Marlon - A Domain-Specific Language
for Multi-Agent Reinforcement
Learning on Networks

Tim Molderez, Bjarno Oeyen, Coen De Roover & Wolfgang De Meuter

s®
- VRIJE
(] Softwaree b UNIVERSITEIT
@0 Languages.la BRUSSEL

Context: distributed systems

distributed systems

Context

£\

'l

Smart grids

distributed systems

Intelligent traffic systems

wA&\w

oz///// /z/ @& .

» JM @ Qo
|)/ w 4

s »V w»»w @VJ/,«J p—

y = NN £

...... y Ko

Context

distributed systems

Context

-gé Y

.v AAARANNRRARARRNANNAY

Cloud services

Intelligent traffic systems

W

\/
ALRARRRRRRRAY

I .
vv %52,& W
s 4

%&/ &f/&‘r/f/

-t

% f///f/fﬁf

SHARRRRRRRARRRRY

DS IIISOM

WS L,

Smart grids

Problem statement

Problem statement

= Manually managing such large systems is difficult

Problem statement

= Manually managing such large systems is difficult

= Optimizing throughput, reliability, latency, resource usage, ...

Problem statement

= Manually managing such large systems is difficult

= Optimizing throughput, reliability, latency, resource usage, ...

= Automate with multi-agent RL (MARL)

Problem statement

= Manually managing such large systems is difficult

Optimizing throughput, reliability, latency, resource usage, ...

Automate with multi-agent RL (MARL)

Problems inherent to distributed systems:

= Networks are dynamic

= Nodes, connections can fail or be unreliable

= Communication cost

Marlon I\‘

Marlon I\‘

Multi-Agent Reinforcement Learning On Networks

Marlon I\‘

Multi-Agent Reinforcement Learning On Networks
= Domain-specific programming language to:

= implement network environment

= plug in existing MARL algorithms into this environment

Marlon I\‘

Multi-Agent Reinforcement Learning On Networks
= Domain-specific programming language to:

= implement network environment

= plug in existing MARL algorithms into this environment

= Enable domain experts to use MARL with little background

knowledge

Marlon I\‘

Multi-Agent Reinforcement Learning On Networks
= Domain-specific programming language to:
= implement network environment
= plug in existing MARL algorithms into this environment

= Enable domain experts to use MARL with little background

knowledge

= MARL researchers can focus on MARL, rather than the

intricacies of distributed systems

Marlon I\‘

Marlon I\‘

= Implemented on top of the ‘ elixir language

= Designed for scalable, fault-tolerant applications

Marlon I\‘

= Implemented on top of the ‘ elixir language

= Designed for scalable, fault-tolerant applications

« @ python’ integration to use existing MARL algos.

Marlon I\‘

= Implemented on top of the ‘ elixir language
= Designed for scalable, fault-tolerant applications

« @ python’ integration to use existing MARL algos.

= Two main concepts: actors and agents

= Environment represented as an actor-based system

= Agents observe, interact and learn from the environment

Actor-based concurrency

Actor-based concurrency

e

I E z !Mallbox I
7 Internal
Z
74 State
A
Z
A e

An actor ' \

'E : !Mallbox l

Actor-based concurrency

7 Intern
Z

7 State
-
4‘//11////1//

) oféﬁ

An actor ' \

Contains state & behaviour

Actor-based concurrency

7 Intern
Z

7 State
-
4‘//11////1//

) oféﬁ

An actor ' \

Contains state & behaviour

= Can only modify its own state

Actor-based concurrency

=1 @Q

An actor ' \

= Contains state & behaviour

= Can only modify its own state

= Runsin a separate lightweight process Izu’""“

Actor-based concurrency

=1 @Q

An actor ' \

= Contains state & behaviour

= Can only modify its own state

= Runsin a separate lightweight process Izu’""“

= Communicates by sending messages

Marlon application overview

Marlon application overview

Distributed system / Environment

Marlon application overview

Distributed system / Environment

1. State /I3. Reward

Load balancing example

Master

Worker Worker Worker Worker

Load balancing example

1. request chunk of size X

(—> Master

Worker Worker Worker Worker

Load balancing example

1. request chunk of size X

Worker Worker Worker Worker

Load balancing example

1. request chunk of size X

Worker Worker Worker Worker

Load balancing example

1. request chunk of size X

Worker Worker Worker Worker

4. process chunk

Load balancing example

1. request chunk of size X
5. send results . - e K

Worker Worker Worker Worker

4. process chunk

Load balancing example

1. request chunk of size X
5. send results . - e K

Worker Worker Worker Worker

4. process chunk

= Master can only handle one request at a time

Load balancing example

1. request chunk of size X

5. send results

Worker Worker Worker Worker

4. process chunk

= Master can only handle one request at a time

= Workers can join/leave; they can have different processing speeds

Load balancing example

1. request chunk of size X

5. send results

Worker Worker Worker Worker

4. process chunk

= Master can only handle one request at a time

= Workers can join/leave; they can have different processing speeds

= Goal: Minimize idle time by optimizing X for each worker

Load balancing example

Load balancing example

Load balancing example

ﬁ master@192.168.0.172

Status: Communicating

ﬁ aux@192.168.0.172 ﬁ aux2@192.168.0.172 ﬁ aux3@192.168.0

Status: Processing

Status: Communicating

Cluster timeline

master@192.168.0.172

aux@192.168.0.172 I D I NN N NN D D ——
aux2@192.168.0.172 N .
aux3@192.168.0.172 L

{:0k, m} = Master.start_link([Application.fetc
Master.create_job(m, 10000)
Enum.map(Node. list(),
fn(node) —> LoadBalancingExample.init_wo

SEnvironme

def init_worker(this,master,node) do
speed = Marlon.Utils.random_int(1,5)
{:0k, w} = Worker.start_link_remote(node, [m
Worker.start(w)
{:noreply, this}

end

defactor Worker do
def init ([m, speed, chunk_timel) do
{:0k, %{
master: m,
speed_factor: speed,
wait_time: 0,
chunk_time: chunk_time}}
end

async def start(this) do
Worker.process_chunk(self(), 1)
{:noreply, this}

end

async def process_chunk(this, chunk_size) do
result = Master.request_work(this[:master]
if result !'= :no_more_work do
Process.send_after self(), {:processed_c
round(this[:chunk_time] * chunk_size /
end
{:noreply, this}
end

reply def processed_chunk(this) do
Master.work_finished(this[:master], self(
Worker.process_chunk(self(), 1)
{:noreply, this}

= i l.l:
async def notify_wait_time(this, wait_time)
new_state = %{this | wait_time: wait_time

{:noreply, new_state}
end
end

defactor Master do
def init([comm_time]) do

{:0k, %{
comm_time: comm_time,
chunks_remaining: 0,
pending_request_size: 0,
chunks_in_progress: %{}

1}

end

sync def create_job(this, _from, job_size) do

Logger.info "Job created (size:

{:reply, :o0k, %{this | chunks_remaining: job_size}}

end

sync def request_work(this, from, chunk_size) do
new_pending = this[:pending_request_size] + chunk_size
Worker.notify_wait_time(elem(from,0), new_pending * this[:comm_timel)
Process.send_after(self(), {:request_work_
{:noreply, %{this | pending_request_size: new_pending}}

end

async def work_finished(this, worker) do

{:noreply, %{this | chunks_in_progress: Map.delete(this[:chunks_in_progress], worker)}}

end

async def work_cancelled(this, worker) do
revert_remaining = this[:chunks_remaining] - Map.
{:noreply, %{this | chunks_in_progress: Map.delet
chunks_remaining: revert_remaining}}
end

reply def request_work_reply(this, chunk_size, from
{worker_pid, _} = from
new_remaining = this[:chunks_remaining]l - chunk_s
new_pending = this[:pending_request_size]l - chunk
if (new_remaining >= @) do
GenServer.reply(from, :o0k)
{:noreply, %{this |
chunks_remaining: new_remaining,
pending_request_size: new_pending,
chunks_in_progress: Map.put(this[:chunks_in_p
else
Logger.info "Master — No more work!"
GenServer.reply(from, :no_more_work)
{:noreply, %{this | chunks_remaining: @, pendin
end
end

end

<> to_string(job_size) <> ")"

reply, chunk_size, from}, this[:comm_timel)

{:0k, m} = Master.start_link([Application.fetc
Master.create_job(m, 10000)
Enum.map(Node. list(),
fn(node) -> LoadBalancingExample.init_wo

<Environment + MARL jrite

def init_worker(this,master,node) do
speed = Marlon.Utils.random_int(1,5)
{:0k, w} = Worker.start_link_remote(node, [m
Worker.attach_agent(w, ChunkSizeGoal)
Worker.start(w)
{:noreply, this}

end

defactor Worker do
def init ([m, speed, chunk_timel) do
{:0k, %{
master: m,
speed_factor: speed,
wait_time: 0,
chunk_time: chunk_time}}

end

async def start(this) do
Worker.do_action(self())
{:noreply, this}

end

async def process_chunk(this, chunk_size) do
result = Master.request_work(this[:master]
if result !'= :no_more_work do
Process.send_after self(), {:processed_c
round(this[:chunk_time] * chunk_size /
end
{:noreply, this}

end

reply def processed_chunk(this) do
Master.work_finished(this[:master], self(
Worker.do_action(self())
{:noreply, this}

async def notify wait_time(this, wait_time)
new_state = %{this | wait_time: wait_time
Worker.update_reward(self(), new_state)
{:noreply, new_state}

end

end

defactor Master do
def init([comm_time]) do
{:0k, %{
comm_time: comm_time,
chunks_remaining: 0,
pending_request_size: 0,
chunks_in_progress: %{}

T

end

sync def create_job(this, _from, job_size)

Logger.info "Job created (size: <> to_sf

{:reply, :0k, %{this | chunks_remaining:

end

sync def request_work(this, from, chunk_siz¢

new_pending = this[:pending_request_sizel

async def work_cancelled(this, worker) do
= this[:chunks_remaining] - Map.
Map.delet

revert_remaining
{:noreply, %{this | chunks_in_progress:

chunks_remaining: revert_remaining}}

gration

reply def st_work_reply(this, chunk_size, from
{worker_pid, _} = from
new_remaining = this[:chunks_remaining]l - chunk_s
new_pending = this[:pending_request_size]l - chunk
if (new_remaining >= @) do

GenServer.reply(from, :o0k)
%{this |

chunks_remaining:

{:noreply,
new_remaining,
pending_request_size: new_pending,
chunks_in_progress: Map.put(this[:chunks_in_p
else

Logger.info "Master — No more work!"

GenServer.reply(from, :no_more_work)

{:noreply, %{this | chunks_remaining: @, pendin

end

end

end

defgoal OptimizeChunkSize do
type Marlon.ESRL
params [explorations: 7, steps: 20]

[l1,2,3111,

reward fn(_agent, worker_state) —>

actions [process_chunk:
1 / worker_stat

end

Worker.notify_wait_time(elem(from,@), new,
Process.send_after(self(), {:request_work
{:noreply, %{this | pendlng_request_51ze:

end

async def work_finished(this, worker) do
{:noreply, %{this | chunks_in_progress:

end

Map.delete(this[:chunks_in_progress], worker)}}

_pending * this[:comm_timel)
_reply, chunk_size, from}, this[:comm_time])

new_pending}}

{:0k, m} = Master.start_link([Application.fetc
Master.create_job(m, 10000)
Enum.map(Node. list(),
fn(node) -> LoadBalancingExample.init_wo

< EAVIFEAME

def init_worker(this,master,node) do
Marlon.Utils.random_int(1,5)

speed =

Worker.attach_agent(w, ChunkSizeGoal)

Orker.start(w)
{:noreply, this}
end

defactor Worker do
def init ([m, speed, chunk_timel) do
{:0k, %{
master: m,
speed_factor: speed,
wait_time: 0,
chunk_time: chunk_time}}

end

rt(+hig) dn

Worker.do_action(self())

end

async def process_chunk(this, chunk_size) do
result = Master.request_work(this[:master]
if result !'= :no_more_work do
Process.send_after self(), {:processed_c
round(this[:chunk_time] * chunk_size /
end
{:noreply, this}

end

reply def processed_chunk(this) do
i :master], self(

W

Worker.do_action(self())

{:noreply, this}

At + MARL

async def notify wait_time(this, wait_time)

Worker.update_reward(self(), new_state)

1:noreply, new_stater
end
end

defactor Master do
def init([comm_time]) do
{:0k, %{
comm_time: comm_time,
chunks_remaining: 0,
pending_request_size: 0,
chunks_in_progress: %{}

T

end

sync def create_job(this, _from, job_size)

async def work_cancelled(this, worker) do
= this[:chunks_remaining] - Map.
Map.delet

revert_remaining
{:noreply, %{this | chunks_in_progress:

chunks_remaining: revert_remaining}}

integration

reply def st_work_reply(this, chunk_size, from
{worker_pid, _} = from

new_remaining = this[:chunks_remaining]l - chunk_s
new_pending = this[:pending_request_size]l - chunk
if (new_remaining >= @) do

GenServer.reply(from, :o0k)
%{this |

chunks_remaining:

{:noreply,
new_remaining,
pending_request_size: new_pending,
chunks_in_progress: Map.put(this[:chunks_in_p
else
Logger.info "Master — No more work!"
GenServer.reply(from, :no_more_work)
{:noreply, %{this | chunks_remaining: @, pendin
end
end

end

Logger.info "Job created (size:
{:reply,
end

<> to_s
:0k, %{this | chunks_remaining:

sync def request_work(this, from, chunk_siz

new_pending = this[:pending_request_sizel

Process.send_after(self(), {:request_work
{:noreply, %{this | pendlng_request_51ze:

end

async def work_finished(this, worker) do
{:noreply, %{this | chunks_in_progress:

end

Worker.notify_wait_time(elem(from,@), new_pending * this[:

new_pending}}

Map.delete(this[:chunks_in_progress], worker)}}

defgoal OptimizeChunkSize do
type Marlon.ESRL
params [explorations: 7, steps: 20]

[l1,2,3111,

reward fn(_agent, worker_state) —>

actions [process_chunk:
1 / worker_stgt

end

_reply, chunk_size, from}, this[:comm_time])

MARL integration

MARL integration

Worker.attach_agent(w, ChunkSizeGoal)

MARL integration

Worker.attach_agent(w, ChunkSizeGoal)

Worker.update_reward(self(), new_state)

MARL integration

Worker.attach_agent(w, ChunkSizeGoal)

Worker.update_reward(self(), new_state)

Worker—process—chunk{self(),—1)

Worker.do_action()

MARL integration

Worker.attach_agent(w, ChunkSizeGoal)

Worker.update_reward(self(), new_state)

Worker—process—chunk{self(),—1)

Worker.do_action()

defgoal ChunkSizeGoal do
type Marlon.ESRL
params [explorations: 7, steps: 20]
actions [process_chunk: [[1,2,3]1]]
reward fn(_agent, worker_state) —>

1 / worker_statel[:wait_time] end]
end

MARL integration

Worker.attach_agent(w, ChunkSizeGoal)

Worker.update_reward(self(), new_state)

Worker—process—chunk{self(),—1)

Worker.do_action()

' al do
type Marlon.ESRL

Learning algorithm (Exploring Selfish RL)
params [explorations: 7, steps: 20]

actions [process_chunk: [[1,2,3]1]]
reward fn(_agent, worker_state) —>
1 / worker_statel[:wait_time] end]

end

MARL integration

Worker.attach_agent(w, ChunkSizeGoal)

Worker.update_reward(self(), new_state)

" ’

Worker.do_action()

defgoal ChunkSizeGoal do

tvpe Marlon.ESRL
Iparams [explorations: 7, steps: 20]|A(gorl'tlam parameters
actions [process_chunk: [11,2,3
reward fn(_agent, worker_state) —>

1 / worker_statel[:wait_time] end]

end

MARL integration

Worker.attach_agent(w, ChunkSizeGoal)

Worker.update_reward(self(), new_state)

Worker—process—chunk{self(),—1)

Worker.do_action()

defgoal ChunkSizeGoal do
type Marlon.ESRL
arams |[explorations: 7, steps: 20
actions [process_chunk: [[1,2,3]1]1]] Action space
reward Tn(_agent, worker_state) —>
1 / worker_statel[:wait_time] end]

end

MARL integration

Worker.attach_agent(w, ChunkSizeGoal)

Worker.update_reward(self(), new_state)

Worker—process—chunk{self(),—1)

Worker.do_action()

defgoal ChunkSizeGoal do
type Marlon.ESRL

params [explorations: 7, steps: 20]
actions [process chunk: [[1,2,311]

reward fn(_agent, worker_state) —> ol footion
1 / worker_statel[:wait_time] end] uncti
end

1. request chunk of size X

Master

MARL integ

Worker.attac

5. send results

Worker.update

defgoal ChunkSizeGoal do
type Marlon.ESRL
params [explorations: 7, steps: 20]
actions [process chunk: [[1,2,3]]1]

reward fn(_agent, worker_state) —> R A Functi
1 / worker_state[:wait_time] end] ewara runction

end

Additional options

defgoal ChunkSizeGoal do
type Marlon.ESRL
params [explorations: 7, steps: 20]
actions [process_chunk: [[1,2,311]
reward fn(_agent, worker_state) —>
1 / worker_state[:wait_time] end]
shared [:wait_time]
share_deviation [wait_time: 5]
state_abstraction fn(worker_state) —>
cond do
worker_state[:wait_time] > 100 —> 2
worker_state[:wait_time] > 10 —> 1
true —> 0
end
end
end

Additional options

defgoal ChunkSizeGoal do
type Marlon.ESRL
params [explorations: 7, steps: 20]
actions [process_chunk: [[1,2,311]
reward fn(_agent, worker_state) —>
/ worker rwait_time] end]
shared [:wait time]| Which state to share with other agents
share_deviation [wait_time: 5]
state_abstraction fn(worker_state) —>
cond do
worker_state[:wait_time] > 100 —> 2
worker_state[:wait_time] > 10 —> 1
true —> 0
end
end
end

Additional options

defgoal ChunkSizeGoal do
type Marlon.ESRL
params [explorations: 7, steps: 20]
actions [process_chunk: [[1,2,311]
reward fn(_agent, worker_state) —>
1 / worker_state[:wait_time] end]
shared [:wait_time]
share_deviation [wait_time: 5]
state_abstraction fn(worker_state) —>
cond do
worker_state[:wait_time] > 100 —> 2
worker_state[:wait_time] > 10 —> 1
true —> 0
end
end
end

Additional options

defgoal ChunkSizeGoal do
type Marlon.ESRL
params [explorations: 7, steps: 20]
actions [process_chunk: [[1,2,311]
reward fn(_agent, worker_state) —>
1 / worker_state[:wait_time] end]
shared [:wait time]
[share_deviation [wait_time: 51| Reduce the amount of communication
state_abstraction fn(worker_state) —>
cond do
worker_state[:wait_time] > 100 —> 2
worker_state[:wait_time] > 10 —> 1
true —> 0
end
end
end

Additional options

defgoal ChunkSizeGoal do
type Marlon.ESRL
params [explorations: 7, steps: 20]
actions [process_chunk: [[1,2,311]
reward fn(_agent, worker_state) —>
1 / worker_state[:wait_time] end]
shared [:wait_time]
share_deviation [wait_time: 5]
state_abstraction fn(worker_state) —>
cond do
worker_state[:wait_time] > 100 —> 2
worker_state[:wait_time] > 10 —> 1
true —> 0
end
end
end

Additional options

defgoal ChunkSizeGoal do
type Marlon.ESRL
params [explorations: 7, steps: 20]
actions [process_chunk: [[1,2,311]
reward fn(_agent, worker_state) —>
1 / worker_state[:wait_time] end]
shared [:wait_time]
share deviation [wait time: 5]
state _abstraction fn(worker_state) —>
cond do
worker_state[:wait_time] > 100 —> 2
worker_state[:wait_time] > 10 —> 1 | Reduce the state space
true —> 0
end
end

end

Additional options

defgoal ChunkSizeGoal do
type Marlon.ESRL
params [explorations: 7, steps: 20]
actions [process_chunk: [[1,2,311]
reward fn(_agent, worker_state) —>
1 / worker_state[:wait_time] end]
shared [:wait_time]
share_deviation [wait_time: 5]
state_abstraction fn(worker_state) —>
cond do
worker_state[:wait_time] > 100 —> 2
worker_state[:wait_time] > 10 —> 1
true —> 0
end
end
end

MARL algorithm API

defclass Marlon.LearningAlgorithm do
def init_agent(this, actor_state)
def is_learning(this)
def sample_action(this)
def update(this, actor_state, reward)
def action_probabilities(this)
def agent_joined(this, agent_pid)
def agent_left(this, agent_pid)

end

Marlon evaluation

Marlon Elixir - v1 Elixir - v2

Initialisation

LOC

Marlon 109

Worker

Elixir - vi 168

Elixir - v2 202

Master

B Distributed system || Agentinteraction
B Goal specification I state sharing

Goal
B Dynamic environment

Summary

Summary

= Marlon, a language to facilitate integrating MARL into

distributed systems

Summary

= Marlon, a language to facilitate integrating MARL into

distributed systems

= Future work: additional MARL algorithms, evaluate scalability

Summary

= Marlon, a language to facilitate integrating MARL into

distributed systems
= Future work: additional MARL algorithms, evaluate scalability

= For more information, visit bit.ly/marlon-lang

tmoldere@vub.be , boeyen@vub.be , cderoove@vub.be , wdmeuter@vub.be

