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Supplementary Texts

Direct RNA sequencing of locust transcripts

To assess the performance of direct RNA sequencing in the locusts, we sequenced a
low-input RNA library (100 ng RNA, polyAControl-1), a standard-input RNA library
(500 ng RNA, polyAControl-3) and a high-input RNA library (700 ng RNA,
polyAControl-2) from poly-A enriched RNAs on a GridlON X5 system using R9.4
flowcells. We used Albacore to perform base calling, and only the high-quality reads
with a min_qgscore 1d cutoff of 7.0 were retained for further analysis. After quality
filtering, we obtained 119,574 reads with an Nso of 1,588 bases for the low-input
library, 188,859 reads with an Nso of 1,850 bases for the standard-input library and
555,431 reads with an Nso of 1,632 bases for the high-input library. These results
suggested that increasing the RNA input would markedly improve the sequencing
data yield. Therefore, we used 700 ng of RNA input for further direct RNA
sequencing experiments. The read length in the three libraries varied over a wide
range from 0.01 Kb to 26.03 Kb, and the mean length of reads was 1.32 Kb with a
standard deviation of 0.98 Kb (Supplementary Figure 1). The length distribution of
sequencing reads has similar shapes. Despite their differences in data amount
production, a consistent transcriptome signature was observed in the three libraries
(Supplementary Figure 2A). Moreover, compared with the coding region obtained
from the locust official gene set, the direct RNA sequencing reads showed a shift
toward a longer length, implying a considerable portion of untranslated regions in the
direct RNA sequencing reads. The sequencing errors in the direct RNA sequencing
reads were corrected using Illumina reads with LoORDEC !, and the error-corrected
reads were aligned to the locust genome using GMAP 2. As a representative example,
a smoothscatter plot of sequence identity and read length for the high-input RNA
library is shown in Figure 2B. The percentage values of direct RNA sequencing reads
aligned to the Ilocust genome were 99.44% (118,912/119,574), 99.55%
(188,013/188,859) and 99.60% (553,200/555,431). Although the massive intron size



expansion results in large transcriptional units in the locusts 3, the complete gene
structure and isoforms could be inferred by comparing the genomic sequence with
their corresponding direct RNA sequencing reads (Supplementary Figure 2C). The
error rates of the aligned direct RNA sequencing reads were evaluated based on the
locust genome. The sequence identity showed a similar distribution in the three
libraries (Supplementary Figure 2D). Averaged across the three libraries, the
sequence identity of the aligned reads is 92.68%; thus, the average error rate for the
error-corrected reads is ~8%. The number of detected protein-coding genes increases
as the direct RNA sequencing reads increase (Supplementary Figure 2E). Due to the
high sequencing depth, 13,634 (representing 77.52% of the protein-coding genes in
the official gene set) protein-coding genes could be detected in the Illumina datasets.
Among these 13,634 protein-coding genes, 87.82% (11,974/13,634) of them could be
detected in the combined datasets (number of sequencing reads: 863,864) of the three
libraries. These data suggested that direct RNA sequencing demonstrates an inherent

capacity to accurately sequence RNA transcripts for the locust transcriptome.

RNA adaptor sequences

Short RNA adaptor (16 bp):
AGGCACGGGCTATGAG

Long RNA adaptor (50 bp):
ATTGCCAGTGGTGTGTGTCATAAATAGCGCGCAGTTTATCAAAGCAGGAC
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Supplementary Figure 1. Distribution of the length and average basecall quality score
of the pass reads with a min_qgscore 1d cutoff of 7.0. This graph was generated by

NanoPlot version 1.0.0.
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Supplementary Figure 2. Summary of the Nanopore direct RNA sequencing reads. (A)
Distribution of the read length of direct RNA sequencing reads and open reading
frames (in brown) obtained from the official gene set of the locust genome. (B)
Distribution of the read length and sequence identity of error-corrected Nanopore
direct RNA sequencing reads. Reads longer than 5 Kb are not shown. Kb, kilobases.
(C) An example diagram shows the isoform diversity in a gene whose gene structure
covers a ~289-Kb genomic region. (D) Distribution of the sequence identity of
error-corrected direct RNA sequencing reads. Sequence identities of the aligned direct
RNA sequencing reads were evaluated based on the alignment against the locust
genome. (E) Relationships between the number of direct RNA sequencing reads and
percentage of detected genes in the 13,634 protein-coding genes that are detected in

the Illumina datasets.
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Supplementary Figure 3. Motif enrichment in the flanking region of splicing donor
sites and acceptor sites in the top 10 TE families ranked by transcriptomic coverage.
The motif enrichment was performed using the findMotifs program from HOMER

package.
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Supplementary Figure 4. Examination of Piwi RNAI efficiency. The data are shown
as mean = SEM (n=6), *P < 0.05. Ribosomal protein RP49 was used as endogenous
control.
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Supplementary Figure 5. MA plot comparing gene expression in dsPiwi and dsGFP

samples. The significantly differential protein-coding genes inferred from DEseq2

package were marked in orange.
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Supplementary Figure 6. Heatmap illustration of gene ontology enrichment analysis.
Up and down represent the up-regulated and down-regulated gene ontologies in

dsPiwi samples, respectively.



References:

1. Salmela L, Rivals E. LoORDEC: accurate and efficient long read error correction.
Bioinformatics 2014; 30:3506-14.

2. Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for
mRNA and EST sequences. Bioinformatics 2005; 21:1859-75.

3. Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, et al. The locust genome
provides insight into swarm formation and long-distance flight. Nat Commun 2014;

5:2957.



