Supporting Information

Computational Study of Transition States for Reaction Path of Energetic Material TKX-50

Miao Li^a, Houyang Chen^b, Xingqing Xiao^c, Li Yang^a*, Changjun Peng^d, Yuanhang Qin^a, Tielin Wang^a, Wei Sun^a, Cunwen Wang^a

- a. Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- b. Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260-4200, USA
- c. Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
- d. School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China

S.N.	Caption	Page No.
1	Figure S1. The geometries of the reactants, reaction complexes, transition states, product complexes, and products.	S2-S6
2	Table S1. The structure properties of TKX-50 and $(C_2O_2N_8)^{2-}$ anion	S 7
3	Table S2. The structure properties of other five molecules	S8-S9
4	Table S3. The equilibrium constants of all reactions at different temperatures	S10

^{*} Author to whom correspondence should be addressed to L. Yang email: liyang@wit.edu.cn

Figure S1. The geometries of the reactants, reaction complexes, transition states, product complexes, and products. N (blue), C (gray), H (white), O (red) and Cl (green)

	Atoms	Bond length (Å)		Atoms	Bond angle (degree)		Atoms	Dihedral angle (degree)	
	Atoms	Initial	Optimized	Atoms	Initial	Optimized	Atoms	Initial	Optimized
TKX-50	H1-O1	0.996	0.998	O1-N1-H1	112.495	112.682	N5-C1-C2-N7	18.859	17.923
	01-N1	1.444	1.440	N2-C1-C2	128.933	129.257	O2-N5-C1-C2	2.153	2.105
	N1-H1	1.598	1.594	N5-C1-C2	125.656	125.245			
	N2-C1	1.355	1.352	C1-N2-N3	109.300	109.243			
	C1-C2	1.422	1.421	C1-N5-O2	128.12	127.939			
	C1-N5	1.365	1.365						
	N5-O2	1.278	1.277						
	N3-N4	1.296	1.297						
	C1-C2	1.539	1.459	N1-C1-C2	125.967	125.848	N4-C1-C2-N5	30.000	85.275
	N1-C1	1.503	1.351	N4-C1-C2	125.772	125.664	O1-N4-C1-C2	-0.620	2.051
$(C_2O_2N_8)^{2-}$	N2-N3	1.493	1.333	C1-N4-O1	125.543	129.904			
	N4-C1	1.494	1.378	N3-N4-O1	125.831	122.952			
	N4-O1	1.480	1.293						

Table S1. The structure properties of TKX-50 and $(C_2O_2N_8)^{2-}$ anion

	Atoms	Bond le	Bond length (Å)		Bond angle (°)		Atoms	Dihedral angle (°)	
	Atoms	Initial	Optimized	Atoms	Initial	Optimized	Atoms	Initial	Optimized
glyoxal	01-C1	1.512	1.220	O1-C1-H1	120.011	123.506	01-C1-C2-O2	179.991	179.996
	H1-C1	1.140	1.115	O1-C1-C2	119.989	121.497	H1-C1-C2-H2	179.991	179.977
	C1-C2	1.537	1.521	H1-C1-C2	120.000	114.997			
	H1-O1	1.110	0.975	H1-O1-N1	109.471	101.867	H1-O1-N1-C1	134.977	179.928
	01-N1	1.481	1.406	O1-N1-C1	120.074	110.662	O1-N1-C1-C2	179.996	179.819
glyoxime	N1-C1	1.506	1.294	N1-C1-C2	119.764	118.472	O1-N1-C1-H2	0.004	-0.166
	H2-C1	1.140	1.098	N1-C1-H2	120.236	122.257	N1-C1-C2-N2	179.997	179.998
	C1-C2	1.543	1.44	H2-C1-C2	120.000	119.271			
	H1-O1	1.110	0.976	H1-O1-N1	109.471	101.487	H1-O1-N1-C1	128.391	179.899
	01-N1	1.480	1.388	O1-N1-C1	119.991	113.793	O1-N1-C1-C2	177.031	179.908
dichloroglyoxime	N1-C1	1.510	1.289	N1-C1-C2	120.012	119.174	01-N1-C1-Cl1	-2.308	0.118
	Cl1-C1	1.559	1.468	N1-C1-Cl1	120.099	123.557	N1-C1-C2-N2	-177.628	179.915
	C1-C2	1.759	1.741	Cl1-C1-C2	119.885	117.268			
	H1-O1	1.110	0.975	H1-O1-N1	117.061	101.857	H1-O1-N1-C1	-172.173	179.767
	01-N1	1.496	1.402	O1-N1-C1	124.228	111.799	O1-N1-C1-C2	175.575	-179.183
	N1-C1	1.511	1.300	N1-C1-C2	119.921	116.632	O1-N1-C1-N2	-3.783	0.253
DAG	C1-C2	1.542	1.481	N1-C1-N2	119.900	130.081	N1-C1-C2-N2	179.61	-179.899
	C1-N2	1.512	1.396	N2-C1-C2	119.921	113.348	C2-C1-N2-N3	-175.653	-174.425
	N2-N3	1.479	1.242	C1-N2-N3	119.972	123.581			
	N3-N4	1.482	1.145	N2-N3-N4	179.66	167.016			
	H1-O1	1.110	0.984	H1-O1-N1	109.471	102.366	H1-O1-N1-C1	-172.464	178.486
	01-N1	1.48	1.372	O1-N1-C1	125.406	128.112	H1-O1-N1-N2	7.516	-1.554
1,1 - BTO	N1-C1	1.469	1.355	N1-C1-C2	125.328	125.876	O1-N1-C1-C2	-0.012	0.048
	C4-C1	1.457	1.340	N1-C1-N4	108.955	106.491	O1-N1-C1-N4	179.994	179.855
	C1-C2	1.481	1.438	N4-C1-C2	125.717	127.633	N1-C1-C2-N5	-165.000	-179.602

Table S2. The structure properties of other five molecules

T(K)	$K_{ m eq}$									
	glyoxal→glyoxime	glyoxime→dichloroglyoxime	dichloroglyoxime→DAG	DAG→1,1-BTO	1,1-BTO→TKX-50					
250	0.124250228	11.25631837	0.000100091	0.027510504	1.68568×10^{-19}					
275	0.101893329	5.963989976	0.000115342	0.032884190	2.27320×10 ⁻¹⁹					
298.15	0.088881672	3.703196266	0.000128310	0.037453528	2.84406×10 ⁻¹⁹					
300	0.087829040	3.584233742	0.000129378	0.037773728	2.88725×10^{-19}					
325	0.079276058	2.358616057	0.000142801	0.041951810	3.52926×10 ⁻¹⁹					
350	0.073240152	1.657214422	0.000154074	0.045635737	4.16800×10 ⁻¹⁹					
375	0.069120155	1.236988039	0.000164783	0.048760867	4.80147×10^{-19}					
400	0.066789218	0.967386671	0.000174104	0.051540566	5.44793×10 ⁻¹⁹					

Table S3. The equilibrium constants of all reactions at different temperatures