level.  In order to develop models, the geographic 

scale of the ridership and schedule data must be adjusted.  In this thesis, this was done via a 

spatial aggregation process. 

 

For transit, a catchment area represents the area surrounding a transit stop from which that stop is 

expected to pull riders.  Typically, this is represented using some radius of distance in all 

directions from the stop.  For local transit, a catchment area with radius of 1/8 mile surrounding 

the bus stop is suggested (APTA 2009). 

 

Using GIS tools, these catchment areas were overlaid on the block groups.  This is shown in 

Figure 6.  It should be noted that the block groups have been color-coded by population in Figure 

6 to distinguish each block group from its neighbors. 
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Figure 6. 1/8 mile bus stop catchment areas overlaid on block groups. 

 

Next, the percentage of each catchment area 𝑖 that falls into each block group is determined (𝑃𝑖), 

again using GIS tools.  For a catchment area that lies entirely within one block group, this will be 

100%.  For one that lies on a street bordering two block groups, approximately 50% of the 

catchment area will be allocated to each block group.  Doing this accounts for the fact that riders 

may cross block group boundaries to board transit. 

 

Next, these percentages are multiplied by the total annual ridership at each stop (𝑅𝑖𝑑𝑒𝑟𝑠𝑖), to 

determine the percentage of that ridership that originated from each block group (BG Ridership).  

Lastly, the “fractional ridership” for 𝑛 stops in a block group are added together.  This results in 

a single ridership value for each block group, representing the total ridership from that block 
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group, adjusted to account for bus stops that may serve more than one block group.  The process 

for calculating total block group ridership is represented by Equation (1). 

 

𝐵𝐺 𝑅𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝 = ∑ 𝑅𝑖𝑑𝑒𝑟𝑠𝑖 × 𝑃𝑖

𝑛

𝑖=1

  (1) 

 

A similar process involving weighted averages is used to obtain an average headway and span of 

service value for each block group.  Instead of ridership, the percentage of each catchment area 𝑖 

(𝑃𝑖) is multiplied by the respective average headway value for each stop, i (𝐻𝑊𝑖).  In this case, 

the percentage of overlapping area (𝑃𝑖) is used as a weighting factor.  These values are added for 

all catchment areas overlapping a particular block group.  This value is divided by the total of all 

the percentages for all catchment areas overlapping the block group to complete the weighted 

average calculation. Equation (2) presents this calculation.  The result is an average headway 

value for each block group.  The same is done for span of service (SS).  The average span of 

service value for each stop is represented by 𝑆𝑆𝑖.   This calculation is shown in Equation (3). 

 

      

𝐴𝑣𝑔. 𝐵𝐺 𝐻𝑊 =
∑ 𝐻𝑊𝑖 × 𝑃𝑖

𝑛
𝑖=1

∑ 𝑃𝑖
𝑛
𝑖=1

 
 

(2) 

 

 

𝐴𝑣𝑔. 𝐵𝐺 𝑆𝑆 =
∑ 𝑆𝑆𝑖 × 𝑃𝑖

𝑛
𝑖=1

∑ 𝑃𝑖
𝑛
𝑖=1

 
 

(3) 

 

 

For example, consider the simplified case (shown in Figure 7) of a block group consisting of 

only two bus stops, A, and B near the BG boundaries.  Stop A had a total yearly ridership of 

4,260, and 20% of the stop catchment area is located in the block group (80% is located in an 

adjacent block group).  Similarly, stop B had a total yearly ridership of 380, and 95% of the stop 

catchment area is located in the block group (only 5% is located in an adjacent block group).  

The total BG ridership for the block group can be calculated as shown in Equation (5). 
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𝐵𝐺 𝑅𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝 = 𝑅𝑖𝑑𝑒𝑟𝑠𝐴 × 𝑃𝐴 + 𝑅𝑖𝑑𝑒𝑟𝑠𝐵 × 𝑃𝐵 
(4) 

𝐵𝐺 𝑅𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝 = 4,260 × 0.20 + 380 × 0.95 = 1,213 𝐵𝐺 𝑟𝑖𝑑𝑒𝑟𝑠 (5) 

 

A similar calculation could be completed for the weighted BG average headway and SS, 

replacing ridership values with average headway and SS values.  The percentage of overlapping 

area (𝑃𝑖) for each stop would remain the same.  In this case, the result would be divided by the 

sum of all 𝑃𝑖 values in the block group, as here these values are used as weighting factors, not 

overlapping areas.  In this case, the greater the amount of overlapping area, the greater the 

influence that particular stop has on the overall BG average headway and SS. 

 

The result of these calculations is one ridership, average headway, and average span of service 

value for each block group.  These values are now at the same spatial scale as the ACS data and 

can be used in the modeling process. 

 Summary 

Data from GLPTC and the Census Bureau are leveraged to conduct this analysis.  Before the 

modeling process can begin, it is important to understand the data so that logical conclusions can 

be made later, once the modeling process is complete.  It is also important to understand the 

limitations of the input data, because these likely impact the predictive power of the models that 

are developed.  Lastly, it is important that both the GLPTC data and the ACS data are 

represented at the same geographic scale before conducting any analysis.  In this case, GLPTC 

data had to be aggregated through a proportional process in order to match the geographic scale 

Figure 7. BG ridership calculation example. 

Block Group 

Catchment 

Area A 

𝑅𝑖𝑑𝑒𝑟𝑠𝐴 = 4,260 

𝑃𝐴 = 20% 

  

Catchment 

Area B  

𝑅𝑖𝑑𝑒𝑟𝑠𝐵 = 380 

𝑃𝐵 = 95% 
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of the ACS data, due to the fact that ACS data is not widely available at smaller geographic 

scales.  These steps help to ensure that the modeling process is more successful, and that 

predictions made as a result of the models are meaningful. 
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4. STUDY METHODOLOGY 

 Introduction 

It is desired to develop models that relate ridership at the block group level to a variety of 

independent variables ranging from service characteristics to demographics to population.   

Additionally, it is critical that the final models are simple and clear, so that they can be readily 

applied by someone who may not have knowledge of complex modeling techniques.  Still, the 

models must be accurate, so as to be useful for the planning tasks previously described.  For 

these reasons, regression analysis is used to build models. 

 

Regression seeks to describe the relationship between variables (Kutner 2005).  A model can be 

developed to predict the value of one variable (the dependent variable) using information known 

about another variable (the independent variable).  For example, it might be possible to predict 

the travel time on a particular road from information about the traffic volume carried on that 

road.  In simple linear regression (SLR), the functional form is Equation (6). 

 

𝑌 = 𝛽0 + 𝛽1𝑋  (6) 

 

In this example, 𝑌 represents the dependent variable that is being predicted (travel time, in the 

example above), while 𝑋 represents the independent variable that is used for the prediction 

(traffic volume in the example).  𝛽0 and 𝛽1 represent numerical coefficients that are determined 

during the regression modeling process. 

 

In many cases, a better model (one that offers a better prediction for 𝑌) can be developed through 

the inclusion of multiple independent variables.  In multiple linear regression (MLR), it is 

possible to include several independent variables.  The functional form generally appears as 

shown in Equation (7). 

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛  
(7) 
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Here, multiple independent variables (𝑋1, 𝑋2, … , 𝑋𝑛) are included, each with a regression 

coefficient.  This allows for potentially increased accuracy in comparison to simple linear 

regression. 

 

In some cases, the relationship between independent and dependent variables is not linear.  In 

these cases, nonlinear regression may provide better models.  Unlike SLR and MLR models, 

nonlinear regression models can take many different forms.  In this case, analysis of the type of 

relationship each independent variable has with the dependent variable can be useful in 

suggesting the most appropriate model type.  This relationship could be linear, exponential, 

logarithmic, inverse, or other forms. 

 

In this thesis, several SLR, MLR, and nonlinear regression models will be developed.  Once 

these models are developed, it is important to assess how well they predict the desired result, in 

order to select the most desirable model.  There are many ways of doing this, one of which is to 

evaluate the coefficient of determination, or 𝑅2 value for each model.  𝑅2 is a ratio of the 

variation in variables explained by the model to the total variation in variables.  Values range 

from zero to one, with a value of one indicating that the model perfectly explains all of the 

witnessed variation. 

 

𝑅2 will always increase as additional variables are added to the model, regardless of whether or 

not they actually increase the model’s predictive power.  For these reasons, it is often better to 

evaluate models using the adjusted 𝑅2, which adjusts the original 𝑅2 according to how many 

variables are included in the model. 

 Regression Analysis 

Regression techniques are used to develop ridership models using the described data.  Block 

group ridership (𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅
) is used as the dependent variable, while the ACS data and service 

characteristics (average headway and average span of service) are used as independent variables.  

The regression models were developed using SPSS statistical software (IBM 2013). 
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 Model Building 

The stepwise regression technique was selected for model building as a way to accommodate the 

large number of potential independent variables.  In the forward stepwise technique, F-value is 

used as the decision value.  If the addition of an additional predictor improves the statistical 

significance of the overall model, the predictor is retained.  If not, the predictor is omitted.  This 

process is repeated until none of the remaining predictors improve the significance of the model.  

The resulting models from this procedure are shown in Section 5.3. 

 

 Model Selection 

Several methods can be used to select the best of several potential models.  A common selection 

method is using the 𝑅2 criterion, or more properly, the adjusted 𝑅2 for the reasons outlined 

previously.  A model with a larger adjusted 𝑅2 value is generally more desirable than one with a 

smaller value, because this indicates that the model has better predictive power.  However, it is 

also important to consider the overall model complexity in choosing a model.  Adding terms to a 

model means that additional data is required for the model to be applied, so it should only be 

done in cases where additional terms provide a significant benefit in the predictive power of the 

model.  In some cases, it may be desirable to select a model with a slightly lower value of 𝑅2 or 

adjusted 𝑅2 if it requires less input data to use it. 

 Model Validation 

After the models are developed, it is important to perform steps to ensure that they are accurately 

predicting ridership.  To do this, the root mean square error (RMSE) is used.  RMSE is a way to 

evaluate the difference between predicted and observed values, also known as residuals.  In 

conjunction with RMSE, the F-value is used to assess the level of significance of a particular 

model.  𝑅2 is also presented, as described previously as a commonly used measure for evaluating 

the predictive power of a particular model. 

 

Another, more visual method for evaluating the models is to review plots of the observed values 

plotted against the predicted values. In an ideal scenario, these would fall along the diagonal line 
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𝑦 = 𝑥, meaning that each observed data point is perfectly predicted by the model.  The better the 

model, the closer the plotted points will fall to this ideal case.  These plots are shown in Section 

5.5. 
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5. RESULTS AND DISCUSSION 

 Introduction 

Chapter 4 provided an overview of the regression process used to develop the ridership models.  

This chapter presents the models and discusses their accuracy.  Several models will be presented, 

each with different levels of predictive power, and different numbers of variables.  This gives the 

agency several options to choose from when predicting ridership.  In some cases, it may be 

acceptable to sacrifice some accuracy in prediction for a model that is simpler and requires less 

input data, such as in cases where an estimate needs to be obtained quickly without time to 

gather lots of input data, or in cases where limited input data is available.  However, in other 

cases, accuracy may be more important, and in those cases it may make more sense to choose a 

more complex model, which requires more input data, but provides a more accurate prediction, 

indicated by a larger 𝑅2 or smaller RMSE.  For these reasons, several models are presented in 

this chapter. 

 

 Summary of Variables 

A summary of all candidate variable names and a brief explanation of each variable is provided 

in Table 4. 
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Table 4. Summary of variable names and descriptions. 

Variable Name Description Unit 

𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅
 Ridership total for BG (dependent variable) Persons 

𝐵𝐺_𝐴𝑣_𝑆𝑝 Average span of service for BG Hours1 

𝐵𝐺_𝐴𝑣_𝐻𝑤 Average headway for BG Hours 

𝑀𝑒𝑑𝐻𝐻𝐼𝑛𝑐 Median household income Dollars ($) 

𝑃𝐴𝐼𝑛𝑐𝑑𝑒𝑛 Density of persons receiving public assistance income 

(food stamps, etc.) 

Persons/sq. mi. 

𝑅𝑒𝑐𝑅𝑒𝑡𝐼𝑛𝑐𝑑𝑒𝑛 Density of persons receiving retirement income 

(social security, etc.) 

Persons/sq. mi. 

𝑃𝑒𝑟𝐶𝑎𝑝𝐼𝑛𝑐 Per capita income Dollars ($) 

𝑀𝑒𝑑𝐻𝑉𝑎𝑙𝑢𝑒 Median home value Dollars ($) 

𝑃𝑜𝑝𝑑𝑒𝑛 Population density Persons/sq. mi. 

𝐻𝑠𝑔𝑑𝑒𝑛 Total housing density Housing units/sq. mi. 

𝑊ℎ𝑖𝑡𝑒𝑑𝑒𝑛 Density of persons who indicated their race as White Persons/sq. mi. 

𝐵𝑙𝑎𝑐𝑘𝑑𝑒𝑛 Density of persons who indicated their race as Black Persons/sq. mi. 

𝐴𝑠𝑖𝑎𝑛𝑑𝑒𝑛 Density of persons who indicated their race as Asian Persons/sq. mi. 

𝑀𝑢𝑙𝑡𝑑𝑒𝑛 Density of persons who indicated their race as 

multiracial 

Persons/sq. mi. 

𝐻𝑙𝑎𝑡𝑑𝑒𝑛 Density of persons who indicated they are of 

Hispanic/Latino origin 

Persons/sq. mi. 

𝐴𝑢𝑡𝑜𝑂𝑑𝑒𝑛 Density of persons who reported owning at least one 

automobile 

Persons/sq. mi. 

𝐻𝐻𝑑𝑒𝑛 Density of family households2 Households/sq. mi. 

𝑁𝑜𝑛𝑓𝑎𝑚𝑑𝑒𝑛 Density of nonfamily households3 Households/sq. mi. 

𝐸𝑛𝑟𝑜𝑙𝑙𝑑𝑒𝑛 Density of persons enrolled in some form of 

education (K-college) 

Persons/sq. mi. 

𝐸𝑛𝑔𝑙𝑑𝑒𝑛 Density of persons who reported English as their 

primary language 

Persons/sq. mi. 

𝑆𝑝𝑎𝑛𝑑𝑒𝑛 Density of persons who reported Spanish as their 

primary language 

Persons/sq. mi. 

𝑃𝑜𝑣𝑑𝑒𝑛 Density of persons with incomes below the federal 

poverty line4 

Persons/sq. mi. 

𝐸𝑚𝑝𝑙𝑑𝑒𝑛 Density of employed persons Persons/sq. mi. 

                                                 
1 For analysis, the Hours:Minutes notation is converted into Hours (using a decimal).  For example, 0:15 represents 

15 minutes, or 0.25 Hours. 
2 The Census Bureau defines a family as “…a group of two people or more (one of whom is the householder) related 

by birth, marriage, or adoption and residing together.” (Census Bureau 2018). 
3 The Census Bureau defines a nonfamily household as “…a householder living alone (a one-person household) or 

where the householder shares the home exclusively with people to whom he/she is not related.” (Census Bureau 

2018). 
4 The Census Bureau defines several poverty thresholds based on family size and annual income (Census Bureau 

2018). Those with total incomes (family or individual) below these thresholds are considered to be in poverty, while 

those with incomes above are not. 
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Table 4 continued. 

𝑈𝑛𝑒𝑚𝑝𝑙𝑑𝑒𝑛 Density of unemployed persons Persons/sq. mi. 

𝑂𝑤𝑛𝑑𝑒𝑛 Density of homeowners Persons/sq. mi. 

𝑅𝑒𝑛𝑡𝑑𝑒𝑛 Density of renters Persons/sq.mi. 

𝑉𝑒𝑡𝑑𝑒𝑛 Density of veterans Persons/sq. mi. 

𝑉𝑎𝑐𝑑𝑒𝑛 Density of vacant housing units Housing units/sq. mi. 

 

 Summary of Models 

Several models were developed to predict ridership from a variety of input variables.  The first 3 

models are summarized in Table 5. 

Table 5. Model parameters and significance. 

Model Coefficient Std. 

Error 

VIF 𝑨𝒅𝒋. 𝑹𝟐 F-Value 

1 (Constant) 12658.801 3421.079  0.181 153.19*** 

 Pov_den 8.133 2.059 1.000   

2 (Constant) 26132.393 4942.428  0.305 109.214*** 

 Pov_den 7.431 1.908 1.011   

 Own_den -17.300 4.887 1.011   

3 (Constant) 20274.308 26242.672  0.501 68.73*** 

 PerCapInc -1.982 0.411 1.024   

 Enroll_den 21.227 4.444 1.024   

 White_den -14.789 3.250 1.024   

 MedHValue -0.107 0.042 1.024   

 BG_Av_Sp 4,435.430 1741.708 1.024   

 Vet_den 59.302 23.882 1.024   
***Indicates that the model was found to be statistically significant at the 0.05 significance level. 

 

Of the three models, Model 1 includes the fewest terms, while Model 3 contains the most. Model 

3 has a larger adjusted R-square, meaning it has greater predictive power than Model 1.  Model 2 

had the smallest standard error of the 3 models.  Multiple linear regression can exhibit issues 

with multi-collinearity, so it is important to check models for these issues in MLR models.  A 

common way of doing this is with variance inflation factors (VIF).  VIFs are a measure of how 

much multi-collinearity exists in a particular model (NIST 2003).  VIFs have values that range 

from one to ten, with higher values indicating that significant multicollinearity issues exist.  

Here, all models have VIFs below 5, which indicates that multi-collinearity is likely not a major 

issue with the models. 
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In an effort to obtain a better fit to the data, several alternate forms of the model were tried. 

Model 4 is a semi-log transformation of Model 3, and is represented by Equation (8).  The 

coefficients for this model are summarized in Table 6. 

 

𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅
= 𝐴 + (𝐵 × ln(𝑃𝑒𝑟𝐶𝑎𝑝𝐼𝑛𝑐)) + (𝐶 × ln(𝐸𝑛𝑟𝑜𝑙𝑙𝑑𝑒𝑛)) + (𝐷 × ln(𝑊ℎ𝑖𝑡𝑒𝑑𝑒𝑛))

+ (𝐸 × ln(𝑀𝑒𝑑𝐻𝑉𝑎𝑙𝑢𝑒)) + (𝐹 × ln (𝐵𝐺_𝐴𝑉_𝑆𝑝)) + (𝐺 × ln(𝑉𝑒𝑡𝑑𝑒𝑛)) 
(8) 

 

 

 

 

Table 6. Additional model parameters and significance. 

Model Coefficient Std. Error 𝑨𝒅𝒋. 𝑹𝟐 F-Value 

4 A (Constant) 321809.395 99713.817 0.449 17.21*** 

 B -25639.591 7162.264   

 C 14078.154 5947.852   

 D -21794.726 7840.020   

 E -2819.557 914.237   

 F 24965.210 21611.615   

 G -1091.584 2369.901   
***Indicates that the model was found to be statistically significant at the 0.05 significance 

level. 
 

 Model Interpretation 

Model 1 (represented by Equation (9) below) is a SLR model incorporating a positive constant 

term and a positive coefficient on the variable 𝑃𝑜𝑣𝑑𝑒𝑛, which represents the density 

(persons/square mile) of persons with incomes below the poverty line in a particular block group.   

 

𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅
= 12,658.801 + (8.133 × 𝑃𝑜𝑣𝑑𝑒𝑛) 

(9) 

 

Model 2 (represented by Equation (10)) is a MLR model that incorporates a positive constant 

term, and a positive coefficient on the variable 𝑃𝑜𝑣𝑑𝑒𝑛.  However, Model 2 includes an 

additional term, 𝑂𝑤𝑛𝑑𝑒𝑛 which represents the density of homeowners in a particular block 

group.  This term has a negative coefficient.   
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𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅
= 26,132.393 + (7.431 × 𝑃𝑜𝑣𝑑𝑒𝑛) − (17.300 × 𝑂𝑤𝑛𝑑𝑒𝑛) (10) 

 

The constant in these models is positive, which is intuitive because a negative intercept value 

would indicate that transit ridership could be less than zero under certain conditions.  In both 

models, the coefficient of 𝑃𝑜𝑣𝑑𝑒𝑛 is positive, indicating a positive relationship between ridership 

and the number of low-income persons in a particular block group.  When the density of low-

income persons in a block group increases, transit ridership is also expected to increase.  This is 

intuitive, because those experiencing poverty often have fewer choices for transportation than 

those not experiencing poverty.  

 

The coefficient for 𝑂𝑤𝑛𝑑𝑒𝑛 is negative, meaning that, as the number of homeowners in a block 

group increase, transit ridership falls.  This is also logical, because individuals who own homes 

are generally more likely to own cars, and therefore less likely to choose public transit for their 

transportation needs.  Since most homeowners are also supporting a family, this trend is also 

supported by research that validates the idea that transit becomes less appealing to families 

because they need the flexibility to link trips to care for dependents and accomplish work and 

personal tasks (TCRP 1998), which can be more difficult using transit. 

 

Model 3 (represented by Equation (11)) is also a MLR model.  It incorporates a positive constant 

term, positive coefficients on enrollment density (𝐸𝑛𝑟𝑜𝑙𝑙𝑑𝑒𝑛), block group average span of 

service (𝐵𝐺𝐴𝑣𝑆𝑝), and veteran density (𝑉𝑒𝑡𝑑𝑒𝑛).  It also includes negative coefficients on per 

capita income (𝑃𝑒𝑟𝐶𝑎𝑝𝐼𝑛𝑐), the density of persons who indicated their race as white 

(𝑊ℎ𝑖𝑡𝑒𝑑𝑒𝑛), and median home value (𝑀𝑒𝑑𝐻𝑉𝑎𝑙𝑢𝑒). 

 

𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅
= 20,274.308 − (1.982 × 𝑃𝑒𝑟𝐶𝑎𝑝𝐼𝑛𝑐) + (21.227 × 𝐸𝑛𝑟𝑜𝑙𝑙𝑑𝑒𝑛)

− (14.789 × 𝑊ℎ𝑖𝑡𝑒𝑑𝑒𝑛) − (0.107 × 𝑀𝑒𝑑𝐻𝑉𝑎𝑙𝑢𝑒)
+ (4,435.430 × 𝐵𝐺𝐴𝑣𝑆𝑝) + (59.302 × 𝑉𝑒𝑡𝑑𝑒𝑛) 

(11) 

 

As in Models 1 and 2, the coefficients of Model 3 are intuitive.  As per capita income increases, 

transit ridership is expected to decrease.  This is because those with higher income are more 

likely to have additional transportation options (such as the ability to purchase a car), and are 
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therefore less likely to choose public transit for their transportation needs.  While the density of 

enrolled students (defined as any enrollment K-college) increases, transit ridership does as well, 

because the student population is less likely to have access to cars than the working adult 

population. When the density of persons who indicated their race as white increases, transit 

ridership decreases.  This is supported by work by McLafferty (1997), which showed that transit 

ridership tends to be higher among (non-white) racial minority groups.  The model also found 

that, as median home value increases, transit ridership is expected to decrease.  This is logical, 

because home value can be a proxy for income, and for auto ownership, both of which are 

known to have negative relationships with transit ridership. A positive relationship with span of 

service is predicted, and this is intuitive, because ridership tends to be higher in areas that are 

served by better quality transit, such as transit with longer spans of daily service.  Finally, the 

model also predicts a positive relationship between the density of veterans in an area and transit 

ridership. This is less intuitive, but it is believed that this could be a proxy effect.  According to 

the National Survey of Veterans (2003), over 37 percent of the veteran population is over the age 

of 65.  It is known that older adults are more likely to take transit (Mallett 2018), and it is 

believed that the density of veterans in an area serves as a proxy for the number of older adults in 

an area, which, intuitively has a positive relationship with transit ridership. 

 

Model 4 is more complex when compared to Models 1-3, but exhibits a greater level of 

significance when the F-value is compared with Models 1-3.  A decision must be made at the 

agency level whether the additional time and effort required to use this model is worth the 

additional significance it provides.   

 Model Validation and Selection 

Each of the developed models must be validated to assess how well it predicts ridership in 

comparison with the other models.  The root mean square error (RMSE) is used to evaluate each 

model, along with the F-Value and 𝑅2.  The results are shown in Table 7. 

 

 



47 

 

Table 7. Model validation results. 

Model RMSE F-Value 𝑅2 

1 22939.63 153.19 0.181 

2 21140.96 109.214 0.305 

3 1670.38 68.73 0.501 

4 19741.54 17.21 0.449 

 

Model 1, while the simplest of all the models, has the lowest 𝑅2 and also the largest RMSE.  For 

these reasons, this model is not recommended for use in ridership prediction.  Model 2 improves 

on Model 1, with increased 𝑅2, and a smaller value of RMSE.  Model 2 is also simpler than 

Models 3-4, so it could be used in cases where accuracy is less of a concern.  Model 3 provides 

the largest 𝑅2, and also the smallest RMSE, so it is likely the best of all of the models for 

predicting ridership.  Model 4 is a variation on Model 3, and achieves a slightly smaller value of 

𝑅2 and larger RMSE when compared to Model 3. 

 

To evaluate the models visually, plots of the observed ridership versus predicted ridership are 

created.  The 𝑦 = 𝑥 relationship is also plotted for comparison.  Figure 8 represents Model 3, 

while Figure 9 represents Model 4.  Models 1 and 2 are not shown, because they had the poorest 

performance of all of the models. 
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Figure 8. Observed versus predicted values for Model 3. 

 

 

Figure 9. Observed versus predicted values for Model 4. 
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Model 4 appears to have the best performance when the observed and predicted values are 

plotted, because the plotted points lie closer to the 𝑦 = 𝑥 line, indicating a better match of the 

observed and predicted points when compared with the other models.  It should be noted that 

none of the models performs particularly well for areas with very high ridership.  This is most 

likely due to the relatively small sample size of block groups with this level of ridership.  It is 

believed that a larger sample size (which would include more block groups with a wider 

distribution of ridership) would improve the predictive power of the models in this region. 

 

Model 3 has the largest value of 𝑅2 and also the smallest value of RMSE.  As discussed above, 

Model 4 appears to perform best when comparing observed and predicted values.  For these 

reasons, these two models are suggested for use in ridership prediction.  However, Model 2 may 

also be appropriate if limited data is available and lower predictive accuracy is acceptable in 

certain situations. 

 

An upper bound on ridership when using these models could be set to address the issues 

discussed for high ridership areas.  This bound would likely be set at approximately 50,000 

riders per BG.  However, this bound places additional constraints on an already limited dataset, 

reducing the usefulness of the data even further.  For these reasons, a bound is not imposed, but 

caution is suggested in using the models in areas with very high ridership.  As previously 

discussed, using the models in conjunction with prior knowledge will provide the best results as 

far as service planning is concerned. 

 Numerical Examples 

The following subsections provide numerical examples for estimating ridership using the models 

presented in this thesis. 
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5.6.1 Example 1 

Transit service is proposed for an area that has seen significant growth in recent years.  Table 8 

lists basic information about the area obtained from the Census Bureau.  This is representative of 

typical data used for analysis.  An estimate for bus ridership in this area is needed to determine 

whether or not providing service is justified.  For planning purposes, it can be assumed that 

service will be provided every day of the year for 15 hours each day. 

Table 8. Input data for ridership estimation. 

Quantity Value Unit 

Per capita income $39,000 Dollars ($) 

Total K-college enrollment 570 Persons 

Total number of persons who 

identified their race as White 

1157 Persons 

Median home value $112,500 Dollars ($) 

Total number of veterans 350 Persons 

BG land area 0.78 Square Miles 

 

SOLUTION: 

1. All information needed to use Model 3 is provided.  Since it provides the best prediction 

according to 𝑅2, it will be used to calculate ridership. 

𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅
= 20,274.308 − (1.982 × 𝑃𝑒𝑟𝐶𝑎𝑝𝐼𝑛𝑐) + (21.227 × 𝐸𝑛𝑟𝑜𝑙𝑙𝑑𝑒𝑛)

− (14.789 × 𝑊ℎ𝑖𝑡𝑒𝑑𝑒𝑛) − (0.107 × 𝑀𝑒𝑑𝐻𝑉𝑎𝑙𝑢𝑒)

+ (4,435.430 × 𝐵𝐺𝐴𝑣𝑆𝑝) + (59.302 × 𝑉𝑒𝑡𝑑𝑒𝑛) 

2. This model requires density values for some inputs.  These are calculated next. 

𝐸𝑛𝑟𝑜𝑙𝑙𝑑𝑒𝑛 =
570 𝑝𝑒𝑟𝑠𝑜𝑛𝑠

0.78 𝑠𝑞. 𝑚𝑖.
= 730.77 𝑝𝑒𝑟𝑠𝑜𝑛𝑠/𝑠𝑞. 𝑚𝑖. 

𝑊ℎ𝑖𝑡𝑒𝑑𝑒𝑛 =
1157 𝑝𝑒𝑟𝑠𝑜𝑛𝑠

0.78 𝑠𝑞. 𝑚𝑖.
= 1483.33 𝑝𝑒𝑟𝑠𝑜𝑛𝑠/𝑠𝑞. 𝑚𝑖. 

𝑉𝑒𝑡𝑑𝑒𝑛 =
350 𝑝𝑒𝑟𝑠𝑜𝑛𝑠

0.78 𝑠𝑞. 𝑚𝑖.
= 448.72 𝑝𝑒𝑟𝑠𝑜𝑛𝑠/𝑠𝑞. 𝑚𝑖.  

3. The average span of service for this area is needed.  For simplicity, it is assumed that this 

will be the only transit service serving the area, and it is given that it will operate every 

day of the year for 15 hours each day.  Thus, the average span of service is 15 hrs. 

4. This information is entered into the model to calculate ridership. 
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𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅
= 20,274.308 − (1.982 × 39000) + (21.227 × 730.77)

− (14.789 × 1483.33) − (0.107 × 112500) + (4,435.430 × 15)

+ (59.302 × 448.72) 

 

𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅
= 20,274.308 − 77298.00 + 15512.05 − 21936.97 − 12037.50 + 66531.45

+ 26609.99 

𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅
= 17,655.33 

The ridership in this area is expected to be approximately 17,655 per year. 

5.6.2 Example 2 

Transit service is currently provided to an area, but a new student apartment complex is expected 

to open.  The agency seeks to find out how the opening of this apartment complex will affect 

ridership.  Calculate the change in ridership that can be associated with this apartment complex, 

assuming that nothing else has changed (including service characteristics). Information in Table 9 

is provided from a Census Survey with supplemental information collected by the transit agency.  

It is known that BG ridership before the complex opens is 16,141. 

 

Table 9. Input data for ridership estimation. 

Parameter Value Unit 

𝑃𝑒𝑟𝐶𝑎𝑝𝐼𝑛𝑐 $ 35,700 Dollars ($) 

𝐸𝑛𝑟𝑜𝑙𝑙𝑑𝑒𝑛 1489.76 Persons/sq. mi. 

𝑊ℎ𝑖𝑡𝑒𝑑𝑒𝑛 1131.37 Persons/sq. mi. 

𝑀𝑒𝑑𝐻𝑉𝑎𝑙𝑢𝑒 $91,360 Dollars ($) 

𝐵𝐺_𝐴𝑉_𝑆𝑝 18 Hours 

𝑉𝑒𝑡𝑑𝑒𝑛 33.45 Persons/sq. mi. 

 

SOLUTION: 

1. Ridership after the apartment complex is opened can be calculated using Model 4. 

a. (𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅
)

𝐴𝐹𝑇𝐸𝑅
= 321809.395 + (−25639.591 × ln(𝑃𝑒𝑟𝐶𝑎𝑝𝐼𝑛𝑐)) +

(14078.154 × ln(𝐸𝑛𝑟𝑜𝑙𝑙𝑑𝑒𝑛)) + (−21794.726 × ln(𝑊ℎ𝑖𝑡𝑒𝑑𝑒𝑛)) +

(−2819.557 × ln(𝑀𝑒𝑑𝐻𝑉𝑎𝑙𝑢𝑒)) + (24965.210 × ln(𝐵𝐺_𝐴𝑉_𝑆𝑝)) +

(−1091.584 × ln(𝑉𝑒𝑡𝑑𝑒𝑛)) 
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(𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅
)

𝐴𝐹𝑇𝐸𝑅

= 321809.395 + (−25639.591 × 𝑙𝑛(35700))

+ (14078.154 × 𝑙𝑛(1489.76)) + (−21794.726 × 𝑙𝑛(1131.37))

+ (−2819.557 × 𝑙𝑛(91360)) + (24965.210 × 𝑙𝑛(18))

+ (−1091.584 × 𝑙𝑛(33.45)) 

 

(𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅
)

𝐴𝐹𝑇𝐸𝑅
= 38,770.093 

 

2. The change in ridership due to the apartment complex opening is calculated. 

∆𝑅𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝= (𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅
)

𝐴𝐹𝑇𝐸𝑅
− (𝑆𝑢𝑚𝑃𝑟𝑜𝑝𝑅

)
𝐵𝐸𝐹𝑂𝑅𝐸

= 38,770 − 16,141 = 22,629 

 

Ridership in the area is expected to increase by approximately 22,629 due to the opening of the 

student apartments.  This represents an increase of approximately 140%. 

 

A reasonableness check should be conducted to verify this result.  For the Lafayette/West 

Lafayette area, a visual survey of existing apartment complexes can be conducted and an 

approximate number of buildings can be obtained.  Using information from the local zoning code 

(Tippecanoe APC 1998), the approximate number of units per building can be obtained.  Using 

an average household size of 3.2 from the Census Bureau (ACS 2015), and assuming one 

household per unit gives the total number of residents in an apartment complex of average size 

for the Lafayette/West Lafayette area.  Assuming these residents will each generate 4 trips per 

day (NHTS 2017), and assuming that nearby transit to the apartment complex causes a diversion 

of approximately 10% of trips to transit (ITE 2004) gives all the needed information to determine 

how reasonable this result is. 

𝐴𝑝𝑝𝑟𝑜𝑥. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 = 20 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠/𝑐𝑜𝑚𝑝𝑙𝑒𝑥 

𝐴𝑝𝑝𝑟𝑜𝑥. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 = 18 𝑢𝑛𝑖𝑡𝑠/𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 20
𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠

𝑐𝑜𝑚𝑝𝑙𝑒𝑥
× 15

𝑢𝑛𝑖𝑡𝑠

𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔
= 300

𝑢𝑛𝑖𝑡𝑠

𝑐𝑜𝑚𝑝𝑙𝑒𝑥
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 = 3.2 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 300
𝑢𝑛𝑖𝑡𝑠

𝑐𝑜𝑚𝑝𝑙𝑒𝑥
× 3.2

𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠

𝑢𝑛𝑖𝑡
= 960

𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠

𝑐𝑜𝑚𝑝𝑙𝑒𝑥
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𝑇𝑜𝑡𝑎𝑙 𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑖𝑙𝑦 𝑡𝑟𝑖𝑝𝑠 𝑝𝑒𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 4 𝑡𝑟𝑖𝑝𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑖𝑙𝑦 𝑡𝑟𝑖𝑝𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠 = 4 𝑡𝑟𝑖𝑝𝑠 × 960 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠

= 3,840 𝑑𝑎𝑖𝑙𝑦 𝑡𝑟𝑖𝑝𝑠 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑡𝑟𝑖𝑝𝑠 = 3,840
𝑡𝑟𝑖𝑝𝑠

𝑑𝑎𝑦
×

365 𝑑𝑎𝑦𝑠

1 𝑦𝑒𝑎𝑟
= 1,401,600 𝑎𝑛𝑛𝑢𝑎𝑙 𝑡𝑟𝑖𝑝𝑠 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 5% 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑖𝑝𝑠 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑡𝑟𝑖𝑝𝑠 = 1,681,920 × 0.05 = 70,080 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑡𝑟𝑖𝑝𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 

 

This verifies that the result is not unreasonable using approximate values.  External factors, such 

as campus parking policies for university students living in an apartment complex may affect this 

result. 
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 Discussion 

The developed models can be useful to agencies in predicting transit ridership.  For example, 

ridership can be predicted for areas that do not currently have transit service.  Ridership changes 

as a result of various external factors can also be predicted using the models, such as the opening 

or closing of an apartment complex, or changes in population characteristics, such as income. 

5.7.1 Limitations of Models 

While the suggested model provides an estimate for transit ridership using a variety of factors, it 

is important to consider some limitations.  First, the transferability of the model is limited 

because it was developed using only data for the Lafayette/West Lafayette area.  While it is 

expected to reasonably predict ridership for areas with similar characteristics to those in 

Lafayette/West Lafayette, further investigation is needed to determine the appropriateness of 

applying it to areas that are dissimilar to the study area.  Next, the model is limited in that it only 

provides ridership estimates at the block group level.  Block groups do vary in geographic scale, 

and are typically not comprised of one homogeneous land use.  It is important to consider how 

the estimates obtained using this model will vary under heterogeneous land uses, as well as under 

differently sized block groups to those studied.  Lastly, the ACS data used to develop the models 

is rich and provides a wide variety of information, but there likely exist factors that influence 

transit ridership that are not captured through the ACS data, and thus are not represented in the 

models.  An example of such a factor is personal preference.  Some individuals may choose to 

take transit for reasons such as level of comfort or convenience, and these factors are difficult to 

capture in ACS data.  These models exist as a tool for estimating transit ridership, but should be 

used with thorough knowledge of the study areas in question in order to make informed 

estimates regarding transit ridership.  For example, these models may suggest high transit 

ridership in areas with large proportions of off-campus student housing.  However, they would 

not be able to predict the effects that the university class schedule (summer/holiday breaks) 

would have on ridership in these areas.  Providing service may be very effective in September 

when classes are in session, but it may be less effective in July, when classes are not in session.  

This is where local knowledge, in conjunction with the model results, will provide the most 

useful recommendations.  
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5.7.2 Impact of Findings 

It is expected that the results of this study will be useful to transit agencies as a guide for 

conducting service planning based on ridership.  Service planning tasks could include: providing 

new service to a previously unserved area, providing additional service to a currently served area 

(e.g. more frequent service, or service for more hours each day), modifying service to better suit 

the needs of an area (e.g. using different streets to better serve a high ridership area), or reducing 

service (e.g. to an area that has experienced a decline in population).  While the models have 

limited transferability due to only incorporating data from Lafayette/West Lafayette, the 

methodology is also expected to be useful to agencies with different area and service 

characteristics from those included in the study that seek to develop unique ridership models to 

suit individual needs.  Finally, this work demonstrates the ability to use basic demographic and 

population data in estimating ridership, and provides a simpler approach to ridership estimation 

than those currently available.   

 Model Summary 

The models that were developed provide a predictive tool for estimating transit ridership at the 

block group level using simple data that reflect the characteristics of the block group.  They 

allow ridership predictions to be made for an area using only basic information about the area.  

This can be a useful tool, not only for estimating ridership, but also for supporting previous 

agency predictions and estimations for ridership, such as those made using prior experience. 

 

The models are developed using regression, which allows for simple interpretation of the 

coefficients included in the models, and also for easy adjustments should an agency find that 

portions of the model are less suited to their specific area characteristics.  Further, the models are 

validated using common techniques, such as 𝑅2 and RMSE to provide additional evidence 

regarding the claimed predictive power. 
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6. CONCLUSION 

 Summary and Concluding Remarks 

This research combined transit ridership, route, and schedule data for the Lafayette/West 

Lafayette, Indiana area with ACS data for the same area.  Ridership and service data were 

aggregated to the block group level to match ACS data.  Regression techniques were used to 

develop models to predict transit demand using independent variables that represent the service 

characteristics, population, and socioeconomic trends of the areas under question.  Models were 

developed and validated to predict transit ridership at the block group level.  It is anticipated that 

this work will be beneficial to GLPTC as well as other agencies in small cities with similar 

service area characteristics as an aid for transit service planning work. 

 

A major challenge of the study was that the data available through the Census bureau is only 

provided at the BG level.  In many cases, this was found to be too large of a geographic unit for 

meaningful analysis, as significant amounts of heterogeneity in demographics, land use, and 

other factors exist within large BGs.  Despite the limitations imposed by the data, it is believed 

that the results of this study will be useful as a preliminary, sketch planning-level ridership 

estimate, particularly in cases where no other information is available to aid in making service 

planning decisions. 

 

At the beginning of this study, it was anticipated that this ridership modeling process would be 

useful for predicting ridership in areas where transit service is not currently provided.  One such 

area is the Wabash Avenue neighborhood.  Unfortunately, this neighborhood is combined with 

much of downtown Lafayette into one Census block group.  While geographically this makes 

sense because the two areas are adjacent, it makes ridership estimation for Wabash Avenue very 

difficult using existing data, particularly because the demographic and socioeconomic trends of 

this neighborhood are believed to be significantly different from those of downtown Lafayette. 

 

While ACS data is not useful for estimating ridership in the Wabash Avenue neighborhood, if 

the required input information to the models could be obtained from another source (e.g. local 
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government) and isolated to include only Wabash Avenue, it would be possible to use the models 

to predict ridership in this area.  This data limitation makes estimation of ridership more difficult 

in cases where the Census-designated block groups do not align with the areas where ridership 

estimates are desired. 

 Opportunities for Future Work 

This study developed planning-phase transit ridership models at the block group level for the 

Lafayette/West Lafayette, Indiana area.  Future work could involve using additional data from 

other small cities to develop models that would be more applicable to areas with characteristics 

different than the area under study currently.  For example, a community without a major 

university likely has different demands for transit service than one that does have a major 

university.  Work to develop a similar set of models for medium-sized cities would be beneficial.  

Work to develop models using data of a different geographic scale than the BG (such as a 

smaller or larger geographic unit) would also be useful. 

 

Another area of potential future work would be to include additional spatial parameters in the 

modeling process.  For example, including an impedance or distance parameter for each block 

group to the nearest school, shopping center, hospital, or downtown area could provide 

additional predictive power to the models.  It is possible that using this parameter in conjunction 

with additional employment or retail floor area parameters may improve the models, particularly 

in areas that are predominantly non-residential land uses. 

 

Work to develop a similar transit demand model for areas in and around university campuses 

would be useful for planning transit to serve the student population, many of whom are transit 

dependent.  The BG-level data used in this study are not sufficient to adequately accomplish this, 

however with a different data source, such as block-level data, data regarding student residences 

from the university, or information from a university-level travel survey, it is believed that this 

would be feasible.  The scale of ACS data (BG-level) is too large for a meaningful university-

level analysis, because large portions of the university campus are included in one BG, meaning 

that information about smaller-scale travel trends (such as trips occurring within a BG) is lost in 

the aggregation process.  This is important at the university-level, because many trips are of 
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shorter distance (within the university campus), and transit services are often optimized to serve 

these type of trips on campus (through high-frequency loop or shuttle routes). 
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