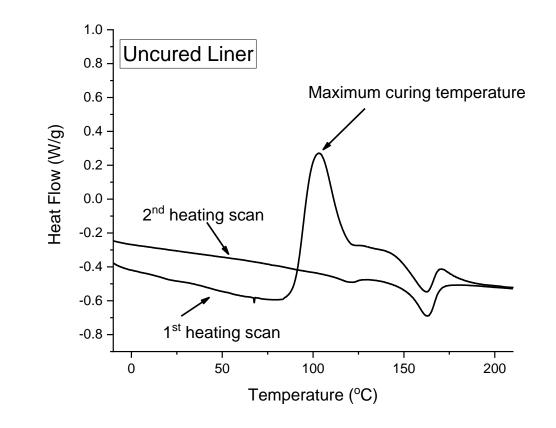
1 2	Evaluation of the physical, chemical, mechanical, and thermal properties of steam-cured PET/Polyester cured-in-place pipe (CIPP)			
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				

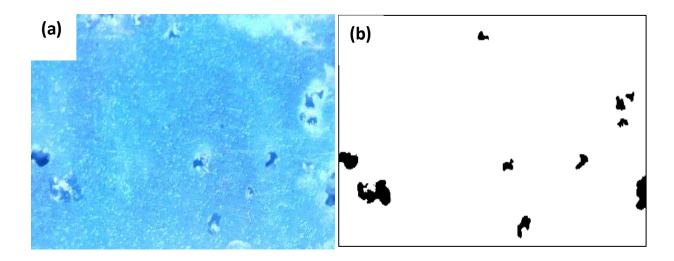
30

Supplement

28 S-1. Materials and Methodology


29 Analytical standards

Analytical standards for identification, confirmation and quantification of organic compounds by 31 32 ¹H-NMR and gas chromatography/mass spectrometry (GC/MS) included dichloromethane >99.8% that contained 40-150 mg/L amylene as stabilizer (CAS# 75-09-2, Sigma-Aldrich), and 33 hexane $\geq 97.0\%$ (CAS# 110-54-3, Sigma-Aldrich) used for solid-liquid extraction experiments 34 were used. Benzaldehyde ≥99.5% that was purified by redistillation (CAS# 100-52-7, Sigma-35 Aldrich), benzoic acid (CAS# 65-85-0, Supelco), methanol ≥99.9% (CAS# 67-56-1), phenol 36 (CAS# 108-95-2, ACROS Organics), styrene >99% that contained 4-*tert*-butylcatechol stabilizer 37 (CAS# 100-42-5, Sigma-Aldrich), 1-tetradecanol (CAS# 112-72-1, Sigma Aldrich). 38


Calibration curves were created separately for each extractant solvents. For methylene chloride extracts, styrene ($R^2=0.9996$ for low range (0.1 to 3 ppm) and $R^2=0.9985$ for high range (3 to 15 ppm), benzaldehyde ($R^2=0.9992$ & 0.9981 & 0.9954 for 0.06 to 20.88 ppm), benzoic acid ($R^2=0.9968$ for 2.53 to 10.12 ppm), 1-tetradecanol ($R^2=0.996$ & 0.9919 for 0.106 to 30.56 ppm), phenol ($R^2=0.9996$ for 0.44 to 17.6 ppm) were created. For hexane extracts, styrene ($R^2=0.9998$ for 0.6 to 7 ppm), benzaldehyde ($R^2=0.9989$ & 0.9913 for 0.13 to 48.72 ppm), 1-tetradecanol ($R^2=0.9928$ for 0.4 to 80 ppm) were created.

46 Curing temperature determination

47 The maximum curing temperature is at 103 °C for CIPP liner.

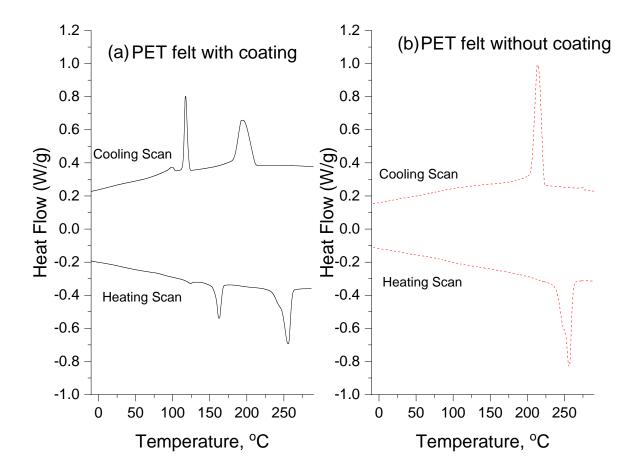
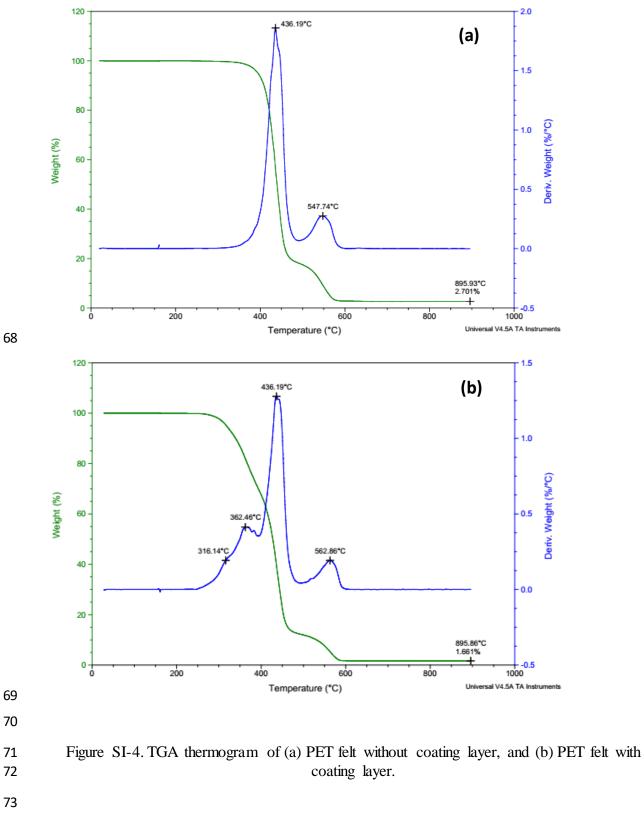

Porosity Measurement

Figure SI-2. (a) Optical microscopic image of CIPP liner, (b) Image J processed image.

55 S-3. Results and Discussions

56 Thermal Analysis


As shown in Figure SI-3, The uncoated PET felt show sharp endothermic peak (Melting temperature) around 250 °C. In contrast, coated PET felt shows two endothermic peaks at 120 and 160 °C, indicating the melting temperature of polyethylene/polypropylene bilayer coating [1]. The cooling scan shows two exothermic peaks representing recrystallization of bilayer coating.

61

Figure SI-3. DSC thermogram of (a) PET felt without coating layer, and (b) PET felt with coating layer.

As shown in Figure SI-4(a), the main decomposition peak at 436 °C was due to the structural decomposition of PET felts followed by burn off carbon residue at 540 °C. Coated PET felt exhibits two more decomposition peaks representing the decomposition of bilayer coating.

75 ¹HNMR Analysis

Figure SI-5 shows the ¹HNMR spectra of uncured resin liner, onsite cured (inner and outer layer) and oven cured CIPP.

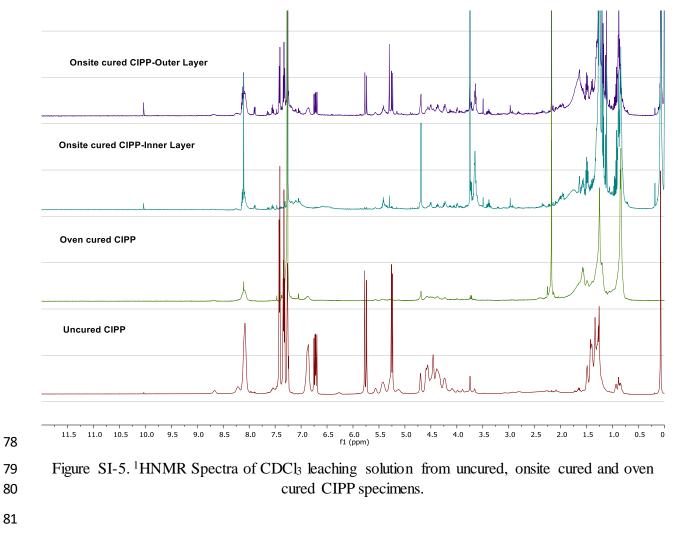
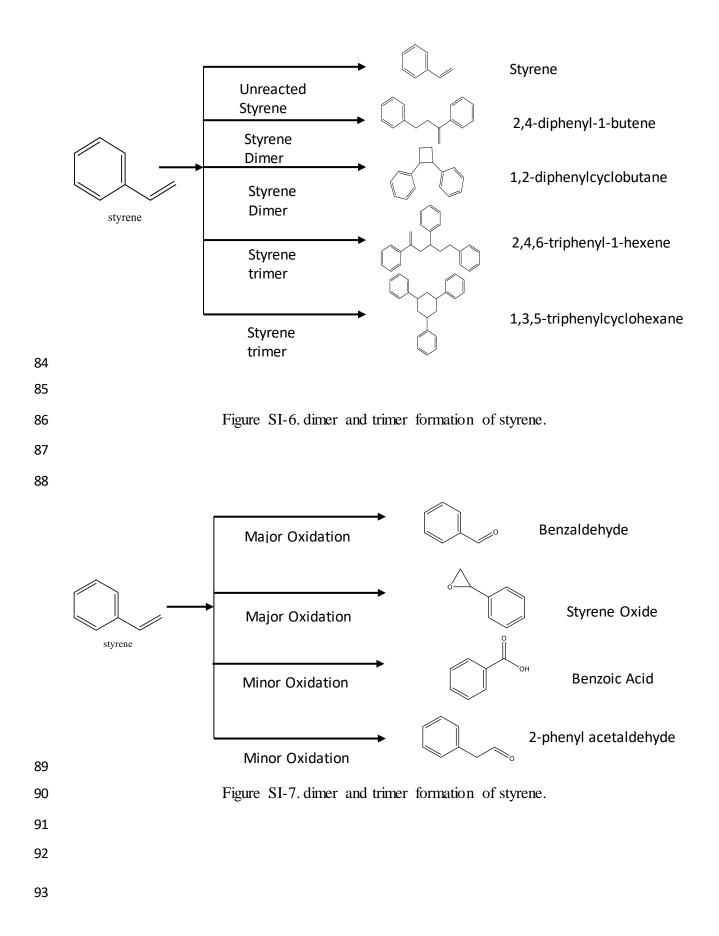
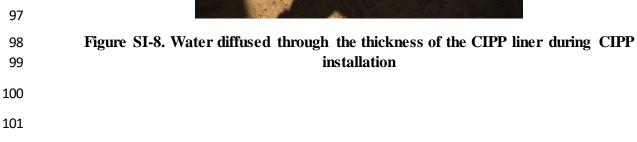
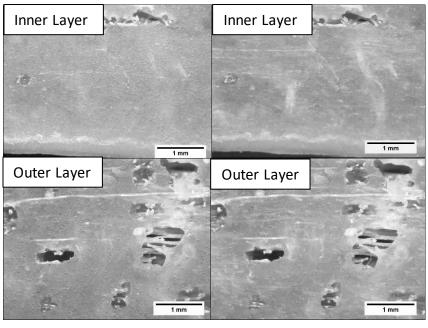



Figure SI-6 and SI-7 show the probable formation of styrene dimer and trimer, and oxidation products of styrene.



Compounds	Uncured resin	Onsite cured CIPP	Oven cured CIPP
-	mg/g	mg/g	mg/g
Styrene	114.4442±6.3097*	0.7583±0.0351	0.0167 ± 0.0007
Benzaldehyde	1.3672	0.0625 ± 0.0053	0.3085 ± 0.0341
1-tetradecanol	0.1048	0.0677 ± 0.0121	0.1016 ± 0.0126
Phenol		0.0020 ± 0.0001	0.0020 ± 0.0001
Benzoic acid		0.0244 ± 0.0004	0.0331±0.0023


94 Table SI-1. Compounds identified from GC-MS of leachate solutions of CIPP liners.

95 Asterix (*) represents 1000 times dilution, all other results represent 10 times

102 Conditioning of CIPP specimens

Non-conditioned

Water-conditioned

- Figure SI-9. (a) Inner and (b) Outer layers of non-conditioned and water-conditioned CIPP
 specimes.
- 106

103

107 Mechanical Characterization of CIPP

108 The non-conditioned samples show toughened behavior. During the experiment, these samples 109 were not fractured. They were bend as shown in Figured S-10. In contrast, water conditioned 110 samples exhibited brittle behaviors and fractured Figure S-11.

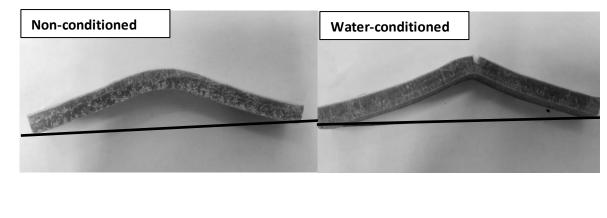
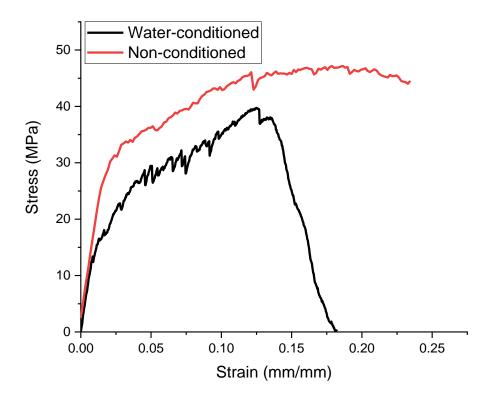



Figure SI-10. Specimens after mechanical testing

114

111

112

116 Figure SI-10. Stress-strain curve of non-conditioned and water-conditioned CIPP liners.

References

- 119[1]Shanks RA, Li J, Yu L. Polypropylene-polyethylene blend morphology controlled by120time-temperature-miscibility. Polymer (Guildf) 2000;41:2133–9. doi:10.1016/S0032-1213861(99)00399-7.

- _