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Executive Summary

While recent innovations in the machine learning domain have enabled significant improvements
in a variety of computer-aided tasks, machine learning systems present us with new challenges,
new risks, and new avenues for attackers. The arrival of new technologies can cause changes and
create new risks for society (Zwetsloot and Dafoe, 2019) (Shushman et al., 2019), even when they
are not deliberately misused. In some areas, artificial intelligence has become powerful to the
point that trained models have been withheld from the public over concerns of potential malicious
use. This situation parallels to vulnerability disclosure, where researchers often need to make a
trade-off between disclosing a vulnerability publicly (opening it up for potential abuse) and not
disclosing it (risking that attackers will find it before it is fixed). As such, researchers should
consider how machine learning may shape our environment in ways that could be harmful.

Machine learning will likely be equally effective for both offensive and defensive purposes (in both
cyber and kinetic theatres), and hence one may envision an "Al arms race" eventually arising
between competing powers. Machine-learning-powered systems will also affect societal structure
with labour displacement, privacy erosion, and monopolization (larger companies that have the
resources to fund research in the field will gain exponential advantages over their competitors).

The capabilities of machine learning systems are often difficult for the lay person to grasp. Some
humans naively equate machine intelligence with human intelligence. As such, people sometimes
attempt to solve problems that simply cannot (or should not) be solved with machine learning.
Even knowledgeable practitioners inadvertently build systems that exhibit social bias due to the
nature of the training data used. The first section of this report details common errors made while
deploying and also designing and training machine learning models, provides some
recommendations to avoid such pitfalls, and concludes with a discussion of the ethical
implications of badly designed Smart Information Systems.

Data analysis and machine learning methods are powerful tools that can be used for both benign
and malicious purposes. The second section of this report is a forward-thinking look at a number
of primarily potential malicious uses of artificial intelligence, including intelligent automation,
analytics, disinformation and fake news, phishing and spam, synthesis of audio, visual, and text
content, and obfuscation.

As artificial-intelligence-powered systems become more prevalent, it is natural to assume that
adversaries will learn how to attack them. Indeed, some machine-learning-based systems in the
real world have been under attack for years already. The third section of this report provides step-
by-step details of a number of popular attacks against machine-learning-based systems, and
provides examples of how these attacks might be used maliciously. The section concludes with a
discussion of related ethical issues.

Adversarial attacks against machine learning models are hard to defend against because there are
very many ways for attackers to force models into producing incorrect outputs. Research into
mitigations against commonly proposed attacks has proceeded hand-in-hand with studies on
performing those attacks. The forth section of this report presents the reader with details of
popular mitigation methods.



In an effort to remain competitive, companies or organizations may forgo ethical principles, ignore
safety concerns, or abandon robustness guidelines in order to push the boundaries of their work,
or to ship a product ahead of a competitor. This trend towards low quality, fast time-to-market is
already prevalent in the Internet of Things (“Internet of things,” 2019) industry, and is considered
highly problematic by most cyber security practitioners. Similar recklessness in the Al space could
be equally negatively impactful. As such, Al researchers and engineers will need to be aware of the
sorts of ethical issues they may encounter in their work and understand how to respond to them.



Introduction

Machine learning is the process of training an algorithm (model) to learn from data without the
need for rules-based programming. In traditional software development processes, a developer
hand-writes code such that a known set of inputs are transformed into desired outputs. With
machine learning, an algorithm is iteratively configured to transform a set of known inputs into a
set of outputs optimizing desired characteristics. Many different machine learning architectures
exist, ranging from simple logistic regression(“Logistic regression,” 2019) to complex neural
network architectures (sometimes referred to as "deep learning"(“Deep learning,” 2019)).
Common uses of machine learning include:

e C(lassification — assigning a label (class) to an input (e.g. determining whether there is a dog
in an image)

e Sequential — predicting a sequence (e.g. translating a sentence from English to French,
predicting the next words in a sentence, the next notes in a musical sequence, or the next
price of a stock)

® Policy — controlling an agent in an environment (e.g. playing a video game, driving a car)

e C(Clustering — grouping a number of inputs by similarity (e.g. finding anomalies in network
traffic, identifying demographic groups)

e Generative — generating artificial outputs based on inputs the model was trained on (e.g.
generating face images)

Methods employed to train machine learning models depend on the problem space and available
data. Supervised learning techniques are used to train a model on fully labelled data. Semi-
supervised learning techniques are used to train a model with partially labelled data.
Unsupervised learning techniques are used to process completely unlabelled data. Reinforcement
learning techniques are used to train agents to interact with environments (such as playing video
games or driving a car).

Recent innovations in the machine learning domain have enabled significant improvements in a
variety of computer-aided tasks, including:
e Image and video recognition, tagging, labelling, and captioning systems
Speech-to-text and speech-to-speech conversion
Language translation
Linguistic analysis
Text synthesis
Chatbots and natural language understanding tasks
Financial modelling and automated trading
Image synthesis
Content generation and artistic tools
Image and video manipulation
Game playing
Self-driving vehicles
Robot control systems
Marketing analytics
Recommendation systems and personal digital assistants
Network anomaly detection



® Penetration testing tools
e Content categorization, filtering, and spam detection

Machine learning-based systems are already deployed in many domains, including finance,
commerce, science, military, healthcare, law enforcement, and education. In the future, more and
more important decisions will be made with the aid of machine learning. Some of those decisions
may even lead to changes in policies and regulations. Hence it will be important for us to
understand how machine learning models make decisions, predict ways in which flaws and biases
may arise, and determine whether flaws or biases are present in finished models. A growing
interest in understanding how to develop attacks against machine learning systems will also
accompany this evolution, and, as machine learning techniques evolve they will inevitably be
adopted by ‘bad actors’, and used for malicious purposes.

This document explores how flaws and biases might be introduced into machine learning models,
how machine learning techniques might, in the future, be used for offensive or malicious
purposes, how machine learning models can be attacked, and how those attacks can presently be
mitigated. Machine learning systems present us with new challenges, new risks, and new avenues
for cyberattackers. As such, this document will explore the implications of attacks against these
systems and how they differ from attacks against traditional systems.

1. Bad Artificial Intelligence (Al)

If a machine learning model is designed or trained poorly, or used incorrectly, flaws may arise.
Designing and training machine learning models is often a complex process, and there are
numerous ways in which flaws can be introduced.

A flawed model, if not identified as such, can pose risks to people, organizations, or even society.
In recent years, machine-learning-as-a-service (such as Amazon SageMaker (“Amazon
SageMaker,” n.d.), Azure Machine Learning Service (“Azure Machine Learning Service,” n.d.), and
Google Cloud Machine Learning Engine (“Cloud ML Engine,” n.d.)) offerings have enabled
individuals to train machine learning models on their own data, without the need for deep
technical domain knowledge. While these services have lowered the barrier to adoption of
machine learning techniques, they may have also inadvertently introduced the potential for
widespread misuse of those techniques.

This section enumerates the most common errors made while designing, training, and deploying
machine learning models. Common flaws can be broken into three categories - incorrect design
decisions, deficiencies in training data, and incorrect utilization choices.

Flaws arising from design decisions

Machine learning models are essentially functions that accept a set of inputs, and return a set of
outputs. It is up to a machine learning model's designer to select the features that are used as
inputs to a model, such that it can be trained to generate accurate outputs. This process is often
called feature engineering. If a designer of a model chooses features that are signal-poor (have



little effect on the decision that is made by the model), irrelevant (have no effect on the decision),
or introduce bias (inclusion or omission of inputs and / or features that favour/disfavour certain
results), the model's outputs will be inaccurate.

If features do not contain information relevant to solving the task at hand, they are essentially
useless. For instance, it would be impossible to build a model that can predict the optimal colour
for targeted advertisements with data collected from customer’s calls for technical support.
Unfortunately, the misconception that throwing more data at a problem will suddenly make it
solvable is all too real, and such examples do occur in real life.

A good example of poor feature engineering can be observed by examining online services
designed to determine whether Twitter users are fake or bots (such as botornot.co). These
services are based on machine learning models whose features are derived only from the data
available from a Twitter account's "user" object (the length of the account's name, the date the
account was created, how many Tweets the account has published, how many followers and
friends the account has, and whether the account has set a profile picture or description). These
input features are relatively signal-poor for determining whether an account is a bot, which often
manifests in incorrect classification.
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Another common design flaw is inappropriately or suboptimally chosen model architecture and
parameters. A potentially huge number of combinations of architectures and parameters are
available when designing a machine learning model, and it is often impossible to try every possible
combination. A common approach to solving this problem is to find an architecture that works
best, and then use an iterative process, such as grid search or random search to narrow down the
best parameters. This is a rather time-consuming process - in order to test each set of parameters,
a new model must be trained - a process that can take hours, days, or even weeks. A designer who



is not well-practiced in this field may simply copy a model architecture and parameters from
elsewhere, train it, and deploy it, without performing proper optimization steps.
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Algorithm Correctness
An illustration of some of the design decisions available when building a machine learning model.

Overfitting

Incorrect choices in a model's architecture and parameters can often lead to the problem of
overfitting, when a model learns to partition the samples it has been shown accurately, but fails to
generalize on real-world data. Overfitting can also arise from training a model on data that
contains only a limited set of representations of all possible inputs, which can happen even when a
training set is large if there’s a lack of diversity in that dataset. Problems related to training data
will be discussed in greater detail in the next subsection.

Overfitting

Source: https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42

Overfitting can be minimized by architectural choices in the model - such as dropout (Budhiraja,

2016) in the case of neural networks. It can also be minimized by data augmentation - the process
of creating additional training data by modifying existing training samples. For instance, in order to
augment the data used to train an image classification model, you might create additional training
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samples by flipping each image, performing a set of crops on each image, and
brightening/darkening each image.

Flaws arising from deficient training data

It is common practice to evaluate a model on a separate set of samples after training (often called
a test set). However, if the test set contains equally limited sample data, the trained model will
appear to be accurate (until put into production). Gathering a broad enough set of training
examples is often extremely difficult. However, model designers can iteratively test a model on
real-world data, update training and test sets with samples that were incorrectly classified, and
repeat this process until satisfactory real-world results are achieved. This process can be time-
consuming, and thus may not always be followed in practice.

Supervised learning methods require a training set that consists of accurately labelled samples.
Labelled data is, in many cases, difficult or costly to acquire - the process of creating a labelled set
can include manual work by human beings. If a designer wishes to create a model using supervised
learning, but doesn't have access to an appropriate labelled set of data, one must be created.
Here, shortcuts may be taken in order to minimize the cost of creating such a set. In some cases,
this might mean "working around" the process of manually labelling samples (i.e. blanket
collection of data based on the assumption that it falls under a specific label). Without manually
checking data collected in this way, it is possible that the model will be trained with mislabelled
samples.

If a machine learning model is trained with data that contains imbalances or assumptions, the
output of that model will reflect those imbalances or assumptions. Imbalances can be inherent in
the training data, or can be "engineered" into the model via feature selection and other designers’
choices. For example, evidence from the US (“Police warned about using algorithms,” 2017)
suggests that models utilized in the criminal justice system are more likely to incorrectly judge
black defendants as having a higher risk of reoffending than white defendants. This flaw is
introduced into their models both by the fact that the defendant's race is used as an input feature,
and the fact that the historical data might excessively influence decision-making.

In another recent example, Amazon (Gershgorn, n.d.) attempted to create a machine learning
model to classify job applicants. Since the model was trained on the company’s previous hiring
decisions, it led them to building a recruitment tool that reinforced their company's historical
hiring policies. The model penalized CVs that included the word "women's", downgraded
graduates from women’s colleges, and highly rated aggressive language. It also highly rated

applicants with the name "Jared" who had previously played lacrosse.

A further example of biases deeply embedded in historical data can be witnessed in natural
language processing (NLP) tasks. The creation of word vectors is a common precursor step to
other NLP tasks. Word vectors are usually more accurate when trained against a very large text
corpus, such as a large set of scraped web pages and news articles (for example, the "Google News
data" set). However, when running simple NLP tasks, such as sentiment analysis, using word
vectors created in this manner, a bias in English-language news reporting becomes apparent.
Simple experiments (Speer, 2017) (Bolukbasi et al., 2016) reveal that word vectors trained against
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the Google News text corpus exhibit gender stereotypes to a disturbing extent (such as associating
the phrase “computer programmer” to man and the word “homemaker” to woman).

man walked
o @
king '.\\ \‘*. B O swen
Tra walking @

- queen \

/ T / O
swimming
Male-Female Verb tense

Word vector examples. Source: https://towardsdatascience.com/word-embedding-with-word2vec-and-fasttext-a209c1d3el12c

The idea that bias can exist in training data, that it can be introduced into models, and that biased
models may be used to make important decisions in the future is the subject of much attention
(Kleinman, 2018). Anti-bias initiatives already exist (such as AlgorithmWatch (“AlgorithmWatch,”
n.d.), (Berlin), and Algorithm Justice League (“AJL -ALGORITHMIC JUSTICE LEAGUE,” n.d.), (US), and
several technical solutions to identify and fix bias in machine learning models are now available
(such as IBM's Fairness 360 kit, Facebook's Fairness Flow (Gershgorn, n.d.), an as-yet-unnamed
tool from Microsoft (Knight, n.d.), and Google's "what if" (Wexler, n.d.) tool). Annual events are
also arranged to discuss such topics, such as FAT-ML (Fairness, Accountability, and Transparency in
Machine Learning) (“FAT ML,” n.d.). Groups from Google and IBM have proposed a standardized
means of communicating important information about their work, such as a model’s use cases, a
dataset’s potential biases, or an algorithm’s security considerations (Gebru et al., 2018) (Holland
et al., 2018) (Mitchell et al., 2019).

Al is reportedly transforming many industries, including lending and loans (Hope, 2018), criminal
justice (Tashea, 2017), and recruitment (Chaker, 2019). However, participants in a recent Twitter
thread started by Professor Gina Neff (Neff, 2019) discussed the fact that imbalances in datasets is
incredibly difficult to find and fix, given that it arises for social and organizational reasons, in
addition to technical reasons. This was illustrated by the analogy that despite being technically
rooted, both space shuttle accidents were ultimately caused by societal and organizational
failures. The thread concluded that bias in datasets (and thus the machine learning models trained
on those datasets) is a problem that no single engineer, company or even country can conceivably
fix.

Flaws arising from incorrect utilization of a machine learning model

Machine learning models are very specific to the data they were trained on and, more generally,
the machine learning paradigm has serious limitations. This is often difficult for humans to grasp —
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their overly high expectations come from naively equating machine intelligence with human
intelligence. For example, humans are able to recognize people they know regardless of different
weather and lighting conditions. The fact that someone you know is a different colour under
nightclub lighting, or is wet because they have been standing in the rain does not make it any
more difficult for you to recognize them. However, this is not necessarily the case for machine
learning models. It is also important to observe that modelling always involves certain
assumptions, so applying a machine-learning-based model in situations when the respective
assumptions do not hold will likely lead to poor results.

Going beyond the above examples, people sometimes attempt to solve problems that simply
cannot (or should not) be solved with machine learning, perhaps due to a lack of understanding of
what can and cannot be done with current methodologies.

One good example of this is automated grading of essays, a task where machine learning with its
current limitations should not be used at all. School districts in certain parts of the world (Riemer,
n.d.) have however created machine learning models using historically collected data - essays, and
the grades that were assigned to them. The trained model takes a new essay as input and outputs
a grade. The problem with this approach is that the model is unable to understand the content of
the essay (a task that is far beyond the reach of current machine learning capabilities), and simply
grades it based on patterns found in the text - sentence structure, usage of fancy words,
paragraph lengths, and usage of punctuation and grammar. In some cases, researchers have
written tools (“BABEL Generator,” n.d.) to generate nonsensical text designed to always score
highly in specific essay grading systems.

What to keep in mind when planning, building and utilizing machine learning systems

The process of developing and deploying a machine learning model differs from standard
application development in a number of ways. The designer of a machine learning model starts by
collecting data or building a scenario that will be used to train the model, and writes the code that
implements the model itself. The developer then runs a training phase, where the model is
exposed to the previously prepared training data or scenario and, through an iterative process,
configures its internal parameters in order to fit the model. Once training has ended, the resulting
model is tested for the key task-specific characteristics, such as accuracy, recall, efficiency, etc.
The output of training a machine learning model is the code that implements the model, and a
serialized data structure that describes the learned parameters of that model. If the resulting
model fails to pass tests, the model’s developer adjusts its parameters and/or architecture and
perhaps even modifies the training data or scenario and repeats the training process until a
satisfactory outcome is achieved. When a suitable model has been trained, it is ready to be
deployed into production. The model’s code and parameters are plugged into a system that
accepts data from an external source, processes it into inputs that the model can accept, feeds the
inputs into the model, and then routes the model’s outputs to intended recipients.

Depending on the type and complexity of a chosen model’s architecture, it may or may not be
possible for the developer to understand or modify the model’s logic. As an example, decision
trees (“Decision tree,” 2019) are often highly readable and fully editable. At the other end of the
spectrum, complex neural network architectures can contain millions of internal parameters,
rendering them almost incomprehensible. Models that are readable are also explainable, and it
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becomes much easier to detect flaws and bias in such models. However, these models are often
relatively simple, and may be unable to handle more complex tasks. Tools exist to partially inspect
the workings of complex neural networks, but finding bias and flaws in such models can be an
arduous task that may often involve guesswork. Hence, rigorous testing is required to ensure the
absence of potential flaws and biases. Testing a machine learning model against all possible inputs
is impossible. In contrast, where an interface exists in traditionally built applications, defined
processes and tools are available that enable developers to identify inputs that can catch all
potential errors and corner cases.

Fla. Pa. Ohio N.C. Va. Wis. Colo. lowa Nev. N.H.

70% Dem, 89% Dem. 54% Rep. 66% Dem. 96% Dem. 91% Dem. 86% Dem. 63% Rep 66% Dem, 80% Dem.

Clinton has 693 ways to win Trump has 315 ways to win

If Clinton wins Florida. If Trump wins Florida
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An example of a decision tree. Source: https://lethalbrains.com/learn-mi-algorithms-by-coding-decision-trees-439ac503c9a4

Machine learning models receive inputs that have been pre-processed and then vectorized into
fixed-size structures. Vectorization is the process of converting an input (such as an image, piece
of text, audio signal, or game state) into a set of numerical values, often in the form of an array,
matrix (two-dimensional array), or tensor (multi-dimensional array). Bugs may be introduced into
the code that interfaces the model with external sources or performs vectorization; these may
find their way in via code invoking machine learning methods implemented in popular libraries, or
may be introduced in decision-making logic. Detecting such bugs is non-trivial.

Based on SHERPA partners’ experiences and knowledge gained while working in the field, we

recommend following these guidelines while planning, building and utilizing machine learning
models, so that they function correctly and do not exhibit bias:
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Familiarize yourself with basic guidelines and practices in the field of machine learning.
Understand how different machine learning techniques work, how they can be used,
and what their limitations are.

Understand your problem domain and whether the problem is even possible to solve
using machine learning techniques.

Research and read up on similar work in your problem area. Understand the
methodologies that were used to solve the problem. Pay close attention to any
experiments detailed in the research, and how they were conducted.

Understand that a lot of published work is based on standard, well-labelled academic
datasets. If your model requires a training set that is not one of these, understand the
steps that will be required to create a good training set for your purposes.

Evaluate whether the inputs you have available to you are relevant to the task you wish
to accomplish.

If you need to create your own labelled set, propose methods to accurately label the
dataset, and to validate the accuracy of the labels.

If your process includes choosing features for a model's input, think about whether
those features might contribute to social bias (e.g. the use of race, gender, religion,
age, country of origin, home address, area code, etc. as inputs). If you do choose a
feature that is known to introduce social bias, be prepared to explain why that input is
relevant to your process, and why it won't introduce social bias.

Start by prototyping your own model based on an existing model that was used for
similar purposes. Experiment with changing the model's architecture and parameters
during prototyping. Get a feeling for the amount of training that might be required
across your own dataset, and the accuracy and other important model characteristics
you might achieve, based on your prototypes.

Check your prototype models early against real-world data, if possible. Start iteratively
improving your training set along with your model.

Once you've settled on an architecture, inputs, and a well-rounded training set, use
automation to explore model parameters (such as random search).

Check for overfitting. If it is a problem, try to understand what is causing it, and take
appropriate measures to alleviate it.

Use a bias detection framework or develop your own methodology to explore potential
bias and accuracy issues on your trained model, during development, to pinpoint and
fix issues. Be prepared to provide details on the steps taken to remove bias and
inaccuracies from your model.

Have defined processes in place to quickly fix any issues found in your model.
Consider implementing a process that can allow third parties to audit your model.
Strongly consider implementing mechanisms that enable your model to explain how it
made each decision. Note that explainability can sometimes trade-off with model
quality, so care should be taken.

If you're doing work in the NLP domain, check for biases that might be introduced by
word vectors. Consider using unbiased word vectors such as those being developed in
projects such as ConceptNet.




The above guidelines do not include measures that designers might want to take to safeguard
machine learning models from adversarial attacks. Adversarial attack techniques and mitigations
against them are discussed in later sections of this document.

It is worth noting that design decisions made at an early stage of a model's development will affect
the robustness of the systems powered by that model. For instance, if a model is being developed
to power a facial recognition system (which is used in turn to determine access to confidential
data), the model should be robust enough to differentiate between a person's face and a
photograph. In this example, the trade-off between model complexity and efficiency must be
considered at this early stage.

Some application areas may also need to consider the trade-off between privacy and feature set.
An example of such a trade-off can be illustrated by considering the design of machine learning
applications in the cyber security domain. In some cases, it is only possible to provide advanced
protection capabilities to users or systems when fine-grained details about the behaviour of those
users or systems are available to the model. If the transmission of such details to a back-end
server (used to train the model) is considered to be an infringement of privacy, the model must be
trained locally on the system that needs to be protected. This may or may not be possible, based
on the resources available on that system.

Ethical consequences of flaws in machine learning model design and utilization

In their paper, The ethics of algorithms: Mapping the debate, Brent Mittelstadt et al. identify six
ethical concerns that can arise through the use of machine learning-based algorithms. These are
summarised as: inconclusive evidence; inscrutable evidence; misguided evidence; unfair
outcomes; transformative effects; and traceability (2016).

Inconclusive Inscrutable
evidence evidence

Misguided
evidence

Unfair Transformative

outcomes S Traceability

Ethical concerns - Machine learning-based algorithms

These provide a helpful framework for understanding ethical issues that can arise from the poor
use of machine learning algorithms as outlined above. The first three areas (inconclusive evidence;
inscrutable evidence; misguided evidence) are described by the authors as epistemic concerns
(referring to how knowledge is obtained in machine learning), while the latter three (unfair
outcomes; transformative effects; and traceability) are normative (implying or creating a particular
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standard or norm). Nonetheless, all six have normative implications, some of which have been
raised above.

The challenge presented by inconclusive evidence is that algorithms are rarely meant to be
infallible and yet are often treated as if they were. This is related to the natural limitations of
machine learning-based approaches (and modelling in general), and can be seen in cases where
correlation is taken to be sufficient to direct action even though there is no established causal
connection. Hence the possible existence of a confounding variable is not entertained, with the
result that actions which have potentially significant consequences on people’s lives may be
enacted without due cause (Hildebrandt, 2011; Hildebrandt and Koops, 2010; Mayer-Schonberger
and Cukier, 2017; Zarsky, 2016). A related problem here is the need for algorithms to deal with
categories rather than individuals. As individuals are sorted into categories, this can indicate a
degree of certainty which is not present, along with discouraging “alternative explorations, and
create[ing] coherence among disparate objects,” (Ananny, 2016, p. 103; see also Barocas, 2014).
These can then lead to a misplaced faith in the reliability of the system, despite the system’s
approach of simplifying and classifying often subtly different individuals.

One problem related to the challenge of inconclusive evidence is the aforementioned issue of
incorrect utilization of evidence. This may happen when a particular behaviour is the target of
identification and yet the system is incapable of detecting that behaviour as such. Instead, the
system is designed to measure what is measurable and then interpret that as evidence regarding
the targeted behaviour. For example, loitering or intending to steal a vehicle both imply intent,
which is invisible to an automated system. However, the period of time a person remains within a
restricted radius (which may fall within the radius of a stationary vehicle) can be measured. As
such, people who do not move outside a particular radius over a set period of time may be
(incorrectly) identified as loitering or intending to steal a vehicle.

The second epistemic concern is that of inscrutable evidence, arising from a lack of transparency
which is, in itself, a direct result of the fact that algorithms are frequently opaque (Tutt, 2016; see
also Burrell, 2016). The problem is connected to the issues of explainability and related trade-offs
discussed in the previous section. While transparency is not a panacea for ethical issues (as noted
by, among others, Crawford, 2016; Neyland, 2016; Raymond, 2014), it is typically a precursor for
any resolution to take place. Without knowing what is happening, it is difficult to resolve any
problems. Yet as Mittelstadt et al. point out,
“the primary components of transparency are accessibility and comprehensibility of
information. Information about the functionality of algorithms is often intentionally poorly
accessible. Proprietary algorithms are kept secret for the sake of competitive advantage
(Glenn and Monteith, 2014; Kitchin, 2017; Stark and Fins, 2013), national security (Leese,
2014), or privacy. Transparency can thus run counter to other ethical ideals, in particular,
the privacy of data subjects and autonomy of organisations” (Mittelstadt et al., 2016, p. 6).

The third epistemic concern raised by Mittlestadt et al. is that of misguided evidence. This refers to
problems in understanding how bias can enter algorithmic decision-making. A lack of
understanding here underpins a (misguided) sense of faith in the algorithms having a lack of bias
(Bozdag, 2013; Naik and Bhide, 2014). Nonetheless, there is significant evidence to demonstrate
that this perception is false and that algorithms, as a product of human design, do contain bias
(e.g. Bozdag, 2013; Kraemer et al., 2011; Macnish, 2012; Newell and Marabelli, 2015, p. 6). As
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Mittelstadt et al. point out, “an algorithm’s design and functionality reflects the values of its
designer and intended uses, if only to the extent that a particular design is preferred as the best or
most efficient option. Development is not a neutral, linear path; there is no objectively correct
choice at any given stage of development, but many possible choices (Johnson, 2006). As a result,
‘the values of the author [of an algorithm], wittingly or not, are frozen into the code, effectively
institutionalising those values’ (Macnish, 2012, p. 158)” (Mittelstadt et al., 2016, p. 7). As was
discussed earlier, social biases can arise also from imbalances in training data.

Examples of misguided evidence abound. Significant cases of note are the automated soap
dispenser which responded to white skin but not black (Fussell, 2017), and the measurement of
potholes in Boston. In the former case, the soap dispenser had clearly been designed by and
tested on only people with lighter coloured skin. It was not until the dispenser was installed that
people started to notice that it would not respond to people with darker skin. The case of potholes
in Boston relates to a decision to make an app available to people with smartphones and use the
phone’s accelerometer to measure whenever a pothole was encountered. In this case, the flaw in
thinking (that, certainly at the time, significantly fewer people in lower socio-economic brackets
owned a smartphone than in higher brackets) was recognized before implementation (Crawford,
2013). Had it not been, potholes in wealthier areas of the city would have been recognized and
resolved faster than elsewhere. Even when efforts are made to find diverse datasets on which to
base and test an algorithm, those datasets may not be available. The SUBITO (Surveillance of
Unattended Baggage and Identification and Tracking of its Owner) project considered how to
identify people walking together. To do this, the project drew on a dataset of students at the
University of Edinburgh. However, the final product was intended for distribution on an
international scale where cultural diversity and associated behaviour was likely to be very
different from that at one British university (Macnish, 2012).

The challenge of bias in the algorithm itself highlights the importance of human interpretation of
algorithmic results. The results are not self-interpreting. However, this leads to the problem that
interpreters come to apparently objective conclusions which in fact reflect their own “unconscious
motivations, particular emotions, deliberate choices, socio-economic determinations, geographic
or demographic influences” (Hildebrandt, 2011, p. 376). As such, a bias that has become
embedded (“frozen”) into the code may be undetectable to some, or even taken as evidence of
the system’s strength by others. If this problem of interpretation is coupled with that of
inconclusive evidence (above) then a human operator overseeing an automated system may be
more ready to ignore a white person standing in the vicinity of a stationary vehicle than a black
person, if that operator’s prejudices (whether conscious or not) are such that they see white
people as less likely to steal vehicles than black people.

Moving to the three normative areas of ethical concern, Mittlestadt et al. start with the problem
of unfair outcomes. Here the authors identify the key issue as being that of profiling which “is
frequently cited as a source of discrimination” (2016, p. 8). Profiling algorithms identify
correlations and make predictions about behaviour at a group-level, albeit with groups (or
profiles) that are constantly changing and re-defined by the algorithm” (Zarsky, 2013). Attempts
have been made to avoid consideration of certain aspects which may contribute to discrimination
(e.g. gender or ethnicity) (Calders et al., 2009; Calders and Kamiran, 2010; Schermer, 2011), but
these have proven to be elusive to attempts to insert them into an automated process. Even
apparently neutral characteristics may inadvertently overlap with other datasets to indicate
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ethnicity, gender, sexual preference and other areas frequently used as means to discriminate
(Macnish, 2012; Schermer, 2011).

The second area of normative concern is that of transformative effects, which impact both
autonomy and privacy. Here it is recognized that the existence and use of the algorithm can
transform the manner in which each of these values is approached. In the case of autonomy (an
issue arising, e.g., in connection to recommender systems and personal digital assistants), filtering
information to the individual may enable that person to focus more effectively on salient
information, but at the same time risks the emergence of a “filter bubble” in which one only
encounters information that already plays to one’s own prejudices (Bozdag, 2013; Newell and
Marabelli, 2015; Zarsky, 2016). In the case of privacy, as noted above, transparency of algorithmic
determinations is seen as a precursor to ethical analysis, and yet where those algorithms deal with
personal data there is a risk that transparency will lead to privacy being violated, or at least
diminished (Hildebrandt, 2011; Van Wel and Royakkers, 2004).

Finally, the third area of normative concern is that of traceability, which relates to attributions of
responsibility and blame. However, the problems of “many hands” — that there is rarely one single
designer but rather a team of designers each with their own biases and the overall values of the
team itself (Sandvig et al., 2014) — and the aforementioned opacity render the traceability of
decisions and apportioning responsibility difficult, complicating trouble-shooting. A further
complication in the case of machine-learning-based systems is the dependence of decision logic on
training data.

In addition to these concerns are broader ethical issues which, while not restricted to Smart
Information Systems (SIS), are pertinent to the cyber world more generally. As advanced levels of
computer use become ubiquitous, a challenge is posed between the levels of technical knowledge
required to operate a system and the technical capacities of the user.

As SIS is run on large data sets, an increase in the use of SIS implies an increase in the numbers of
ways in which these data sets are used. Where those data are related to, for example, healthcare,
the ethical issues involved relate predominantly to intellectual property and the security of
businesses. Where the data are related to people, then the harm which has the potential to arise
from those data becomes more personal. In all these cases, we can clearly see a need to handle
data with care.

Finally, it is noteworthy that no SIS operates in a vacuum. Those installing, maintaining and
operating SIS work under time constraints and budgetary limitations. This means that decisions
need to be prioritised and, almost invariably, some methods of SIS will not be enacted, or will be
enacted poorly owing to competing demands.
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2. Malicious use of Al

Introduction

The tools and resources needed to create sophisticated machine learning models have become
readily available over the last few years. Powerful frameworks for creating neural networks are
freely available, and easy to use. Public cloud services offer large amounts of computing resources
at inexpensive rates. More and more public data is available. And cutting-edge techniques are
freely shared - researchers do not just communicate ideas through their publications nowadays —
they also distribute code, data, and models (Shushman et al., 2019). As such, many people who
were previously unaware of machine learning techniques are now using them.

Organizations that are known to perpetuate malicious activity (cyber criminals, disinformation
organizations, and nation states) are technically capable enough to verse themselves with these
frameworks and techniques, and may already be using them. For instance, we know that
Cambridge Analytica used data analysis techniques in order to target specific Facebook users with
political content via Facebook's targeted advertising service (a service which allows ads to be sent
directly to users whose email addresses are already known). This simple technique proved to be a
powerful political weapon. At the time of writing, it was still being used by pro-leave Brexiteer
campaigners, to drum up support for a no-deal Brexit scenario (Geoghegan, 2019).
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An example of a targeted adverts sent to users of Facebook during the UK referendum in 2016. Source:
https://www.joe.co.uk/news/brexit-facebook-adverts-192164

As the capabilities of machine-learning-powered systems evolve, we will need to understand how
they might be used maliciously. This is especially true for systems that can be considered dual-use
(“Dual-use technology,” 2019). The Al research community should already be discussing and
developing best practices for distribution of data, code, and models that may be put to harmful
use. Some of this work has already begun with efforts such as RAIL (Responsible Al Licenses)
(“Responsible Al Licenses (RAIL),” n.d.).

This section suggests some forward-thinking examples of the potential malicious use of machine
learning.
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Intelligent automation

Machine learning methodologies have significant potential in the realm of offensive cyber security
(a proactive and adversarial approach to protecting computer systems, networks and individuals
from cyber attacks.) Password-guessing suites have recently been improved with Generative
Adversarial Network (GAN) techniques (“hashcat - advanced password recovery,” n.d.), fuzzing
tools now utilize genetic algorithms (“american fuzzy lop,” n.d.) to generate payloads, and web
penetration testing tools have started to implement reinforcement learning methodologies
(takaesu, 2019). Offensive cyber security tools are a powerful resource for both ‘black-" and ‘white
hat’ hackers. While advances in these tools will make cyber security professionals more effective
in their jobs, cyber criminals will also benefit from these advances. Better offensive tools will
enable more vulnerabilities to be discovered and responsibly fixed by the white hat community.
However, at the same time, black hats may use these same tools to find software vulnerabilities
for nefarious uses.

Intelligent automation will eventually allow current “advanced” CAPTCHA prompts to be solved
automatically (most of the basic ones are already being solved with deep learning techniques).

This will lead to the introduction of yet more cumbersome CAPTCHA mechanisms, hell-bent on

determining whether or not we are robots.

The future of intelligent automation promises a number of potential malicious applications:

e Swarm intelligence capabilities might one day be added to botnets to deliver optimized
DDoS attacks (“Denial-of-service attack,” 2019) and spam campaigns, and to automatically
discover new targets to infect.

o Malware of the future may be designed to function as an adaptive implant - a self-
contained process that learns from the host it is running on in order to remain undetected,
search for and classify interesting content for exfiltration, search for and infect new
targets, and discover new pathways or methods for lateral movement.

e Areport published in February, 2019 by ESET (Janosik, 2019) claimed that the Emotet
malware exhibited behaviour that would be difficult to achieve without the aid of machine
learning. The author explained that, because different types of infected hosts received
different payloads (in particular, to prevent security researchers from analysing the
malware), the malware's authors must have developed some sort of machine learning logic
to decide which payload each victim received. From these claims, one might imagine that
Emotet's back ends employ host profiling logic that is derived by clustering a set of features
received from connecting hosts, assigning labels to each identified cluster, and then
deploying specific payloads to each machine, based on its cluster label. Even though it is
more likely that Emotet's back ends simply use hand-written rules to determine which
payloads each infected host receives, this story illustrates a practical, and easy to
implement use of machine learning in malicious infrastructure.

e Futuristic end-to-end models could be designed to learn optimal strategies for the
automated generation of efficient, undetectable poisoning attacks against search engines,
recommenders, anomaly detection systems and federated learning systems.
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Analytics, disinformation, and fake news

Data analysis and machine learning methods can be used for both benign and malicious purposes.
Analytics techniques used to plan marketing campaigns can be used to plan and implement
effective regional or targeted spam campaigns. Data freely available on social media platforms can
be used to target users or groups with scams, phishing, or disinformation. Data analysis
techniques can also be used to perform efficient reconnaissance and develop social engineering
strategies against organizations and individuals in order to plan a targeted attack.

The potential impact of combining powerful data analysis techniques with carefully crafted
disinformation is huge. Disinformation now exists everywhere on the Internet and remains largely
unchecked. The processes required to understand the mechanisms used in organized
disinformation campaigns are, in many cases, extremely complex. After news of potential social
media manipulation of opinions during the 2016 US elections (Scott, 2018), the 2016 UK
referendum on Brexit (Mayer, 2018), and elections across Africa (Solomon, 2018) (Plaut, 2018)
(International, 2017), and