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Supplementary Material A

A.1 Table of MCSA HMM transition rate constraints

The rate from ... ... should be at least that from ...

A+N− (state 2) to A+N+ (state 4) A−N− (state 1) to A−N+ (state 3)

A+N+ (state 4) to A+Dem (state 6) A−N+ (state 3) to A−Dem (state 5)

A−N+ (state 3) to A+N+ (state 4) A−N− (state 1) to A+N− (state 2)

A−Dem (state 5) to A+Dem (state 6) A−N+ (state 3) to A+N+ (state 4)

A−Dem (state 5) to Dead (state 7) non-Dem (states 1-4) to Dead (state 7)

A+Dem (state 6) to Dead (state 7) A−Dem (state 5) to Dead (state 7).

A.2 Details about the synthetic data generation

The purpose of this section is to describe how the synthetic data was generated to simulate

both the MCSA and modified CAV data sets. The same strategies were used to simulate

both data sets, but the MCSA involved certain additional features to simulate.
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Subject covariates such as ‘sex/male’, ‘educ’, and ‘apoe4’ are randomly chosen in

proportions consistent with those of the empirical distributions from the actual data set.

To simulate ages at first observation for the MCSA, for each subject we sample an age

from the empirical distribution of all ages observed at first visit in the actual data set.

The two scenarios for simulating years enrolled at first visit in the CAV data is described

in the primary manuscript. The true state at initial observation is generated from the

initial state probability vector.

Next, the true underlying state sequence at each instance ‘dt’ of time for each patient

is generated by computing the row of the infinitesimal generator matrix Q correspond-

ing to a subject’s current state, and then sampling waiting times (i.e., realizations of

independent exponential random variables), one for each nonzero rate parameter in the

row of Q. If the minimum of these sampled waiting times is smaller than ‘dt’ then the

subject transitions to the state corresponding to the minimum waiting time, or else does

not transition at that instant. This procedure is repeated until the subject transitions

to dead. A caveat is that the defined instant of time, ‘dt’, must be much smaller than

the scale on which the rates change as a function of age, or else the use of exponential

waiting times is not appropriate. To generate the synthetic data sets for this paper dt

:= 1/365, but we note that dt := 1/12 results in very similar data sets. In fact, the less

fine discretization (dt := 1/12) was used for our preliminary analyses.

Once the true underlying state sequence has been generated the observed clinical

visits are generated as follows. The simulated age a each subsequent clinical visit (after

entry age) is generated by sampling an inter-observation time from the empirical distri-

bution of all (non-death) inter-observation times from the actual data set, and adding

the sampled inter-observation time to the current age. This process of generating clin-

ical visits and corresponding ages is repeated until the subject transitions to dead or

exceeds 12 years in the study for the MCSA (20 years for the CAV), whichever comes
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first. The one exception is that transitions to dead are recorded using the exact time of

transition to dead (from the simulated true state sequence described above). Addition-

ally, prior to each sampled inter-observation time for the synthetic MCSA data there is

a small Bernoulli probability that the subject leaves the study. Note that 12 years is

approximately the maximum duration observed in the actual MCSA data. Details about

simulating the various response functions are provided in the primary manuscript.

Lastly, note that the discretization of time, i.e. dt = 1/365, only applies for simulating

synthetic data. In fact, for our theorized HMM, and the estimation procedure, time is

truly treated as continuous with no discretization. However, this means that we had to

impose the assumption that the generator matrix, Q, is constant over certain periods

of continuous time. After some consideration both of the biology and of computational

limitations, it was decided that assuming the transition rates as a function of age are

constant between birthdays is reasonable. The buildup of amyloid plaques on the brain,

the loss of cortical thickness, the development of dementia, and dying are processes that

take decades/lifetimes to develop. Accordingly, rates of transition amongst our state

space are unlikely to change by an estimable amount in less than a years’ time.

A.3 Details about the MCMC proposal strategy

Due to the complexity of the posterior density function pure Gibbs sampling is not

possible, and a Metropolis-within-Gibbs sampling approach is used. For more efficient

mixing of the MCMC sampling, the HMM parameters are updated in groups, and the

proposal scheme is adaptive during the burnin period. The update groups are chosen

based on parameters which exhibit strong correlations, and the number of groups is

chosen to strike a balance between good mixing and computation time for each iteration.

Unlike the adaptive proposal scheme, the number and composition of the groups is chosen

prior to the MCMC implementation.
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The logic behind the adaptive proposal scheme is most easily illustrated with an

example. In order to update a subset of the parameter vector, say θ, the proposal

distribution is specified as N(θ(t), τ ·Σ), where θ(t) is the current parameter vector in the

MCMC chain, τ is a scale parameter, and Σ is the empirical covariance matrix for some

specified number of previous steps in the MCMC chain. A desirable acceptance ratio is

targeted by scaling down τ when the acceptance ratio gets too small (to propose smaller

MCMC steps), and by scaling up τ when the acceptance ratio gets too large (to propose

larger MCMC steps). The empirical covariance, Σ, is updated at each step, but observes

a limited history of the MCMC chain so as to forget misrepresentative parameter vectors

which the MCMC algorithm visits early on during the adaptation period as it settles in

closer to the posterior distribution. At a pre-specified number of steps, τ and Σ are held

fixed at their most recent values and a traditional MCMC sampling with fixed tuning

parameters is conducted.
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