
Sirepo: Containerized HPC Engineering
in the Cloud

SEA Scientific Software Conference 2019
10 April 2019 – Boulder

Robert Nagler Paul Moeller David Bruhwiler

Chris Hall Nathan Cook

rsl.link/sea19

This work is supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Award #DE-SC0011340.

10 April 2019 – Boulder # 2

Overview

•  Intro to Sirepo
•  Deployment Challenge
•  Build/Install Tool
•  Conclusion

10 April 2019 – Boulder # 3

What is Sirepo?

•  Goal: improve accessibility of particle accelerator and
beam physics software (science gateway)

•  Introduce codes in layers for novices: usable at first click
•  Experts import and share existing simulations instantly
•  No builds necessary, just visit sirepo.com
•  Can be installed locally to use your own resources
•  Simplify simulations on clusters and supercomputers

10 April 2019 – Boulder # 4

Beam Physics 0.1

•  Synchrotron directs electrons around a storage ring
•  Electrons diverted to generates x-rays (light)
•  Beamline directs light to sample and detector

10 April 2019 – Boulder # 5

Demo

•  Thomas Young’s Double Slit Experiment
•  Demonstrated wave theory of light in 1801
•  Code: Synchrotron Radiation Workshop (SRW)

10 April 2019 – Boulder # 6

Deploying Sirepo

•  Codes are large, slow to build, many dependencies
•  Docker simplifies builds/installs but is not composable
•  RPMs used to compose codes into Docker & Vbox
•  Vagrant/VirtualBox more convenient for development
•  Git-centric glue furthers composability/flexibility
•  Some challenges:

–  Same codes also need to run in Jupyter/Hub
–  All codes need to run in same shell (preferable same virtualenv)
–  Updates to codes happen frequently and (sometimes) urgently
–  Custom build scripts for most codes need wrapping
–  New environments, e.g. NERSC (SHIFTER) or BNL (Debian)

•  Design is policy-rich to simplify implementation

10 April 2019 – Boulder # 7

Git-centric Glue?

•  Rely on GitHub, Nginx, Curl, Bash, Yum, etc.
•  Reusable, composable build/install tool (1,000 LOC)
•  Standalone but not a config manager (part of one)
•  radiasoft/beamsim image gets built with:
curl radia.run | bash -s container-build

•  Which runs repo’s container-conf/build.sh

build_image_base=radiasoft/fedora
build_is_public=1
build_as_run_user() {
 build_run_user_home_chmod_public
 install_repo_eval beamsim-codes
}

10 April 2019 – Boulder # 8

radia_run vagrant-sirepo-dev

Vagrant Sirepo Dev Installer

–  vagrant-dev sets up VirtualBox with development environment
–  sirepo-dev installs beamsim codes and sirepo for development
–  install_vars_export supports test/dev of curl installer API
–  Installer is a directory with radiasoft-download.sh with a main

vagrant_sirepo_dev_main() {
 install_repo_eval vagrant-dev fedora "$@"
 vagrant ssh <<EOF
$(install_vars_export)
source ~/.bashrc
radia_run sirepo-dev
EOF
}

10 April 2019 – Boulder # 9

Typical Dockerfile
FROM python:3.7
WORKDIR /root/
ARG BRANCH="master"
ARG NUM_CORES=2

RUN echo "deb http://ftp.us.debian.org/debian unstable main
contrib non-free" >> /etc/apt/sources.list.d/unstable.list
&&\
 apt-get update && apt-get install -y \
 gcc \
 g++ \
 git \
 cmake \
 libgmp-dev \
 libmpfr-dev \
 libgmpxx4ldbl \
 libboost-dev \
 libboost-thread-dev && \
 apt-get clean && \
 git clone --single-branch -b $BRANCH
https://github.com/PyMesh/PyMesh.git

ENV PYMESH_PATH /root/PyMesh
ENV NUM_CORES $NUM_CORES
WORKDIR $PYMESH_PATH

RUN git submodule update --init && \
 pip install -r $PYMESH_PATH/python/requirements.txt &&
\
 ./setup.py bdist_wheel && \
 rm -rf build third_party/build && \
 pip install dist/pymesh2*.whl && \
 python -c "import pymesh; pymesh.test()" && \
 python $PYMESH_PATH/docker/patches/patch_wheel.py
	

10 April 2019 – Boulder # 10

radia_run rpm-code pymesh

Building Code RPMs

–  Allows dependencies to other code RPMs (common is a “code”)
–  Providers wrappers for yum (dnf), git, python install (pip), etc.
–  Flexibility to do shell-type things (commands, functions, & variables)
–  fpm is used create RPMs; Build runs inside Docker for reproducibility
–  RPM documents source repo and version
–  Test will cause build to fail; Fail Fast is implicit policy

codes_dependencies common
codes_yum_dependencies mpfr-devel gmp-devel
codes_download https://github.com/radiasoft/PyMesh.git
git submodule update --init
NUM_CORES=$(codes_num_cores) codes_python_install
run tests outside build directory
cd ..
python -c 'import pymesh; pymesh.test()'

10 April 2019 – Boulder # 11

Takeaways

•  Docker+RPMs is Sirepo’s build/install:
–  Docker supports reproducibility
–  RPMs allows composability

•  A little Git+Curl+Bash is needed to put them together
•  By fixing policies early, we reduced the code required.

10 April 2019 – Boulder # 12

Thank You!

Questions?

rsl.link/sea19

