Evaluation of preservation strategies for an interactive,
software-based artwork with complex behavior using the case
study Horizons (2008) by Geert Mul.

Claudia Roeck

University of Amsterdam
Amsterdam, Netherlands
crock@uva.nl

ABSTRACT

In order to preserve software-based art the research community
has primarily focused on emulation as a preservation strategy. The
University of Freiburg (D) established emulation as a service for
memory institutions and research data archiving - a service that
is currently used for preserving software-based art. Software mi-
gration, which might provide an alternative solution, has been
researched for business applications, however less for software-
based art. As a very immediate strategy it does not introduce an
additional layer of translation and thus does not slow down the
performance. This paper investigates to what extent the existing
migration options are useful for preserving software-based art and
how they compare to the emulation options currently used. What
long-term impact do migration and emulation have on a software-
based artwork? What maintenance works do they cause? What
changes do they induce in the artwork?

The impact of migration and emulation as preservation strategies
for software-based art is evaluated on the basis of a case study: the
software-based artwork Horizons (2008) by Dutch artists Geert Mul.
This case study shows that it was necessary to migrate Horizons
first before it could be virtualised with sufficient graphics rendering
performance. Hence, this paper concludes, that the combination
of migration and emulation can be a good solution for graphics
intensive works in the mid-term. It is a step in between short-term
solutions like migration and long-term solutions like a full-system
emulation; the latter only being possible when the speed advantage
of the new hardware is large enough.

ACM Reference Format:

Claudia Roeck, Klaus Rechert, and Julia Noordegraaf. 2018. Evaluation of
preservation strategies for an interactive, software-based artwork with
complex behavior using the case study Horizons (2008) by Geert Mul.. In
Proceedings of (iPres2018). ACM, New York, NY, USA, 11 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The fast obsolescence of hardware and software make continuous
adaptations of a software-based artwork indispensable. The ques-
tion addressed in this paper is what preservation strategies are
more efficient or more sustainable in the long-term than others.
Geert Mul’s artwork Horizons (2008) was chosen as a case study
for this research, as its interactivity was difficult to describe and

iPres2018, ,
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Klaus Rechert
University of Freiburg
Freiburg, Germany
klaus.rechert@rz.uni-freiburg.de

Julia Noordegraaf
University of Amsterdam
Amsterdam, Netherlands

j.j-noordegraaf@uva.nl

its video and sound were generated in real time, depending on a
certain hardware. Geert Mul himself was in search of a long-term
preservation strategy, as he comes across obsolescence issues each
time he has to reinstall one of his software-based works. Horizons
seemed to have a setup which is not unique for this artwork and
could be applied to other software-based works with a similar setup.

The comparison of two preservation versions carried out for the
same artwork is chosen as a research approach in this paper. While
the long-term effects of migration and emulation for the preserva-
tion of Horizons are discussed, their compliance with significant
properties of the artwork are also investigated. As artists often do
not provide any software specifications or significant properties,
the identification of specifications for software-based artworks can
be challenging. In order to complete or support the description of
the significant properties, a method how to record computer in- and
output is suggested. With this method at hand and with criteria for
the sustainability of preservation strategies, preservation strategies
and their combination can be evaluated. Hopefully, the long-term
view on preservation strategies will facilitate future preservation
actions.

2 RELATED WORK AND DEFINITIONS

The term "software" in contemporary artworks based on digital
technology has been defined in various ways. This paper will either
mention software as opposed to hardware. Or it will refer to soft-
ware as a software artifact in contrast to its software environment
such as operating system. The Pericles project mentions a "digital
environment" and, due to its interrelationships, calls it a "digital
ecosystem" [3]. According to Osterweil software is "non-tangible,
and non-physical, but often intended to manage tangibles" [10, p.
266]. He stresses its hierarchical structure and that its components
are interconnected and have different purposes. According to him,
software requires modification and evolves. All these properties
are essential and at the same time a challenge for its preservation.

These challenges can be tackled by means of different preser-
vation strategies. In particular emulation was in the focus of the
research about software preservation in the last few years. In 2008
Tabea Lurk and Jiirgen Enge promoted the use of emulation as a
preservation strategy for software-based art in the sense of encap-
sulation of the digital object [9]. In 2010, Dirk Suchodeletz proposed
a research agenda for the future integration of emulation (in the
sense of encapsulation) into preservation workflows [15]. In the
same year, Klaus Rechert, Dirk Suchodeletz and Randolph Welte

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

iPres2018, ,

suggested emulation as a web service [12], emulation also proved
to be a practical strategy for exhibitions.

In the digital heritage community, migration is discussed rather
for audio-visual components such as video tapes, film reels or audio
tapes, or for text such as the migration from MS-Word-documents
to pdfs, than for software-based art. The migration of software is
a topic found more frequently in the business field. For instance,
Wagner defines software migration as "splitting and transferring
software to a new platform or technology (transformation) - with
the goal to meet new requirements and to improve future main-
tainability. The existing functionality is to be preserved in order
to prevent the loss of business knowledge." [16, p. 40] The focus
of this definition lies on a smooth transition from the old to the
new system and on enhancing functionality. For the preservation
of software-based art, these requirements are not in the foreground,
but rather the preservation of the artwork’s authenticity.

The JISC project [1], carried out in 2006, defined migration of
software as transferring a digital object from one software appli-
cation to another. However, this definition still reminds one of file
migration. If the digital object is a complex software that consists
of various files and file types that depend on each other, it requires
a whole software setup and not just one single application to run
them. Therefore we define migration for this paper as follows:

Software migration means the transfer of a software artifact to
an updated or different software environment in order to keep its
functionality. This transfer can be related to new hardware, but it is
not mandatory. It may include conversion (compilation) or adaption
of the software to the new environment. The reprogramming of the
software functionality with a different programming language is
not considered migration in this paper. It is considered as a separate
preservation strategy.

When comparing preservation strategies for software-based art,
success criteria for long-term preservation are needed. The Library
of Congress published sustainability factors for digital file formats
which are, however, not completely suitable for software, as a soft-
ware artifact fulfills a different function (active, computing) than
a file format (passive, being processed). Patricia Falcao discussed
risks that are inherent in software-based artworks [5], but she does
not analyze what impact these risks have on the selection of preser-
vation strategies. This is why this paper identifies success factors
for long-term preservation and compares preservation strategies
according to these criteria.

Comparing the ways in which different preservation strategies
impact the functionality and appearance of software-based art re-
quires the identification of the significant properties of the artwork.
Significant properties are well known in the field of software engi-
neering. Wilson defines significant properties in relation to digital
preservation: "The characteristics of digital objects that must be
preserved over time in order to ensure the continued accessibil-
ity, usability, and meaning of the objects, and their capacity to be
accepted as evidence of what they purport to record. Properties
are considered to exist in one of five categories: content, context,
appearance, structure and behavior." [17, p. 8]. Grace further de-
velops the model in so far, that the different needs of stakeholders
are taken into account [6]. The model is applicable to software,
but it is not broad enough for a software-based artwork as this

Claudia Roeck, Klaus Rechert, and Julia Noordegraaf

can be based on specific spatial, temporal, and hardware context.
Laurenson fills that gap and lists 15 areas of focus for significant
properties for software-based art! including Wilson’s and Grace’s
categories [7, p. 92-94]. These areas of focus served as a checklist
for the definition of significant properties. As some of these areas
of focus were overlapping and some were not relevant for Horizons,
the significant properties have been summarized under "Idea of the
work", "Processes implemented by the software", "Look and Feel"
and "Hardware Dependencies” in the following section.

3 SIGNIFICANT PROPERTIES AND
DEPENDENCIES OF HORIZONS (2008)

This section analyses the artwork Horizons (2008) by Geert Mul
and determines its significant properties regarding soft- and hard-
ware. These properties will serve as preservation objectives and
benchmarks for the evaluation of the preservation strategies ap-
plied later. For the preservation of the work, several aspects have
to be considered: the overall idea of the work, the processes that
are implemented by the software including user interaction, the
look and feel of the work which is a combination between software
and hardware effects and the dependencies of the software on hard-
ware. The latter has an impact on the preservation of the work. The
spatial installation parameters will not be discussed here; although
significant for the re-installation of the work, they are not relevant
for the choice of preservation strategies.

3.1 Idea of the work

The artwork Horizons by the Dutch artist Geert Mul is an interactive
multimedia installation that was commissioned by the Museum
Boijmans Van Beuningen in Rotterdam, The Netherlands. The work
consists of reproductions of landscape paintings from the Boijmans
van Beuningen collection in an interactive installation. The horizons
of these digitized landscape paintings are all aligned to the same
height (s. fig. 1). The concept of the work refers to the project
Search for a Horizon by the Dutch artist Ger van Elk in 1999, also
at the Boijmans van Beuningen Museum, where the artist hung
paintings from the Boijmans collection side by side, with their
horizons aligned. In his installation Horizons, Geert Mul extended
this idea by presenting the collection in an interactive, dynamic,
playful way. He achieved this by developing a computer program
that generates a video of the digitized paintings which is projected
to the wall by three digital video projectors (s. fig. 2).

Visitors walking around the space cause the image to split where
they stand, revealing a new painting underneath. This interaction
is enabled by a tracking sensor that sends the visitor’s movement
data to the computer. The sound pans seamlessly between right
and left speaker depending on the visitor movement and on the
number of visitors. The computer, projectors, sensor and speakers
are industrial, mass produced, and they are either hidden from view

1 15 Areas of Focus for Significant Properties of Software-Based Art: 1- Content
and assets. 2- Appearance 3- Context. 4- Other Versions. 5- Formal and Structural
Elements. 6- Behaviour. 7- Time (Durations of processes etc.). 8- What are the Spatial or
Environmental Parameters of a Work? 9- External Links or Dependencies. 10- Function.
11- Processes. 12- Artist’s Documentation of Process (status of this documentation?
Relationship to the work?). 13- Rules of Engagement. 14- Visitor Experience. 15- Legal
Frameworks

Evaluation of preservation strategies for an interactive, software-based artwork with complex behavior using the case study Horizons (2008)
by Geert Mul.

Figure 1: Horizons by Geert Mul in the Boijmans van Beunin-
gen Museum 2008 (source: website Geert Mul)

Tracking sensor (Sick)
I Projectors

/
/

~— RS485 / D-SUB9

HDMI

—— Adapter Speakers —
__— USB 7)(
audio jack audio jack

Subwoofer

Computer

Figure 2: Equipment schematic for Horizons by Geert Mul
(artwork creation 2008, version 2013)

or positioned in the background. Their physical appearance is not
important for the work.

From this description can be concluded, that the interactivity and
generative character of the video are significant for the preservation
and that the equipment is replaceable, as long as its functionality
is maintained. It can also be said, that the software is used as a
tool to achieve the effects of the interactivity and video and sound
generation, but its significance for the artwork does not extend
beyond that as long as its functionality is maintained.

3.2 Processes implemented by the software

In a close collaboration with the artist, the programmer, Carlo Prelz,
wrote the software from scratch. Prelz programmed the low level
code in C and compiled it into native machine code. He wrote
the higher level code in Ruby, which is an interpreted language.
The lower level code enables the communication with the tracking
sensor and the interpretation of its location data. Additionally, it
handles the image composition for the video. The C code is specific
for this tracking sensor brand and technology, a time of flight laser

iPres2018, ,

sensor. The Ruby code generates the video and the reaction to the
movements of the visitor.

When a new visitor enters the space, the computer randomly
chooses a new image from the database. It also randomizes the
size and orientation of the image. The visitor’s horizontal position
defines where the new painting appears on the screen: When the
visitor moves parallel to the screen, he or she drags along the
painting. The movement of the painting is accompanied by vertical
ripples running across the screen, similar to a stone falling in the
water and causing circular ripples. The visitor’s distance from the
screen determines the height of the projected painting. If the visitor
moves towards the screen, the painting shrinks. If the visitor stops
or leaves, the ripples continue to run towards the left and right
border of the image until they are completely gone. Without a
visitor moving, no new ripples will be triggered and the image
is still. When a new visitor enters the space and stands in front
of the projection, the algorithm randomly chooses a new sound
sample. The horizontal position of the visitor (movement parallel
to screen) shifts the volume between left and right speakers. The
vertical position of the visitor (movement away from the screen)
increases the pitch.

This description of the processes is neither precise nor complete.
As the generated video is the product of several programs running
at the same time (reading sensor input, random image selection,
creation of image columns, reaction to sensor input, etc.), the be-
havior of the work is difficult to predict. Without following the
exact algorithm, the processes cannot be described in a precise and
complete manner. As Rothenberg already indicated in 1999: "[...]
we do not yet have any formal (or even informal) way of describing
the full range of behaviors possible for even the simplest of digital
documents, such as are produced by word processing programs.
Describing the behavior of dynamic, interactive, hypermedia docu-
ments poses a far greater challenge. The only adequate specification
of the behavior of a digital document is the one implicit in its inter-
action with its software. The only way to recreate the behavior of
a digital document is to run its original software." [14, p. 22].

The behavior caused by a complex program can have infinite
variations and be unpredictable. It is not possible to prove that such
a program is complete and correct. As a consequence, although the
software (Ruby and C-Code) is only used as a tool in this artwork
and thus in itself is not conceptually relevant, the source code is
regarded as a significant property of the work as the behavior it
causes through its execution is too complex to describe and thus
hard to fully replicate in other code.

3.3 Look and Feel

The look and feel of the video is equally difficult to describe. De-
ducing from the source code, the rate of the video generation is
dependent on the image size, the CPU speed and the video card. As
a consequence, it is important to determine the speed of the video
patterns via visual observation. The image columns (ripples) trig-
gered by the visitor move across half of the screen in about 15 to 30
seconds, which corresponds to a horizontal movement of about 50
to 100 pixels per second, very roughly estimated. For the artist it is

iPres2018, ,

important that the movements in the video are smooth?. In addition
to its projection speed, the video quality is also a consequence of
the quality of the images in the database. The color space, deduced
from these images, is RGB, 8 bit per channel, the resolution of the
video frame 3072x768. The artist considers the video resolution as a
significant property, although he would not exclude upscaling if the
current type of projector cannot be used and purchased anymore.
The sound quality is determined by the quality of the 13 wav-sound
samples, which are stereo, have a bit-depth of 16 bit and a sampling
frequency of 44 kHz. The sound resembles a pink noise. As a precise
description of the look and feel is impossible, a video and sound
recording can serve as a reference documentation.

3.4 Hardware dependencies

In 2017, Geert Mul supplied a standard desktop computer with
Horizons installed on it to LIMA3, a platform for preservation, dis-
tribution and research of media art, for research purposes. The
Intel-based x86/64bit computer was equipped with two built-in
Nvidia video cards with each two DVI connectors, and several USB
sockets (s. fig. 2). As most files on this computer were created in
2013 and the components of the computer date from 2012/2013, this
version will be called version 2013 and serves as a reference. This
version is dependent on the Nvidia video card, as this type of video
card is hard-coded in the source code of the artwork (s. section 6.1).

For the first version of Horizons in 2008, Geert Mul used an
infrared camera as a tracking sensor. As this was expensive yet
unreliable, the artist looked for a better solution. Currently, he is
using a time of flight laser sensor, LMS 200 SICK, which will be
called SICK sensor from here onwards. Although this is a sturdy
industrial sensor with very basic maintenance requirements, it
has to be assumed that this sensor will have to be replaced in the
future. As there is no standard protocol for tracking sensors, the
driver of the sensor, sick.c, was taken over from the media art
lab V2, Rotterdam, adapted by the programmer and integrated in
the artifact. Thus, the sensor cannot be replaced without additional
programming measures.

3.5 Comments regarding the definition of
significant properties

The definition of significant properties of an artwork can be con-
testable; often, they are not measurable or technology dependent
qualities that are not applicable any more when the work is trans-
ferred to a different technology. Even if one manages to quantify a
property, it is difficult to know how big the scope of acceptable de-
viation is - an aspect that the artist him/herself may also be unable
to quantify. Besides, the definition of significant properties is partly
dependent on the values of the stakeholders. For instance, a team of
curators and conservators might emphasize aesthetic values above
the historical values of the work, or the other way round. Grace
also recognizes, that there is not one single, definitive interpreta-
tion of significance [6, p. 6]. Bettivia confirms this in her research
about the significant properties of a video game where she found

2Qral communication with Geert Mul during the installation of Shan Shui (2013) in
the week of 28th of October until the 4th of November 2016
SLIMA, Living Media Art, Amsterdam, Netherlands, www.li-ma.nl

Claudia Roeck, Klaus Rechert, and Julia Noordegraaf

that different designated communities defined different significant
properties for the same game [4]. Finally, the perception of what
the significant properties are can shift with each new exhibition,
development of technologies and of conservation theory.

The subjectivity and possible shifting of the definition of signifi-
cant properties can be countered by keeping deprecated artwork
instantiations, their documentation and description of significant
properties. By keeping the history of the definitions of significant
properties transparent, new conservators and curators can make
informed decisions about what they consider significant.

Furthermore, if significant properties are either incomplete or
hard to verify - as this is the case for Horizons - and therefore in-
sufficient for the application of a successful long-term preservation
strategy, a viable solution is to keep as much of the "original" as
possible, which was aimed at for Horizons.

Finally, the mixed approach of technology independent descrip-
tion (description of function, interaction, behavior and processes)
and technology dependent properties (color space, video and sound
resolution, source code, hardware dependencies) comprises a wide
range of properties and therefore supports long-term preservation.

4 CONSIDERATIONS FOR LONG-TERM
PRESERVATION

In order to enable sustainable preservation decisions, not only the
artwork’s significant properties, but also criteria for a successful
long-term preservation are needed. This will enable the comparison
of preservation strategies. The following paragraphs establish these
comparison criteria.

Adaptability to new hardware Hardware abstraction is an impor-
tant means to facilitate future preservation measures. The more
independent the software is from the hardware, the easier it will be
in the future to transfer it to new hardware. Even if the transfer of
an obsolete software to new hardware is successful, this will most
likely require software changes.

Resilience to software obsolescence and adaptability to changed
network protocols The resilience towards obsolescence of software
applications and programming languages is therefore another im-
portant factor for the long-term preservation of software-based
artworks. As any hardware change can lead to a change of soft-
ware requirements and/or configuration, preservation measures
that prepare the artwork for or shield it from such changes support
long-term preservation. For web-based artworks, the abstraction of
protocols is relevant to achieve more independence from changing
Internet and data protocols.

Stabilization of software complexity and minimizing change rate
Although for the preservation of artworks usually no new features
are added, it might be necessary to adapt the software to new
hardware. The more changes a software undergoes, the higher is
the risk that bugs or deviations from the significant properties are
introduced. Preservation measures should therefore try to stabilize
the software artifact and reduce its change rate.

Ease of installation of the artwork / of connecting peripherals Ulti-
mately, the goal of preservation is the presentation of the artwork.
If the installation is very fragile or if it is difficult to find the right
settings in order to adjust it to the space, the risk is higher that

Evaluation of preservation strategies for an interactive, software-based artwork with complex behavior using the case study Horizons (2008)

by Geert Mul.

it will not match the significant properties. Furthermore, if it is
very complex to install, the museum might be inclined to display it
less, as the installation costs are high. For these reasons, the ease
of installation and the stability of the installation process can be
considered success factors for long-term preservation.

Ease of maintenance and of function tests (monitoring) Article
17 of the E.C.C.O. guidelines (I) mentions that the conservator-
restorer should specify the most appropriate means of continued
care. Maintenance is another, more technical term for this and is
essential for the continuation of technology-based art. This is also
valid for software-based art, as Lehman and Ramil describe when
explaining software evolution: "In general, the change will be such
as to adapt the elements of the class so that they maintain or im-
prove their fitness to a changing environment." [8]. The aging of sof
tware-based art is not onherent in the software, but rather in the
interdependencies of software with hardware and external data
sources and protocols. The external environment of the software-
based artwork will continue to change, even if the software artifact
itself does not. This process will eventually lead to its dysfunction,
if no maintenance is undertaken. Maintenance prepares the art-
work to be installed at any given time without having to start a
restoration project first. Through these small maintenance activi-
ties, the artwork’s functionality is automatically monitored and big
surprises regarding its functionality are prevented. Ease of main-
tenance and of function tests can be expressed in time spent on
these maintenance activities each year, taking into account the time
saved for large-scale restoration work.

Scalability of preservation strategy Since tailor-made approaches
to the preservation of software-based artworks are time consum-
ing and expensive, more generic solutions such as emulation or
virtualization are preferred. Specific hardware requirements might
prevent this approach, but some artworks might lend themselves
to a more generic approach. This would facilitate their preserva-
tion and change management. Just a few emulators would have to
be maintained, instead of maintaining and migrating many differ-
ent software environments. The cost of the emulator maintenance
could be shared between the artworks.

5 PRESERVATION OPTIONS FOR HORIZONS

The following sections discuss the digital preservation strategies
available for Horizons and give reasons why a strategy was chosen
or rejected for its subsequent execution. Practical arguments of
feasibility and available resources were taken into consideration.

5.1 Reprogramming

One preservation option is, to reprogram a software-based artwork
in a different programming language and for a current software
environment. The reprogramming can either be based on formal
software specifications that again are based on the significant prop-
erties of the artwork or on formal specifications such as pseudo
code, a generalized interpretation of the source code.

The Guggenheim museum provides an interesting example of a
reprogrammed work: it reprogrammed parts of Brandon®, a web-
based artwork created in 1998 by Shu Lea Cheang, by directly

*http://brandon.guggenheim.org/

iPres2018, ,

translating the existing non-functional code into another language;
all the Java applets were replaced with GIFs, JavaScript and new
HTML [11]. While this measure (in combination with other mea-
sures) has the immediate effect of making the artwork operational
again, this huge effort will have to be repeated when one of the
technologies used becomes outdated.

Reprogramming based on software-specifications requires an
exact description of the significant properties of the artwork. In the
case of Horizons, where several software components interact with
each other to produce the effect on the screen, the exact description
of the behavior is not possible. Even though complex behavior can
be caused by simple functions, these functions can be difficult to
recognize. To re-engineer such behavior can therefore require a
very substantial effort and the result might not be sufficient.

Reprogramming based on pseudo code would be a very inter-
esting option, as pseudo code could be preserved as text in the
long-term without problems. Rinehart who compares the source
code of an artwork with a musical score suggests: "A system of
formal notation for media art should be abstracted from specific
environmental factors. It should be robust, generic, adaptable and
portable - universal content for a universal machine." [13] While
pseudo code could theoretically adopt the role of such a generic,
portable code, the question has to be asked whether pseudo code
and the subsequent translation to a new programming language
can express all idiosyncrasies of the original language. Finally, for
Horizons, translating several thousand lines of software into pseudo-
code and then reprogramming it in a different language was con-
sidered too expensive. These reasons were the reasons why this
strategy was renounced.

5.2 Migration.

Moving and integrating a software artifact into a different software
environment without having to reprogram it is referred to as mi-
gration in this paper (s. section 2). Migration may be necessary due
to the updating or complete change of the operating system, or due
the replacement of important libraries. They are typically a conse-
quence of the transfer to new hardware. Even though changes in
the hardware or software environment may require a recompilation
of the source code (if available), this preservation strategy is based
on the same source code or binaries and thus, the same algorithms
as used for the original work.

The migration of source code was chosen as the easiest and most
straight forward migration option. It was also financially feasible
and still interesting regarding the effect of the recompilation on the
installed work. The operating system Debian was not replaced by
a different one, as it is open source and quite common. However,
it was chosen to update the operating system from Debian 7 to
Debian 9 in order to use a current system and in order to test the
effects this has on the significant properties of the artwork. Finally,
it was a goal of this research to analyze the migration process.

5.3 Emulation.

An emulator is able to interpret the machine language commands of
a specific CPU type or computer architecture. In practice emulators
represent a complete computer system, typically including a sound

iPres2018, ,

card, graphics or network adapters. Virtualization is reverted to
when the performance of the emulation is not sufficient. In contrast
to emulation, the guest system has direct access to the host com-
puter’s CPU and the system commands do not have to be translated
form guest to host.

The emulation and virtualization were both chosen as one strat-
egy, as they can be executed with the same emulation/virtualization
software but with different settings. Although there were concerns
regarding the performance and video card dependency, it was de-
cided to test this strategy, as emulation offers the highest abstrac-
tion level of all the options mentioned and therefore interesting
long-term preservation perspectives.

6 CARRIED OUT PRESERVATION
STRATEGIES FOR THE SOFTWARE

6.1 Analysis of dependencies (Version 2013)

As there was no documentation of the software, some detective
work had to be undertaken in order to be able to isolate the arti-
fact from its software environment and in order to determine and
document its hard- and software dependencies. As a preliminary
measure, disk images were taken from the two internal hard drives
of the artist’s computer.

The disk image enabled the access to the source code and the
identification of the folder structure of the project. From this analy-
sis and interviews with the programmer Carlo Prelz, it appeared
that the same software was used for several artworks and projects.
The programmer made many changes to the software, which re-
sulted in unused source code files located in the same project folder
as the Horizons project.

Another resource of analysis were error messages on the artist’s
computer. When the sensor was not connected, the program started
and an error message pointing at a central Ruby program popped
up. Starting from that program, and following the calls it made
for other programs and libraries it was possible to understand the
start procedure of Horizons. The same method of source code anal-
ysis was used to understand which files were part of the Horizons
software and which libraries it depended on.

The source code analysis showed, that C-programs were wrapped
and executed through Ruby. To integrate C-code into Ruby the pro-
grammer compiled the C-code as a library that can be used by Ruby.
For Horizons, this Ruby library is called boij. so (s. Fig 3). It inte-
grates amongst others a C-program sick.c, which constitutes a
manually written driver for the SICK tracking sensor. Furthermore,
the programmer added custom-built and non-standard libraries to
the standard C- and Ruby libraries. To know their location and
the location and version of the compiler and interpreter used is
indispensable for a migration.

A further result of source code analysis was, that intermediate
hardware abstraction layers such as SDL and OpenGL were used
in order to generalize the underlying hardware. Nevertheless, the
model of the video card was hard-coded in one of the Ruby programs
and in the configuration file of the display manager. The use of the
hardware abstraction layers and the fact, that the SICK sensor was
connected to the computer through a standard USB interface was
the reason, why an emulation approach was considerable.

Claudia Roeck, Klaus Rechert, and Julia Noordegraaf

Runtime Environment

Ruby Interpreter

interprets

boij.rb and other Ruby programs
(source code)

is based on requires

boij.s0
C - shared object file

compiles and links

Ruby libraries

requires

C-libraries

Only needed for

Horizonraalte
:} (other artwork than

Shan Shui or Horizons,

but same software)

C-Compiler and Linker

Source Code]

N

boij_columns.c

phidget.c

inputreader.
raalte_columns.c
videocapt.c
contour.c
regrouper.c

Figure 3: Simplified schema for runtime environment and
source code of Horizons

A set of 113 images with varying aspect ratio and resolution are
used for the video generation. The programmer converted these
images previously from the PNG-format to a project-specific bo2-
format with the Ruby library RMagick. An image database (SQLite)
contains a list of ID’s of the images used for Horizons and the
position of their horizons. The sound generation of Horizons is
based on 13 sound files in WAV-format. The knowledge of these
file locations and relations is relevant for a migration of Horizons.

The configuration file for the SICK sensor was in binary format
and was overwritten each time, the SICK sensor was re-connected
to the computer. It contains site specific sensor and software pa-
rameters. Thus, the parameters of past exhibitions were neither
saved nor were they human readable. From the preservation point
of view, this is a lack of the software which could be amended when
migrating it (creating a new preservation feature).

Although the programmer installed Debian 7 as on operating
system, he integrated an old Linux kernel (2.6) in order to be able
to use the LILO boot procedure which he preferred to GRUB, the
new standard boot loader for Linux kernels. Based on that boot
procedure Horizons started up as soon as the computer was switched
on and shut down in a controlled way, when the computer was
switched off. This boot procedure has to be known when migrating
the work.

6.2 Migration version 2017

The migration of Horizons not only comprised the update of the
operating system, but also the implementation of several other
measures supporting the preservation of Horizons. In particular, it

Evaluation of preservation strategies for an interactive, software-based artwork with complex behavior using the case study Horizons (2008)

by Geert Mul.

was a goal to make the work independent from a specific video
card by detecting the video card automatically, so that it could
be presented on any computer (with x86/64bit architecture and a
capable video card).

The new base-system was built from scratch based on the knowl-
edge gained from the runtime analysis described above and in fig.
3. The most current operating system (Debian 9 / Linux kernel 4.9)
was installed in order to have a stable version that is able to deal
with new computer hardware and to avoid having to update soon
after the migration (OS of the 2013 version: Debian 7, kernel 2.6).
This operating system update also included a new version of the
Ruby interpreter and the C-compiler.

As a next step, the source code, the images, the image database
and the sound were copied over. Not all data in the artist’s data
folder were transfered, as some directories contained other projects
that were not directly related to Horizons. The separation and dele-
tion of unrelated data is an ongoing task that has not been finished.
Cleaning up decreases maintenance and increases the understand-
ing of future conservators. However, throwing out seemingly unre-
lated data does entail a risk of breaking the code and of deleting the
project history. This is why it is important to use a version control
system for the source code, a solution that can support the principle
of reversibility that is central to arts conservation.

After the transfer of the source code its C-library was recompiled,
to match updated ABIs® of the new system. The Ruby programs
did not have to be recompiled, as they are interpreted on the go.

For this migration, the tracking sensor was not replaced by a
new model. Due to the analysis of the software in fig. 3 it is clear,
though, that the sick. c file (driver of tracking sensor) would have
to be adapted and recompiled should the sensor be replaced.

The procedure to boot the Horizons version 2013 was based
on the LILO boot loader. As the development of the LILO boot
loader ended in 2015, the automated startup procedure of Horizons
had to be adapted to use the GRUB bootloader. The change of the
automated startup procedure also included the configuration of a
new display manager (NODM) to invoke the graphics window for
the video.

This step-by-step reconstruction of the new system indicates
that, to a certain extent, it was possible to separate the software
artifact from its software environment. This knowledge is useful
for future migrations and the technical understanding of the work
as it will be possible to establish whether the replacement of certain
software components (libraries, operating systems) is possible.

6.3 Emulation / Virtualization version 2017

Emulation (virtualization) was chosen as a second preservation
strategy as it makes Horizons more independent from hardware
than migration. The original goal was, therefore, not to change
the software and its environment by running a disk image of the
internal hard drive of the 2013 version in the emulator.

Graphic rendering, as used in Horizons, is computational inten-
sive and was therefore offloaded to specialized hardware, a graphics
processing unit (GPU) usually part of high-end video cards, to in-
crease the rendering performance. In theory, GPUs can be emulated,

5 Application Binary Interface

iPres2018, ,

i.e. the functionality of GPUs can be implemented in software which
is then executed on a generic CPU. GPUs provide highly special-
ized functionality, optimized for specific tasks, such that a generic
GPU emulation - even for older GPU models — provide a poor
performance in practice. We tried to run the emulated setup using
software rendering only, but the graphics rendering was not suf-
ficient. In order to provide GPU functionality for the emulated /
virtualized environment a different approach is necessary.

6.3.1 Emulation options for the graphics rendering. Qemu was
chosen to emulate (virtualize) Horizons. Qemu and similar emula-
tion and virtualiziation system are able to use the host’s CPU to
execute binary code directly (CPU virtualization) for performance
reasons. For preservation purposes, virtualization is a technology
to bridge the gap until either CPUs are fast enough to emulate
even contemporary software or the current architecture changes
significantly, such direct execution becomes impossible.

A similar approach for GPUs is required. One potential option
is a GPU pass-trough, as used by public Cloud providers today®.
With GPU pass-through, the original vendor driver is installed in
the guest system, which however, ties the emulated instance again
to a specific hardware setup. An alternative option, is to install a
generic virtual GPU within the guest system and delegate the adap-
tion to the host’s GPU hardware to the emulator implementation.
The Virgil3D GPU project’ added such functionality to the Qemu
emulator recently. When using virtual hardware, a new guest driver
has to be implemented (in contrast to emulated hardware for which
the original vendor drivers could be used). On Linux systems, this
driver is available since kernel version 4.4.3 As the Linux kernel of
the artist’s version was 2.6, the kernel had to be updated. Instead
of only updating the kernel, we decided to use the migrated ver-
sion 2017, as it already contained an updated kernel (Debian 9.1
including a Linux kernel 4.9). This allowed a direct comparison of
the same software environment running on real hardware with
an emulated instance. Thus, not the 2013 version of Horizons, but
the migrated 2017 version of Horizons was emulated (virtualized).
In other terms, the emulation/virtualization contains the migrated
version in the guest system.

Fig. 4 illustrates the emulated system setup of Horizons. The
footnote® below gives the qemu command that is necessary to start
the virtual machine. An overview of options for the handling of
GPUs in emulation/virtualisation environments is given in fig. 5.

6.3.2 Emulation options for the tracking sensor. The connection
of the SICK sensor through a USB connector to the emulating
laptop did not raise any concerns. The USB-input of the sensor
was passed through to the guest system in the virtual machine
without problems. With regard to the sensor usage, emulation /

°E.g. Announcing GPUs for Google Cloud Platform, https://cloudplatform.googleblog.
com/2016/11/announcing-GPUs-for-Google- Cloud-Platform.html
"https://virgil3d.github.io/

8A driver for Windows guest is currently under development: https:/gist.github.com/
Keenuts/

%qemu command line for Horizons with accelerated graphics rendering:
QEMU_AUDIO_DRV=pa gemu-system-x86_64 -enable-kvm -cpu host -m 4096
-vga virtio -display gtkgl=on -machine smm=off -usbdevice tablet -netdev
user,id=net0,hostfwd=tcp::22222-:22 -device e1000,netdev=net0 -soundhw hda -drive
if=virtio,file=$dir/shan-shui.qcow2,cache=none -k en-us -usb "$@"

https://cloudplatform.googleblog.com/2016/11/announcing-GPUs-for-Google-Cloud-Platform.html
https://cloudplatform.googleblog.com/2016/11/announcing-GPUs-for-Google-Cloud-Platform.html
https://virgil3d.github.io/
https://gist.github.com/Keenuts/
https://gist.github.com/Keenuts/

iPres2018, ,

Claudia Roeck, Klaus Rechert, and Julia Noordegraaf

Horizons Emulation 201 7}

Host system: Hardware Virtualization with gemu 2.9

Host GPU

Linux Operating System }

Guest CPU

Operating system

Libraries

SDL
Simple DirectMedia Layer is a cross-platform
development library designed to provide low
level access to audio, keyboard, mouse, and
graphics hardwarevia OpenGL and Direct3D

v

Xorg display server.

It manages the graphics window on the desktop and

the video card driver and handles keyboard and
mouse input

v

virtio gpu kernel modul
A paravirtual 3D graphics driver based on

cross-platform application programming interface (API)
for rendering 2D and 3D vector graphics. The APl is typically
used to interact with a graphics processing unit (GPU), to

OpenGL.
Open Graphics Library is a cross-language,

achieve hardware-accelerated rendering.

virglrenderer

v

virtio gpu video card
(virtio-gpu-pci, virtio-vga)

a

virglrenderer:
gemu library to access video card for graphics rendering. It allows the guest operating system
to use the host GPU to accelerate 3D rendering)

* 1

i Guest display as opengl texture !

‘ v

GTK (Gimp tool kit)
A cross-platform widget to create a graphical user interface

v

[Xorg display server l

Figure 4: Virtualization of Horizons by migrating it from Debian 7 to Debian 9 with gemu

virtualization is a valid option. However, this does not solve the
problem of the SICK sensor being replaced by a different sensor type.
The SICK sensor is interwoven with the software artifact that is able
to read the specific SICK sensor protocol (a manually written driver).
If the sensor is replaced by a sensor with a different protocol, which
is likely in the future, the software will not be able to parse it. Ideally
— for preservation purposes — changes of the artifact or software
setup should be avoided when replacing the sensor. This could be
achieved with an additional software interface that translates the
data of different sensor technologies and brands to the current SICK
data protocol. While such an approach requires additional effort,
adaptations of the software for the sake of preservation could be
clearly held apart. Fig. 6 depicts these options for the integration of
the tracking sensor in an emulated/virtualized system.

7 SENSOR AND SCREEN RECORDINGS AS A
METHOD TO DOCUMENT AND COMPARE
ELUSIVE SIGNIFICANT PROPERTIES

7.1 Sensor recording: stabilizing the input

Certain significant properties are difficult to quantify. For Horizons,
the behavior of the generated video is difficult to grasp due to the
indefinite possibilities of visitor behavior, due to the random pro-
cesses built-in the software, and due to the complex interplay of
the programs/processes. In addition, it is difficult to quantify the
smooth rendering of the video, a property that is important to the
artist. When comparing preservation versions or artwork instantia-
tions, these elusive properties are important for their evaluation.

Evaluation of preservation strategies for an interactive, software-based artwork with complex behavior using the case study Horizons (2008)

by Geert Mul.

iPres2018, ,

Graphics rendering system in an emulation / virtualisation

hardware necessary

Virtualisation or

Guest Host
pass-through of (i
A Driver of Nvidia Emulation / video card - Nvidia Pass-through Video card dependent
video card Virtualisation of CPU ”| Video card Hardware Rendering disk image
G T Virtl:jali?at'zm of C:U paravirtualisation 'D' % : ——
eneralised video and of video card. ;) W iskimage transferable
- of video card
Artifact card driver (virtual Adaption of OS-kernel »{Any video card (Para)vmuallsathn to same computer
. y Hardware Rendering .
video card) to underlying host architecture

no use of
video card

Diskimage transferable
to any CPU
architecture

emulation of CPU

Artifact >

CPU Software Rendering

Y

(emulation) or to
same architecture
(virtualisation)

Figure 5: Emulation options for the graphics rendering of Horizons

Sensor handling in an emulation / virtualisation of Horizons

Guest

Host

\l

rl sick sensor ‘ USB pass-through

Manual adaption

Artifact | sick.c | Emulation / |
. . A i1
(drvelS | USS i Virtualisation of CPU
sensor)
Artifact driver for ;| USB driver Emulation / |
new sensor| | Virtualisation of CPU |

Avrtifact sick.c

(driver sick
sensor)

! Emulation /
> USE/dIES] HVinualisation of CPU

Interface to translate

from new sensor to
sick sensor

new sensor of sensor driver in guest.

USB pass-through

Interface to translate between
sick tracking sensor and
new replacement sensor.
Adaptions made in host.

new sensor

Figure 6: Emulation options for the tracking sensor of Horizons

Thus, as a quality control for carried out preservation measures
we are suggesting to compare the video and sound output of differ-
ent instantiations of Horizons. Yet, in order to receive comparable
output, it would be necessary to carry out this comparison in the
same space and based on the same person’s walk across the space.
This procedure is not completely reproducible. Consequently, the
setup of Horizons was adapted, so that it became possible to record a
person’s walk, including the information about the space which the
software considers as background. It also includes the specific pro-
gram settings that were chosen in the "look-around" configuration
menu of the custom-made software. All this information is saved in
a file that can be replayed by the Horizons software instead of using

the sensor input. This stabilized input facilitates the comparison of
different artwork instantiations.

The sensor input and therefore the file recording is sensor-model-
specific. Different sensor models or technologies can therefore only
be compared with each other in this way if an interface bridges
the difference between the two sensor protocols as suggested in
section 6.3.2. This interface provides the flexibility to make and use
recordings with a new sensor while it is still possible to use the old
sick sensor recording. As long as the program that interprets the
sensor input file does not change, any other software changes can
be tested.

iPres2018, ,

7.2 Screen and sound recording of stabilized
input

The sensor recording enables the comparison of different screen
and sound recordings, as it is now possible to produce them from
the same sensor input. From the tests carried out it can be concluded
that the screen recording in conjunction with sensor input recording
works very well in order to assess the generated video patterns. It is
more precise than comparing documentary video recordings, which
are made in various angles and with undefined visitor movements.
Still, the smoothness of the movement cannot be checked with this
procedure, as the process of screen recording reduces the graphics
rendering performance. The impact of the screen recording on
the rendering quality was noticeable, while running the artwork
without screen recording yielded a smooth rendering.

For sound recording a special audio driver had to be installed
in the guest system and the emulator’s sound had to be redirected
to that virtual driver. For the 2013 version the audio could only be
captured through the analogue computer output, which resulted in
a very poor recording quality.

7.3 Compliance with significant properties of
the artwork

The comparison of the videos and sound generated by different
artwork instantiations was possible due to the recording of the
sensor input. However, when comparing video and sound, one has
to be aware, that the software randomly picks an image of varying
resolution and a sound sample of varying length. This also has a
certain, subordinate impact on the video and sound pattern and
can be recognized by comparing several screen recordings of the
same sensor input and the same hard- and software setup.

Compared to the 2013 version, the migrated version shows some
deviations in the video pattern that are only noticeable in a direct
comparison of screen-shots (s. Fig. 7). For instance, at the moment
of the snapshot taken in Fig. 7, a fourth image is appearing in the
migrated version whereas it is not visible in the 2013 version.

The video patterns of the emulated version are very similar to
the ones of the migrated version. This was to be expected, as the
emulated version contains the migrated version in the guest sys-
tem. However, the sound playback of the emulated version was
not satisfying, because it contained a disturbing crackling. This
disturbance of the sound quality would not be acceptable in an
official representation of the artwork. As the sound recording of the
emulated version was of a good quality, it might be either a perfor-
mance (sound dropouts) or a driver problem. Having tested several
Qemu audio drivers and different emulated audio hardware, none
of them yielded a satisfactory result. Other tests passing the sound
through to an external USB audio card did not yield better results
either. Hence, the work cannot be presented within an emulator at
the moment. Sound performance issues are a known problem for
Qemu, so is likely that it will be resolved in the future.

While the recording method served to compare the look and
feel of the emulated and the migrated version, the compliance with
other significant properties resulting from the idea of the work
and from the processes implemented by the software had to be
checked, too. With both migration and emulation, the interactive

Claudia Roeck, Klaus Rechert, and Julia Noordegraaf

Horizons_Debg_artistscomp_20171207_164533.0gv - mpv

Figure 7: : Corresponding pattern (of different paintings) in
screen recordings made on the artist’s computer. On the top
Horizons version 2013, below the migrated version 2017.

nature of the work is preserved, meaning, that both react to a
sensor input. Furthermore, both are directly executing the original
code. This does not only comply with the significant property of
code execution, but is also in line with article 8 of the E.C.C.O.
directive which states, that preventive conservation should prevail
over "physical” work and that treatment should be limited to what
is necessary[2]. Except for the sound rendering in the emulation, it
can be summarized, that both the emulated and migrated version
sufficiently complied with the significant properties.

8 DISCUSSION OF PRESERVATION STRA-
TEGIES CARRIED OUT FOR HORIZONS

The preservation strategies applied to our use-case deal differently
with hardware and software dependencies. The main differences
between an emulation and migration strategy, however, are found
in future, reoccurring, preservation tasks. The migration strategy
runs the risk of having to adapt the source code or replace the
programming language in the future, as programming languages
evolve or become obsolete. In a similar way the graphic system used
(SDL/OpenGL/X11) eventually requires substitutes. These tasks are
labor-intensive, difficult to automate and their complexity is difficult
to predict. It has to be assumed, that all these updates and changes
could have a perceivable accumulated effect on the generation of the
Horizons video and on the complexity of the source code, as already
the jump from Debian 7 to Debian 9 was visible (but not audible
due to the noise quality of the sound). Hence, the complexity of the
software artifact definitely increases with the migration strategy
in contrast to the emulation strategy that requires fewer changes

Evaluation of preservation strategies for an interactive, software-based artwork with complex behavior using the case study Horizons (2008)

by Geert Mul.

and slows down the growth of complexity. However, the emulator
itself might become obsolete and require a substitute.

At the moment, the emulated version does not provide many
advantages over the migrated version. It is rather a proof of concept.
Despite of the current performance restriction, the emulation pro-
vides a better starting point for future, reoccurring, preservation
work as it provides a higher level of abstraction. With the rapid
improvement of hardware performance, there is a good chance
that a pure emulation will soon be possible and adaptations in the
guest system will no longer be necessary or less invasive. The most
important advantage of the emulated version is that preservation
work (e.g. its transfer to new hardware) is usually possible without
specific knowledge of the artwork. In contrast, a migration does
require more detailed knowledge about the identity and function
of the software artifact and of its software environment.

For the installation of Horizons the connection of peripherals
pose the biggest risk. In the long-term, both preservation strategies
will have to cope with new sensors and projectors. The installation
of the projectors with the correct aspect ratio and resolution has
not been tested with either of the preservation versions and might
take some fine-tuning, especially for the emulated version, as the
video signal will have to be split onto two to three projectors. The
connection of the SICK sensor worked for both versions. The con-
nection of speakers is not expected to cause any problems for the
migrated version. For the emulated version, the sound playback
will have to be resolved.

9 CONCLUSIONS

The behavior of an interactive, software-based artwork such as
Horizons is too complex to describe it so precisely, that the software
could be reproduced from it. In addition, as the source code consists
of several thousand lines, the translation into pseudo-code and from
there into another programming language would be expensive, and
the result would most likely deviate from the use of the original
source code. These practical reasons led to the definition of the
source code as a significant property. As Pip Laurenson describes in
[7, p. 93], significant properties can also include dependencies. The
source code can be seen as a dependency (as it is in practice difficult
to replace it), but also as a detailed notation of the processes and
algorithms.

There is no clear winner emerging from the above evaluation
of preservation strategies mainly due to the fact, that the carried
out emulation version relies on virtualized hardware and remains
computer architecture dependent, for performance reasons. The
most important advantage of the emulated version - essentially a
result of combining migration and emulation - is that its transfer to
new hardware is possible without specific knowledge of the artwork
in contrast to the migration, where this is needed. Furthermore, the
change rate of the software artifact is reduced. The combination or
merging of emulation and migration is therefore a strategy which
can be successful in the mid-term, as long as the new hardware does
not have enough speed advantage to enable a full-system-emulation.
Furthermore, the emulation of the migrated version allows the
identification of emulation effects and hardware dependencies and
serves as a sandbox for the migration.

iPres2018, ,

With the emulator, the artwork is encapsulated and thus its be-
havior does not need to be understood and described in every detail.
In order to still be capable of comparing preservation versions, elu-
sive significant properties can be partially captured by recording
video and sound from a stabilized input.

The encapsulation has another benefit: it protects and separates
the artwork from changes later introduced. The sensor interface
that could translate other sensors to the current sick sensor protocol
would support the replacement of the tracking sensor. This interface
and its connection to the emulator is left for future research.

Thus, this research shows that the combination of migration and
emulation can be a good solution for interactive, graphics intensive
works in the mid-term. It steps in between short-term solutions like
migration and long-term solutions like a full-system emulation.

10 ACKNOWLEDGEMENTS

This research was funded as part of NACCA (New Approaches in
the Conservation of Contemporary Art, www.nacca.eu), a Marie
Sklodowska-Curie Innovative Training Network of the European
Union. LIMA, Amsterdam (www.li-ma.nl) provided the infrastruc-
ture and secondment placement for this research, Geert Mul made
his artwork including hard- and software available, and Teal Gaure
provided programming support.

REFERENCES

[1] 02/01/2008. Digital preservation strategies. (02/01/2008). http://www.paradigm.
ac.uk/workbook/preservation-strategies/selecting- strategy.html

[2] 2003. E.C.C.O. Professional Guidelines (II): Code of Ethics. (2003).

[3] 2017. Acting on Change: Model-Andriven Management of Evolving Digital
Ecosystems: White Paper. (2017).

[4] Rhiannon Bettivia. 2016. Mapping Significance of Video Games in OAIS. In iPRES
2016 - 13th International Conference on Digital Preservation.

[5] Patricia Falcdo. 2010. Developing a Risk Assessment Tool for the conservation of
software-based artworks. Master’s Thesis. Hochschule der Kiinste Bern, Bern,
Switzerland.

[6] Stephen Grace. 2009. Investigating the Significant Properties of Electronic Con-
tent over Time. (2009).

[7] Pip Laurenson. 2014. Old Media, New Media? Significant Difference and the
Conservation of Software-Based Art. In New collecting, Beryl Graham (Ed.).
Ashgate Publishing Limited, Surrey (UK) / Burlington (USA), 73-96.

[8] Meir M. Lehman and Juan F. Ramil. 2002. Software Evolution and Software
Evolution Processes. Annals of Software Engineering 14, 1 (2002), 275-309. https:
//doi.org/10.1023/A:1020557525901

[9] Tabea Lurk. 2008. Virtualisation as a conservation measure: Contribution to the
Handling of Born Digital Media Art. (2008).

[10] Len Osterweil. 2008. What is software? Springer Science+Business Media (2008).

[11] Joanna Phillips, Deena Engels, Emma Dickson, and Jonathan Far-
bowitz. 2017. Restoring Brandon. Shu Lea Cheang’s Early Web
Artwork. (2017). https://www.guggenheim.org/blogs/checklist/
restoring-brandon-shu-lea-cheangs-early-web-artwork

[12] Klaus Rechert, Dirk von Suchodeletz, and Randolph Welte. 2010. Emulation

Based Services in Digital Preservation. In Proceedings of the 10th annual joint

conference on Digital libraries, Jane Hunter (Ed.). ACM, New York, NY.

Richard Rinehart. 2007. The Media Art Notation System: Documenting and

Preserving Digital/Media Art. Leonardo 40, 2 (2007), 181-187.

[14] Jeff Rothenberg. 1999. Avoiding technological quicksand: Finding a viable technical

foundation for digital preservation a report to the Council on Library and Infor-

mation Resources. Council on Library and Information Resources, Washington

DC.

Dirk von Suchodoletz. 2010. Future Emulation and Automation Research Agenda.

Dagstuhl Seminar Proceedings. Automation in Digital Preservation (2010).

Christian Wagner. 2014. Model-Driven Software Migration: A Methodology: Reengi-

neering, Recovery and Modernization of Legacy Systems (aufl. 2014 ed.). Springer

Fachmedien Wiesbaden, Wiesbaden.

Andrew Wilson. 2007. Significant Properties Report: INSPECT Work Package 2.2.

(2007).

(13

[15

[16

(17

http://www.paradigm.ac.uk/workbook/preservation-strategies/selecting-strategy.html
http://www.paradigm.ac.uk/workbook/preservation-strategies/selecting-strategy.html
https://doi.org/10.1023/A:1020557525901
https://doi.org/10.1023/A:1020557525901
https://www.guggenheim.org/blogs/checklist/restoring-brandon-shu-lea-cheangs-early-web-artwork
https://www.guggenheim.org/blogs/checklist/restoring-brandon-shu-lea-cheangs-early-web-artwork

	Abstract
	1 Introduction
	2 Related work and definitions
	3 Significant properties and dependencies of Horizons (2008)
	3.1 Idea of the work
	3.2 Processes implemented by the software
	3.3 Look and Feel
	3.4 Hardware dependencies
	3.5 Comments regarding the definition of significant properties

	4 Considerations for long-term preservation
	5 Preservation Options for Horizons
	5.1 Reprogramming
	5.2 Migration.
	5.3 Emulation.

	6 Carried out preservation strategies for the software
	6.1 Analysis of dependencies (Version 2013)
	6.2 Migration version 2017
	6.3 Emulation / Virtualization version 2017

	7 Sensor and screen recordings as a method to document and compare elusive significant properties
	7.1 Sensor recording: stabilizing the input
	7.2 Screen and sound recording of stabilized input
	7.3 Compliance with significant properties of the artwork

	8 Discussion of preservation stra- tegies carried out for Horizons
	9 Conclusions
	10 acknowledgements
	References

