Noninvasive assessment of experimental glomerulonephritis using fluorescence molecular tomography

PerkinElmer -525.00Imaging Agent: Cat B 750 FAST -350.00-175.00-0.00 [nM] NTS-CatB:4-0-9 Ellipsoid Ellipsoid

Threshold: 226.57 nM Min: 230.73 nM Max: 542.05 nM Mean: 356.86 nM StdDev: 80.68 nM Total: 17.05 pmol

Size: 48 voxels, 47.8 mm³ (10-14 7-15 5-15) Size: 20 voxels, 19.9 mm³ (22-26 6-15 6-15) Threshold: 226.57 nM Min: 232.15 nM Max: 384.75 nM Mean: 288.87 nM StdDev: 44.91 nM Total: 5.75 pmol

Alfred H.J. Kim, MD, PhD Assistant Professor of Medicine, Pathology & Immunology Co-Director, Lupus Clinic At WashU

LUPUS 2019 San Francisco, CA, USA 08 April 2019

Disclosure: Alfred Kim, MD, PhD

Alfred Kim, MD, PhD has financial interests to disclose. None are relevant to today's presentation.

Research Support/Grants

Kypha, Inc.

<u>Consulting/Advisory Boards/</u> <u>Speaker's Bureau</u> Exagen Diagnostics, Inc. GSK

Traditional imaging modalities continue to provide mechanistic and diagnostic value in lupus nephritis

Light, immunofluorescence, and electron microscopy commonly used

Traditional imaging modalities continue to provide mechanistic and diagnostic value in lupus nephritis

Light, immunofluorescence, and electron microscopy commonly used

Can glomerulonephritis be detected noninvasively?

Traditional laboratory (i.e. proteinuria) and imaging modalities (i.e. ultrasound, CT, MRI, PET) cannot specifically assess changes due to GN

Targeted contrast probes with MRI Superparamagnetic iron oxide nanoparticles linked to CR2 TE = 70 msWild-type TE = 70 msMRL-lpr

Near-infrared probes to markers of GN activity NIR dye attached to RGD motifs that target $\alpha\nu\beta$ integrins

Serkova, NJ, et al., Radiology, 255:517 (2010)

Near-infrared wavelengths optimal for *in vivo* imaging NIR minimally scattered and absorbed by biologic tissue

NIR enables for deep tissue imaging (up to several cm depending on power source)

Matthew Cheung, BA UAB

Sebastian Braehler, MD University of Cologne

Rebecca Schriefer, BA WashU

Samuel Achilefu, PhD WashU

St. Jude's

Funding

CDMRP Discovery Award (W81XWH-17-1-0128)

Activatable NIR probes can detect enzymatic activity within tissue

For example, cathepsin B produced by inflammatory macrophages can activate quenched probes generating a detectable signal

Lin SA, et al., Int J Mol Imaging, 2012:Article ID 189254 (2012)

Activatable NIR probes can detect enzymatic activity within tissue

For example, cathepsin B produced by inflammatory macrophages can activate quenched probes generating a detectable signal

Fluorescence Molecular Imaging of Cathepsin B Activity

C. Tumor tissue fluorescence

Walter Akers

BB		O Sign in		News	Sport	Weather	Shop	Reel	Trave	I Mo
NEWS										
Home	Video	World	US & Canada	UK	Busine	ss Tech	Scien	ce S	tories	Entert
Health										

Goggles help surgeons 'see' tumours

() 13 April 2014

f 🤗 🎐 🗹 < Share

The newly developed goggles allow surgeons to 'see' the cancer cells they need to remove

Mammalian Near-Infrared Image Vision through Injectable and Self-Powered Retinal Nanoantennae

Yuqian Ma,^{1,5} Jin Bao,^{1,2,5,*} Yuanwei Zhang,^{3,5} Zhanjun Li,³ Xiangyu Zhou,¹ Changlin Wan,¹ Ling Huang,³ Yang Zhao,³ Gang Han,^{3,*} and Tian Xue^{1,2,4,6,*}

¹Hefel National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhul 230026, China

²Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China ³Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA ⁴Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China

⁵These authors contributed equally

⁶Lead Contact

*Correspondence: baojin@ustc.edu.cn (J.B.), gang.han@umassmed.edu (G.H.), xuetian@ustc.edu.cn (T.X.) https://doi.org/10.1016/j.cell.2019.01.038

Cell 177, 243-255, April 4, 2019

Imaging instrumentation: FMT4000

Fluorescence molecular tomography (FMT)

- FMT: form of optical imaging, detects fluorescence signals (intensity, lifetime) quantitatively and in 3D
- Light source and detector in transillumination geometry: generates paired absorption and fluorescence data maps throughout the mouse
- Possesses high sensitivity for probe (femtomole)
- Can generate whole body tomography reconstruction

Optical imaging of experimental glomerulonephritis

Cathepsin B-mediated activation of a NIR dye detectable and quantifiable

Optical imaging of experimental glomerulonephritis

Cathepsin B-mediated activation of a NIR dye detectable and quantifiable

Optical imaging of experimental glomerulonephritis Cathepsin B signal is not derived from macrophages

Optical imaging of experimental glomerulonephritis Cathepsin B may be a specific signal for GN

Conclusions

- Cathepsin B activated probes can detect inflammatory changes in experimental glomerulonephritis
 - Other molecular targets uncovered through AMP?
- NIR-based platforms may have limited application for humans though due to signal attenuation
 - Can photoacoustics overcome this issue?

SCIENCE ADVANCES | RESEARCH ARTICLE

CANCER

Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy

Terence T. W. Wong,¹ Ruiying Zhang,¹ Pengfei Hai,¹ Chi Zhang,¹ Miguel A. Pleitez,¹ Rebecca L. Aft,^{2,3}* Deborah V. Novack,^{4,5}* Lihong V. Wang¹*[†] Wong *et al.*, *Sci. Adv.* 2017;**3**:e1602168 17 May 2017

