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Summary

Connectome datasets are growing in size

Analysis is a current bottleneck

Graphs (networks) are natural models

Require specific statistical tools and implemen-

tations [1]

GraSPy: open source python toolkit [2]
Graph sampling, estimation, embedding, testing

Accelerate understanding of connectomeswith

valid graph inference

Available at neurodata.io/graspy
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Undirected graph Adjacency matrixA

Model adjacency matrices as samples from amatrix of probabil-

ities P :

A ∼ Bernoulli(P ) P ∈ Rn×n

Latent position random graphs: latent vector for each node de-

termining probability of connections

Find P using the dot product of the latent positions

P = XXT , X ∈ Rn×d

where row i ofX is a latent vector for node j [1]

Random Graph Models

Graphmodel Latent representation Realization (sample)

Ernyos-Reyni (ER):

pij = p

p is overall connection probability

Latent representation: all nodes share

same latent position

Stochastic blockmodel (SBM):

pij = Bτi,τj

B ∈ [0, 1]K×K, τ ∈ Rn

B contains block-block connection

probabilities, τ block assignments

Latent representation: nodes in a

block share same latent position.

Degree-corrected SBM (DCSBM):

pij = Bτi,τj
didj

d ∈ Rn

d ∈ Rn represents expected degree

for each node

Latent representation: nodes in block

live on a line, expected degree deter-

mines their position on line

Random dot product graph (RDPG):

pij = 〈xi, yj〉
xi, yi ∈ Rd

xi, yj are latent positions for node i, j

Latent representation point in Rd

for each node

Model parameters Cell type legend Original graph

Figure 1. Four random graph models displayed with their corresponding representations in latent space and a

sample from the graph model. All graph models are fit to the Drosophila left mushroom body from Eichner et

al [4]. The latent space representations are calculated by computing an adjacency spectral embedding of the

estimated probability matrix from eachmodel.

Graph embeddings

Embeddings convert graphs intoEuclidian

representations, allowing subsequent in-

ference and estimation

Multigraph embeddings can place a popu-

lation of graphs in the same latent dimen-

sions

Embeddings such as adjacency spectral

embedding (ASE) can be generative mod-

els for random graphs (Figure 1).

Figure 2. Laplacian spectral embedding

(LSE) on the hermaphrodite C. elegans con-

nectome [3], showing pharynx/nonpharynx

division

Figure 3. Omnibus embedding of the

male and hermaphrodite C. elegans

connectome, lines show disparity be-

tween sex for each node

Figure 4. Kernel density estimates (KDEs) of distances in the em-

bedding plotted by cell type, color coded as in Figure 3

Graph hypothesis testing

How to test if two graphs (G1 andG2) were gen-

erated from same distribution?

G1 ∼ P1, G2 ∼ P2

H0 : P1 = P2, Ha : P1 6= P2

GraSPy implements two such hypothesis tests
Matched test: correspondence between node identi-

ties is known

Unmatched test: correspondence between nodes is

unknown or does not exist

Figure 5. Procedure for the matched test of Tang et al.

[5]. Two graphs are embedded using ASE, embeddings

are aligned, test statistic is computed as distance be-

tween the aligned embeddings.

Different ways to compare latent positions:
Exact:

H0 : X = Y W

Ha : X 6= Y W

W ∈ Rd×d andWW T = I

Scaling:

H0 : X = cY W

Ha : X 6= cY W

for some c > 0

Diagonal:

H0 : X = DY W

Ha : X 6= DY W

for some diagonalD ∈ Rn×n

Figure6.KDEsofmatched test statistics for dMRI connectomes fromHumanConnectomeProjectYoungAdult

study [6], compared for different levels of relatedness

Conclusion

GraSPy provides tools for graph hypothesis testing and estimation

Tools will allow neuroscientists to make claims about graph-value data

GraSPywill continue to growandadd functionality - in particular, weaim to consider nodeandedgeattributes
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