The HMM fitter

Terry Therneau

July 24, 2017

1 HMM likelihood

This section is technical and many users may skip it.

For analysis of the Mayo Clinic Study of Aging (MCSA) data we need to use a Hidden Markov
Model (HMM). In these models there are two processes. First is an underlying state space
through which the patients progress. The covariates and parameters affect rates of progression
from one state to another, and are the primary quantities of interest. The second is an observation
process: at some set of times ¢ one or more outcome variables y are measured which are linked
to the true states via a probability model. This portion of the model will also have parameters.
In many cases the observed states y will have the same labels as the true states, such duplicate
labels mostly serve to generate confusion.

A primary reference for the material is Christopher Jackson’s excellent manual for the msm
package [1]. Others that I found particularly helpful were a web page by Nokoalai Shokiriv [4],
Satten and Lingini [3] and computational details from Kalbfleisch and Lawless [2].

Per Shokhirev there are 3 canonical problems for HMM models.

1. Given the model parameters, compute the probability of a particular output sequence.
This is solved by the Forward or Backwards algorithms.

2. Given the model parameters and an output sequence, compute the most likely path for the
hidden states (the true but unobserved path). This is solved by the Viterbi algorithm.

3. Given an output sequence, find the most likely set of model parameters. This is solved by
the Baum-Welch algorithm.

We are focused on problem 1: an underlying search algorithm will choose parameters £, which
map to rates, which in turn lead to a likelihood value. The search algorithm uses this to find
an MLE. Many references, e.g. Wikipedia, focus only on problem 2 the exclusion of the others.
This led to much early confusion for this author, e.g., the Viterbi algorithm involves a forward
recursion and earns a 'forward’ label there. It might look like 3 is our target, but that would
only be true if there were no covariates and we were directly estimating the rates.

Let S be the set of possible true states; 6 in our basic Alzheimer’s model, with s1, $3,..., S$m
a possible path through those true states for some subject who has m observations. Let (y;1,t1),
(yi2, tiz), - - . be the set of observations that we have made for subject i. Let f(y|s) be a probability
or density function for y given that the true state is s. This can be a general probability
distribution, e.g. the forced expiratory volumen (FEV) for someone with lung disease is assumed

to follow a lognormal distribution with a certain mean and variance. When y is discrete f can
be represented by an error matrix £ which has a row for each true state and a colum for each
outcome, a the function f simply returns the appropriate element.

Let R be the matrix of underlying rates for some interval, then the transition probability
matrix is Pj,, = exp(Rt) for the transition from time m to time m + 1, t = ; i1 — tim 18
the length of time for the interval and exp is a matrix exponential. The jk element of P is the
probability that the subject will be in state k at the end of the interval given that they began the
interval in state j. The off diagonal elements of R are our modeled rates, and each will depend on
covariates and parameters via r = exp(X), r being the element in question. The exponential
guarrantees that elements are positive. Those elements of R that correspond to non-possible
transitions are 0. The rows of R are constrained to sum to zero and this determines the diagonal
elements. For the matrix as a whole g is an p by k matrix where p is the number of columns of
X and k is the number of non-zero transitions.

Symbol matching. I'm a statistician and am attached to X for a predictor, y for the observed
response, 3 for parameters, ¢ for subject and ¢ for time. Many texts illustrate a single subject
and so can use 7 for something else, and almost all differ from my notational choices. (There is
fairly broad agreement on s for the states, but not much else.)

e Shokhirev is written in discrete time, ¢ = 1,..., N indexes time.

— q; is the path through the states, o; are the observed outcomes.

— B is the emission matrix with b;; = b;(0;) the probability that j will be observed if
is the true state. (Yes, he reuses ¢ multiple times).

e Jackson’s msm manual

— (is the rate matrix, P the probabilities, and E the error matrix.

— Subject i progresses through true states s;; with j = 1,...,n; and has observed values
Yig-

The HMM probability is formally a very large sum:

P(y|8,m) = > Plyils)P(s; 8,7) (1)

51,82,...

The sum is over all possible paths through the states: if subject Jones had 7 observations and
there are 6 states this would be a sum over 67 /& 280,000 terms. The vector = is the initial state
distribution and § are the parameters of the transitions. For each of those possible paths we
have the probability of that path, given the coefficients of the model, times the probability of
observing the vector of states y; for that true path.

A big simplification comes from two assumptions: first that y;; depends only on the current
true state s;; (subject ¢, jth observation) and the Markov property of the underlying chain, which
means that the current state depends only on the prior state. This allows the computation to

be written as a nested sum:

P(y:|p,m) = Z[P(yil|51)P(51|7Ta5)Bz]

S1

By = Z [P(y7;2|82)P(32|513 ﬂ)Bii]

S2

B3 = Z [P(yi3|s3)P(s3|s2, 3)Ba)

53

By=... (2)

The references all now say “thus calculating the probability reduces to matrix multiplication”,
which was not at all obvious to me. Let’s work it out.

Let P;,, be the transition matrix for subject ¢ from observation time m — 1 to m for that
subject. The jk element of the matrix is the probability that the subject will be in true state
k at time m given that they were in state j at m — 1. P depends only on the underlying rates
and observation times. The matrix product P;; Pjo is the transition matrix from 0 to 2: the jk
element of the matrix product is a sum over all the states that might have been visited at time 1
(write it out). This is a case where matrix multiplication happens to do exactly the right thing.
Likewise P;; P;joP;3 is the transition for 0 to 3, etc., and wP;1 Py P;3 the probability vector for the
states at time 3 where 7 is the initial probability distribution.

Let D;,, be a diagonal matrix with jj element Pr(yim|sm = j,7), the probability of the
observed y at time m for each possible true underlying state, possibly depending on some pa-
rameters y. The jk element of T;,, = Py, D;,, is the probability that subject ¢ will be in true
state k and observed status y;,, at time m given that they were in true state j at time m—1. The
matrix product oy, = a1 HZ;Q T} is the vector containing for each true state the probability
that subject ¢ will will be in that state at observation m and have the sequence y;1, yi2, - - - Yim
of observed states. The probability is then

am =on [Tia (3)
k=2
p= Zamk
k=1

where m is the number of observations for that subject and ns is the number of states. This
captures equation (2) above, and is identical to Jackson’s definition of T', section 1.6.3 of the
msm manual, and to the recursion formula of Shokhirev.

The very first step of the comptation requires a bit more thought. There are three approaches
available. The first, used in the msm package, is to replace Pr(s;) with the initial state prob-
ability vector m, so that oy = wD;;. This is the initialize step in Shokhirev, and appears to
be a standard formula. Each subject is randomly chosen from an underlying population with
probability vector 7, and we go forward from there. The cav data set in the msm package is an
example where everyone’s true state is known at enrollment (heart transplant). The msm package
allows each subject to have a separate inititialer 7.

Method 2 uses updated prevalence and is appropriate to the Alzheimer data, in which subjects
are a population sample. It is essentially the use of an age specific 7 vector for each subject. If

someone were recruited at age 82, the overall population prevalence at that age is 7(50)F;(82),
P;(82) being the transition matrix from age 50 up to age 82 for the covariate set of subject ¢ and
7(50) the initial values at age 50.! However, the study did not randomly select subjects from
the distribution just computed — that would have meant enrolling a lot of dead people. The
enroll argument is a vector with one element per state containing the probability of enrollment
given that state. This is used to create a renormalized initial probability

Ty = Trek/ (ZP%%)
Q] = T * Dil

A non-renormalized value would discourage high death rates; the likelihood will rate it as an
unlikey event to have enrolled several living 85 year olds but no dead ones if Pr(death) by age
85 is 70%. The enroll vector will often be 1 for all states except death.

Satten and Longini also discuss this issue and change the first line of equation (2) to

P(yi27yi3a s ‘yilaﬁa’y,ﬂ) = Z [P(S = 31|yi13’777r)32]

z1

That is, a3 becomes a posterior distribution over the states given the first observation. The
distribution is allowed to depend on parameters of the misclassification process () and on initial
state, but not on the paramters of the transition probabilities 8. They then choose a suitable
prior for m and integrate it out. This has not yet been added to the code. For the MCSA our
posterior does depend on f since the latter determines the population distribution at each age.

(A fourth approach is found in my earlier hmm routines and which I now think is incorrect.
It renormalized after multiplication by D rather than before.)

An additional aspect is censoring, which happens in two ways. The first is when an observa-
tion is inserted into the data set solely to change the covariates; there was no observed y at that
time. In that case it suffices to set D = I, the identity matrix. The transition matrix for the
combined interval is P; ,, P; ;41 and insertion of the identity matix makes equation (3) match
the correct expression. The second case is partial observation. Say that y is discrete and at some
point we know that y lies in some subset of states. In that case the appropriate D matrix is the
sum of matrices for the subset, e.g., the probability that y would be 1 or 3 given the true state
is s is the sum of the probabilities that y will be a 1 and that it will be a 3. The msm package
takes the second view while we take the first.

The likelihood contribution for exactly observed states such as death is slightly different.
First, we assume that any such states are observed without error. An instant before the death
(at observation m) the state probability is c;,—1T;m, the subject is in one of the non-dead states,
and this is followed immediately by a transition to death. This last transition has a rate given
by the death column of R;(t), the rate matrix at the death time. Then o, = a;,—1TimD just
as before, but instead of a diagonal matrix D we have a mostly zero one:

D, = { Ry 3 :d,i-#d
0 otherwise
where d is the column of R corresponding to the death state. (Note: if an exact state also implies

that this is the last observation for a subject, then D could again be diagonal since the next step
will be a sum, and an exact state then simply replaces one diagonal matrix with another.)

LQuestionable notation for P on this line of text.

The HMM can have multiple y values at each time: we might have an MRI scan, lab tests,
etc. This leads to a multiplication by DWD®) _at the step, i.e., that we observed all of those
y values. There is a possibility for a user to mess up and declare a time point where the first y
says that the subject must be in one set of states and the second y a different non-overlapping
set, which of course leads to a likelihood of zero. The code does not yet check for this.

2 Design

Specification of an HMM model is complex, because the model is complex.
e The underlying Markov model: the states, state names, and the allowable transitions.

e Which covariates apply to each transition, and which of these transition/covariate pairs
share a coefficient.

e For each result y the transmission function needs to be defined, which provides the distri-
bution of y given state. Exact states do not need a transmission function, e.g., death.

e The initial probabilities, whether these should be estimated, and if so what covariates to
use.

e Initial values for the coefficients and specification of which of them, if any, are fixed.

Another issue to consider is that msm and the survival functions treat the input data differ-
ently. In the survival functions each line of data is marked as an interval (t1, t2] and contains
the covariates that apply over that interval along with the outcome at the end of the interval.
The data sets for msm contain a single time value along with covariates and endpoints that were
measured at that time. The msm setup is actually more natural in the sense that it mimics the
way in which data is gathered. The hmm code follows the msm convention, with cbind(time,
y1l, y2, ...) or hbind(time, y1, y2, ...) as the left hand side of the formula. The hbind
routine is local to hmm, and is a little more general wrt responses that are character or factors.
(If one of the responses was character and another a numeric cbind will make them both charac-
ter). When there are multiple responses the code allows some of them to be missing; for a death
time we might have all of them missing.

3 Expansion

For the study that motivated hmm age has a dominating effect on the transition rates. This code
takes the approach that data will be pre-processed such that “age” is a time dependent covariate,
but with any inserted lines marked as ‘censored’: there is no observation of the subject’s state
on these inserted birthdays.

4 The hmm function

We have to inform the program of a long list of items in order for fitting to proceed. For an
HMM these include

The time, covariates, and subject identifiers.

The set of true states and the allowed transitions.

The error mapping from true states to observed states.

e Which covariates apply to which states, and possible initial values for them.

e The initial state distribution.

The data is specified by using standard R modeling language, illustrated in the call below.

> fit <- hmm(hbind(age, y) ~ iage + ns(iage,3) + male, data=data2,
+ subset=1:50, id=clinic, otype=otype,
+ gmatrix= gmat, qcoef=qcon, rcoef=rcon, pcoef=pcoer)

In this example age indicates the observation time at which the state was observed for the
subject and y is a variable giving the observed outcome for each observation, as opposed to the
true underlying state of the HMM. The iage variable is integer age: for HMM models a covariate
must be constant over each time interval, so as a predictor iage moves forward in steps at each
birthday. The otype and id variables are required, and will normally be found in the data set
along with the formula variables. The data must have all of the observations for a particular
id in contiguous rows, sorted by time within subject; the data does not need to be sorted by
subject. The obstype variable is 0= censored, 1= usual, 2= death, 3= entry. The data and
subset arguments work exactly as in other R modeling functions.

Having age as both our time scale and as a covariate can be confusing, and one needs to use
two separate variable names. The variable on the left hand side encodes actual observation times
and so will be continuous. The variable on the right hand side is a time dependent covariate and
will normally be an integer, corresponding to the idea that there is a rate for age 50-51, another
for age 51-52, ...and each rate applies over the whole age interval. This is similar to US death
rate tables, but more importantly a cutpoint variable like this is the only way that the HMM
model can handle continuous age. How many intervals to use is up to the user: single years of
age is perhaps overkill (at least at the younger ages).

4.1 Transition rates

The matrix of transition rates is specified using the gmatrix argument, which has the same form
as it does in the msm package. If there were 6 true states then @ will be 6 by 6, element 4, j is 0
if transitions from state i to state j do not (directly) occur and a positive value if the transition
is allowed. The row and/or column names of @ contain the names of the states, which will be
attached to various parts of the printout; no dimnames corresponds to using 1, 2, 3, ...as the
state names.

For our 6 state model of Alzheimers the (Q matrix would be

> gmat <- matrix(c(0, 1, 1, 0, 0, 1,
+ o, 0, 0, 1, 0, 1,
+ o, 0, 0, 1, 1, 1,
+ o, 0o, 0, 0, 1, 1,
+ 0, 0, 0, 0, 1, 1

2 E

-
-
-
-

+ 0, 0, 0, 0, 0, 1), ncol=6, byrow=TRUE)
> states <- c("A-N-", "A+N-", "A-N+", "A+N+", "demented", "dead")
> dimnames (qmat) <- list(states, states)

> gmat

A-N- A+N- A-N+ A+N+ demented dead
A-N- 0 1 1 0 0 1
A+N- 0 0 0 1 0 1
A-N+ 0 0 0 1 1 1
A+N+ 0 0 0 0 1 1
demented 0 0 0 0 1 1
dead 0 0 0 0 0 1

The diagonal is ignored and can contain any value. (Subjects can always stay in the same state,
and the program knows this.) Zeros correspond to transitions that cannot occur and non-zero to
those that can. The non-zero values will normally be simple indicators as in the above example,
with initial values for the transitions found in the qcoef argument. Alternately, the elements
of gmat can contain initial values for the log of the transition rates. Any initial values in qcoef
will override the values in gmat.

Covariates are controlled by the qcoef argument, which is a data frame containing variables
statel, state2, term, coef and optionally init. The first three variables can be either
numeric or character, depending on whether you want to refer to the states and/or terms by
number or label. A term in the model formula such as ns(x3, 3) will expand into multiple
coefficients but is thought of as one term by R, and entered as such in qcoef. Do not forget the
intercept, which is implicit in most R models and can be referred to either as ‘(Intercept)’ or as
term number 0.

Any row in qcoef that has coef=0 causes that coefficient to not be optimized; it will be
fixed at its initial value. All rows with coef set to the same nonzero value are constrained to
share the same coefficient. The actual values used in the coef column for this purpose are of
no consequence although one will normally use integers. Initial values for the intercept terms
are are taken from the gmatrix argument or the qcoef data frame; if present the qcoef values
override any in Q.

In the model given above, assume that we want a common death rate for the first 4 states,
differing for males and females, and the spline term only for the A-N- to A+N- transition. Below
is a sample qcoef argument. The program will automatically add the intercepts and their initial
values. In order to be consistent with the msm package the current code expects the hazard
(exp(coef)) in gmat and the coefficient itself in qcoef. I'm not sure if this is a good idea.

> states <- c("A-N-", "A+N-", "A-N+", "A+N+", "demented", "dead")
> qconl <- data.frame(statel = states[c(1,3,1,2,3,4,5)],

+ state2 = states[c(2,4,3,4,5,5,6)],

+ term = rep(c("ns(iage, 3)", "iage"), c(1,6)),

+ coef = 1:7)

> # force equal age coeffiecients for death

> qcon2 <- data.frame(statel = states[rep(1:4, 3)],

+ state2 = rep("dead", 12),

+ term = rep(c("(Intercept)", "iage","male"), c(4,4,4)),

+ coef = rep(12:14, c(4,4,4)))

> rbind(qconl, qcon2)

statel state2 term coef
1 A-N- A+N- ns(iage, 3) 1
2 A-N+ A+N+ iage 2
3 A-N- A-N+ iage 3
4 A+N- A+N+ iage 4
5 A-N+ demented iage 5
6 A+N+ demented iage 6
7 demented dead iage 7
8 A-N- dead (Intercept) 12
9 A+N- dead (Intercept) 12
10 A-N+ dead (Intercept) 12
11 A+N+ dead (Intercept) 12
12 A-N- dead iage 13
13 A+N- dead iage 13
14 A-N+ dead iage 13
15 A+N+ dead iage 13
16 A-N- dead male 14
17 A+N- dead male 14
18 A-N+ dead male 14
19 A+N+ dead male 14

4.2 Response functions

Response functions are set up in a parallel way. The rfun argument contains the name of the
response function, or a list of functions if there are multiple y values at each visit. The first
response function goes with the first y value and etc. The rcoef argument is a data frame with
names of response, lp, term, coef and optionally init; the first of these is not needed if there is a
single response. A given response function can depend on multiple linear predictors. The term,
coef, and init arguments are identical to those for qcoef.

A response function will be called with four arguments

y a vector of values y of length n

nstate number of states

eta a matrix of linear predictors with n rows.

derivative FALSE or TRUE, whether the function should also return derviatives of the result

The routine will return a matrix with nstate rows and n columns. Each column refers to a single
observation, and contains P(y;|s; = j), the probability of seeing the given y if the true state
were j. The routine is not called for missing y values, the parent hmm routine has taken care of
that. If derivatives are requested then the response will have a gradient attribute which is an
array whose first two dimensions are identical to the return, and last dimension is the number of
linear predictors. Each “slice” of the array contains the derivatives wrt a single linear predictor.

The code contains a response function noerror.hmm which treats every response as though
it were observed without error. Using this yeilds the usual Markov model rather than a hidden
Markov model. Say one has a response function with no optimized parameters, e.g., if error
rates were known a-priori. One way to deal with this are to write a simple function with those
rates baked in as constants; it depends on no parameters so the the rcoef argument would be
empty. Another is to write one that depends on parameters but call it with those parameters
fixed. An rcoef data frame for the latter would have one or more rows with Ip=1, 2, ..., term=0
(intercept), coef=0 (fixed value) and init = the desired value. In either test cases the parent
routine is smart enough not to ask for derivatives.

4.3 Starting probabilities

The starting probability 7y is defined in the same way as the response functions using pfun and
pcoef. The pfun function has arguments of number of states, linear predictors, and derivative.

5 Optmization

Within the code there are a few key variables. First is the X matrix which has n rows and
m columns, and is like any other X matrix in a modeling function. Second is 8 which has m
rows and p columns, one for each linear predictor. There is a linear predictor for each allowed
transition rate, along with those for the response functions and 7. Some elements of 8 may be
constant. The third is cmap, which has the same shape as 3, and contains parameter numbers.
A value of 0 means that the corresponding element of 8 is fixed (often at zero), a value of k
means that the corresponding element of g is taken from the kth paramter. The maximum value
of cmap is the number of estimated parameters, which is also the length of the coefficient
vector. This is the vector that the optimization routine sees.

The scale option controls centering and scaling of the variables. If centered then the in-
tercepts are with respect to the mean covariate values, scaling scales them all to a standard
deviation of 1. Centering can be critical for convergence of the code, and scaling will often be
helpful. The default for the routine is c (TRUE, FALSE) for centering but not scaling. The scale
compontent of an hmm fit contains the vector of centering values and the vector of scale values.
This can be used as the argument in other hmm fits to ensure the same center/scale from run
to run of a set of models.

A strength of the code (but more work for the user) is that it allows the use of an optimizer of
choice. The routine should have par and fn as the first arguments, and return a list containing
elements loglik and coefficients. As an olive branch to the optim routine the results can also be
labeled as par and value. The mfun argument to hmm should contain the name of the optimizer
and mpar a list of any other parameters desired by the routine. When called par will contain
the intial values of the parameters and fn will by default be 'hmmloglik’. However, any of
'hmmloglik’, ’hmmgrad’ or "hmmfull’, can be be used by adding this as the fn element of mpar.
Each of these takes a single vector of parameter values as input.

e hmmloglik returns a single log-likelihood value

e hmmgrad returns a vector of first derivatives

e hmmfull returns vector of log-likehihood values, one per subject, along with a matrix of
derivatives with one row per subject and one column per parameter.

References

[1] C. Jackson. Multi-state modeling with R: the msm package, 2016.

[2] J. D. Kalbfleisch and J. F. Lawless. The analysis of panel data under a Markov assumption.
J. Amer. Stat. Assoc., 80:863-871, 1985.

[3] G. A. Satten and Jr. I. M Longini. Markov chains with measurement error: Estimating the
true course of a marker of the progression of human immunodeficiency virus disease. Applied
Stat., pages 275-309, 1996.

[4] N Shokhirev. Hiden Markov models.

10

