Hierarchical Modeling for Phylogenetic Inference using RevBayes

Tracy A. Heath

Ecology, Evolution, & Organismal Bin Iowa State University

@trayc7

Bayesian Phylogenetics & Macroevolution in RevBayes Workshop Canberra, Australia March 26-28, 2019

RevBayes

Fully integrative Bayesian inference of phylogenetic parameters using probabilistic graphical models and an interpreted language

https://github.com/revbayes

Höhna et al. 2016. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. *Systematic Biology*. (doi: 10.1093/sysbio/syw021)

RevBayes: Projects

The Code

- 220,00+ lines of code
- 2,900+ source files
- 10,000+ commits

Documentation

- <u>http://revbayes.com</u>
- 30+ extensive user tutorials
- Tutorials for new developers
- Workshop materials

Visualization

 RevGadgets (R package)

Interfaces

- Interpreted language
- RevStudio (editor/ console)
- Jupyter Kernel (notebook)
- Interactive GUI*
- Script Generator GUI*

http://revbayes.com

Software Tutorials Workshops Jobs Developer

RevBayes

Bayesian phylogenetic inference using probabilistic graphical models and an interpreted language

About

RevBayes provides an interactive environment for statistical computation in phylogenetics. It is primarily intended for modeling, simulation, and Bayesian inference in evolutionary biology, particularly phylogenetics. However, the environment is quite general and can be useful for many complex modeling tasks.

RevBayes uses its own language, Rev, which is a probabilistic programming language like JAGS, STAN, Edward, PyMC3, and related software. However, phylogenetic models require inference machinery and distributions that are unavailable in these other tools.

The Rev language is similar to the language used in R. Like the R language, Rev is designed to support interactive analysis. It supports both functional and procedural programming models, and makes a clear distinction between the two. Rev is also more strongly typed than R.

Core Development Team

RevBayes was designed and developed by Sebastian Höhna, Fredrik Ronquist and John P. Huelsenbeck. The core development team additionally includes Michael J. Landis, Bastien Boussau, Tracy A. Heath, Nicolas Lartillot, Walker Pett, and William A. Freyman.

GitHub | License | Citation | Users Forum

RevBayes: Tutorials

Introductions

Getting Started with RevBayes Markov chain Monte Carlo Molecular phylogenetics

Substitution models

Data partitioning

Divergence time estimation

node calibrations tip dating fossilized birth-death processes

Diversification rate estimation

episodic models branch-heterogeneous rate variation state-dependent rate variation

Species tree estimation

concatenated analyses multispecies coalescent

Biogeography

biogeographic dating DEC & epoch models

Chromosome evolution

Continuous trait evolution

Discrete morphological evolution

Methods

MCMC Strategies model Selection model adequacy

http://revbayes.com/tutorials

Why RevBayes?

- There is a clear need for more flexible statical software for phylogenetic analysis
- Flexibility is needed for both users and developers to enable analysis under new complex models

Challenges of Statistical Programming

MrBayes Default Model Settings

0)

Default model settings:

Parameter	Options	Current Setting
Tratiopr	Beta/Fixed	Beta(1.0,1.0)
Revmatpr	Dirichlet/Fixed	Dirichlet(1.0,1.0,1.0,1.0,1.0,1.0)
Aamodelpr	Fixed/Mixed	Fixed(Poisson)
Aarevmatpr	Dirichlet/Fixed	Dirichlet(1.0,1.0,)
Omegapr	Dirichlet/Fixed	Dirichlet(1.0,1.0)
Ny98omega1pr	Beta/Fixed	Beta(1.0,1.0)
Ny98omega3pr	Uniform/Exponential/Fixed	Exponential(1.0)
M3omegapr	Exponential/Fixed	Exponential
Codoncatfreqs	Dirichlet/Fixed	Dirichlet(1.0,1.0,1.0)
Statefreqpr	Dirichlet/Fixed	Dirichlet(1.0,1.0,1.0,1.0)
Shapepr	Uniform/Exponential/Fixed	Exponential(1.0)
Ratecorrpr	Uniform/Fixed	Uniform(-1.0,1.0)
Pinvarpr	Uniform/Fixed	Uniform(0.0,1.0)
Covswitchpr	Uniform/Exponential/Fixed	Uniform(0.0,100.0)
Symdirihyperpr	Uniform/Exponential/Fixed	Fixed(Infinity)
Topologypr	Uniform/Constraints/Fixed/	Uniform
	Speciestree	
Brlenspr	Unconstrained/Clock/Fixed	Unconstrained:GammaDir(1.0,0.100,1.0,1

Modular Bayesian Phylogenetic Software

Several software packages in phylogenetics are moving toward a more modular framework

- reuse code
- easier to extend existing models and implement new ones
- provides a unified framework for analyses under complex models

BaliPhy

BEAST2

RevBayes Design

- C++ backend
- flexible model specification
- graphical models
- easy and intuitive to use Rev language interface

Rev Language


```
n_branches <- 2 * n_taxa - 2
for(i in 1:n_branches){
     branch_rates[i] ~ dnExp(1/branch_rates_mean)
    moves[mvi++] = mvScale(branch_rates[i], lambda=1.0, weight=1.0)
speciation_rate ~ dnExponential(10)
extinction_rate ~ dnExponential(10)
moves[mvi++] = mvScale(speciation_rate, lambda=0.01, weight=1)
moves[mvi++] = mvScale(extinction_rate, lambda=0.1, weight=1)
```

RevBayes Jupyter Kernel

CJupyter revbayes_mcmc_demo (autosaved)	Logout		
File Edit View Insert Cell Kernel Help	RevBayes @		
RowBawes with jupyter			
Revbayes with jupyter			
This notebook demonstrates how to run a simple RevBayes analysis using jupyter. Clicking a cell will allow you to modify its contents. Note that some cells			
left hand side reading e.g. 'In [1]: 'indicates the sequence of executed cells (where '[2] ' is executed after '[1] ').			
First, we'll create filepath and filename variables for IO.			

```
In [ ]: # IO
```

```
dat fp = "../example/data/"
dat fn = dat fp + "primates cytb.nex"
out fp = "../example/output/"
out_fn = out_fp + "primates"
print("path to data: " + dat fn)
print("path to output: " + out fn)
```

RevBayes GUI

RevBayes Inference

RevBayes Model Design

A representation of a model as a directed acyclic graph that exposes all of the assumptions and conditional dependence structure

Höhna et al. 2014. RevBayes: Probabilistic graphical model representation in phylogenetics. *Systematic Biology*. (doi: 10.1093/sysbio/syu039)

This model: observed sequence data are generated by a Jukes-Cantor substitution process, with a uniform distribution over topologies and branch lengths drawn from an exponential distribution

Höhna et al. 2014. RevBayes: Probabilistic graphical model representation in phylogenetics. *Systematic Biology*. (doi: 10.1093/sysbio/syu039)

A probabilistic graphical model is a visual representation of the model structure

The elements of the graph denote the different kinds of variables in the model

 l_i

 $i \in 2N -$

Constant node:

"equals"

represents a fixed value that is asserted or known

value of a prior parameter

 $\lambda = 10$

dimension of a N = 127 parameter

Stochastic node:

"distributed by"

represents a random variable that is unknown and estimated

li $l_i \sim \text{Exponential}(\lambda)$

parameters that have a distribution

Deterministic node:

"determined by"

represents an unknown random variable estimated

 l_i

parameters

2N - 3

i=1

 $L := \sum$

Observed stochastic node: "distributed by"

represents a random variable that is the observed outcome of the model and fixed to observed value

Plate: repetition

repeats model structure to simplify visualization

Plate: repetition

repeats model structure to simplify visualization

Plate: repetition

repeats model structure to simplify visualization

Jukes-Cantor Model

Substitution model: with equal rates of substitution between bases and equal base frequencies

Kimura 2-Parameter Model

Transitions happen at a higher rate than transversions and equal base frequencies

HKY Model

Transitions happen at a higher rate than transversions, with unequal base frequencies

General Time Reversible Model

Unequal substitution rates and unequal base frequencies

RevBayes Model Modularity

RevBayes Model Modularity

RevBayes Model Modularity

