

-1 Residue conservation score

Supplementary Figure 1. Surface residues of the Pop expansion are less conserved.

A. Conservation of amino acid residues within the Pop expansion were mapped onto the structure of the Aspergillus oryzae PepA orthologue using pyMol, allowing visualisation of the relative position of less conserved residues in the protein structure. (i). Surface view of amino acid conservation. (ii). Cross section of structure showing increased conservation of interior residues. Blue regions are conserved 'DTG' catalytic motifs. Gradient from red to white (showing increasing conservation amongst amino acid residues in Pop proteins.

B. Scatterplot of surface exposure (measured by simulated solvent accesibility) compared to conservation of amino acid residues. Higher solvent accessibility score represents greter surface exposure. Residues in blue are the two 'DTG' catalytic motifs with the most conserved pair being the catalytic aspartate residues. This plot shows that a decrease in conservation is correlated with reduced surface exposure.

В

pepA MVNY	-KTIVGSVLALPALASAVE	FTAKOVLIGNSTANPVGEYLRALAKY	CAHVPDPVLAAPISNOTGSV
popPMVN	-CQ <mark>TIISALAL</mark> SALAAPA <mark>A</mark> AAAVGP	FTLDLVPVKRGPAHPAARYVDTLDRY	CGRASDRI RSVANPKTGST
popHMVN	-CKTIVSALALSALAAAAPSPPAAGAGAGP	ESUDIHPVKRGPAHPAARSIHTIDRY	CORVSKKURSLANPOUGSV
pop0 <u>MVN</u>	-SKTHISHLALSALHAAAP	FSTSOVPVKTPAAHPAATYAEAHART	GVEVPHHVALAABCGWKDSV
popSMVN	-FKTIISALLALVAAAP	ESTOOVAWRWPPVHPAATYARDYTRY	GVKVPDHVALAARSGWTDSV
popAMIN	-SKTIISALALSALAASAP	FSVSOVPTNVSBVHPAVEYABVYTKH	GVPT PHHVALAARTPHADSV
popB MAN	-SKTLISVLSLLALATASP		CTDTPDHTALAARSSWTDST
popC MVN	-SKTIICALALSALTASAS	ESTNOVPTNTSBTHPAAKYABAHTKY	GVYTPDYTTLAARSCNPDVADSV
popD MVNSN	-SKTIICALALLALAASTS	FSTNOVPTNTSRVHPAATYARAHTKY	GVHTPDYTTLAARSCNPDVADSV
popEMVN	-CKTIISALVLLVLATASP	FSTROWAWKAP	
popF MAN	-SKTIISSLVLSALATAAP	FSTTOVAVKVPATHPAATYABAYTRI	GVNVPDHTALAARSGWTDSV
popGMVTWSERDTP	PSLPWPTAKILSALAASAP	FSTNLVPTNTSRVHPAVKYABAYTKH	GVDT PNYLALATRSGCLNOSGSV
POPIMAN	-SKTIISALALSALAAAAP	ESTTOVAWKWPAVHPAATYARAFTRI	GEEVPDHVALAARSGWTDSV
popJ MAN	-SKTIISVLFLLALATASA	FSTTOTAVKVPAVHPAATYAOTYTKF	GTSVPDHTALAARSGWTDSV
рорК	RSLCFCLFNACTR	YTHWW VTPWVSWHPTTDYHNALKKY	G-YNPKPTVTCPTSNGTGSV
popL	-HKTIVSALALLALATSAP	ESTNOVPTNVSCVHPAAKYAWAYTKY	GVNIPDYLTLAARSGNPGOAGSV
POPM MEVKKKIN	-SKTIISELALSALAAALT	FSTOOVATOTPPTHPATLYARAHAKY	GVEVPHNVSLAARSAKEDSL
POPN	-SKTIVSALTLSALAAAAP	ESTROVAVKGHDVHPAALYARALARF	DI EVPEHIABAASTCEKGSV
popQ	-YKTIISALALLALAVAVAVP	FSTKOVAVKVPPTPPAAVYARAYART	GVKVPDYVALAABNGWTESV
popR MIN	-SKTIVSVLTLSALAASAP	FSINLVPINVPRVHPAAKYARAHTKY	GVDTPDYLALAARSGNPGNNGOADSV
POPTMIN	-LKIVISALALSALAASAP	ESTNOVPTNVSBVHPAAEYABVYTBH	GVNVPHHVALAARSPHADSV
popUMVN	-SKIIISGLALAVIAATAP	FSITOVAVEVPTVPPATIYAOAYSRL	GVKVPNYTALAARSGWTDSV
popV	-SKTIVSGLALSALAASAP	FSTNLVPTNVSBVHPAAKYABAFSKY	GVDT PNYLALAARSGNPGNPGOAGSV

Secretion signal

Activation peptide

В

рерА	LLLDFDTGSSEL	RGIVDTGTSLLILDDD	VIENCNSK	TCFGGIQS
popP	MTLREDTGSANL	SGILDTGNDLILLPQE	YIFPCNTT	SCYGGIQG
popH	MTLMEDTGNSDL	PGILDTG <mark>GN</mark> MILLFDP	YVEPCNAT	1 <mark>CYGGIQ</mark> S
popO	LQVYFDTASANL	FAVIDTGTTLVLLEE S	YIFPCTET	HCYGGIQV
popS	LQVYLDTASGNT	FAI IDTGTTLLLLQED	YIFPCSS-	HCFGGIQT
popA	LLVTEDTSTSDL	HAVVDTGSSLLLLRQS	WVENCNDV	lCYGGLQV
popB	LKVCLDTGSSNL	SAIVDTGSSINLFPEY	Y I F PC TQT	HCFGGIQS
popC	LLVEFDTGSSEL	HVIVDTGTSLLLDDF	WVEDCRED	VCYGGIQR
popD	LLVSFDTGSSDF	YVILDTCTSLLLEDY	WVEDCRED	VCFGGIQR
popE	LQVVLDTASGNL	YAAIDTGTSLILLPES	YYFPCTMT	HCYGSLQP
popF	LNVYLDTASANT	F GIIDTATTLMLLDE	YVFTCT	HCYGSIQV
popG	LFLYPDTGSGDF	NAIVDTGTSLLLLDHE	WIFNCADD	SCYGGLQC
popI	lqvaldtgssnl	HAIVDTGTSINLFQE N	YTFPCTPA	HCYGGIQT
popJ	LQVCLDTGSANL	SAIVDTGSSINLLPEY	YIFPC TQT	HCFGGIQS
popK	LLINFDT THDEL	SAVLDSA <mark>ISL</mark> IIV <mark>NHE</mark>	IVEPCNID	YCFGGIQS
popL	LLVDLDTGSSDM	QAVVDTGSSLLLFDDW	wvfdCken	VCYGGIQP
рорМ	LMLDFDTGSSNL	HAIVDTGTTLLLLEQR	Y I FRCNEK	WCYGGLQT
popN	LLMNFDTGSASL	NAIIDTGTSILLLEEK	WVFRCDD-	YCYGGAQS
popQ	LQVLVDSGSGNL	FAVVDTGASLILLONS	YVFPCTDT.	HCFGGIQI
popR	VLLVIDSASGDL	HAIVDTGTTLVILEEL	WVFDCNET	VCYGGIQP
popT	ILLALDTSSADI	YAVIDTTGSLVLLKES	WIFDCHDL	LCYGGLQ K
popU	LQVTLDTGSANL	PATIDTGTTLVLLQED	CSR-	LCY
popV	LLVELDTGSADL	YAIVDTGCSLLLLDQY	AFDCREN	I <mark>CYGGIQ</mark> I
				•

Supplementary Figure 2. Protein sequence alignment of aspartyl protease family in T. marneffei.

A. Alignment of the amino terminal end of the predicted pop gene products showing the conservation of the pre-pro peptide signal that is necessary for secretion.

B. The N- and C-terminal active sites, represented by the motifs DTG or DSG, are also conserved. The DTG/DSG motifs (denoted by *) contain essential aspartic amino acid residues . Two conserved cysteine residues that are essential for the formation of the C-terminal disulfide bridge are also conserved (denoted by •).

Supplementary Figure 3. Growth of the various genetically modified *pop* strains

Strains were grown for 7 days at 25°C on ANM medium for hyphal growth and 37°C on SD medium for yeast growth.

A. Growth of strains with single gene deletions, complemented derivatives of the deletion strains using the wild type allele and complemented derivatives of the deletion strains using the wild type allele fused to the mCherry gene .

B. Growth of strains with double gene deletions of the various genes.

C. Growth of the parental strain used to generate all of the transgenic strains in A and B.

No phenotypic differences was noted between any transgenic strain and the parental strain. $ligD^{-}pyrG^{+}$.

Supplementary Figure 4. Cellular localisation of *T. marneffei* mCherry fusion proteins after infection of macrophages.

J774 macrophages were infected with *T. marneffei* strains carrying either the H1::mCherry or PopP::mCherry fusion construct, grown for 24 hours and cell protein extracts prepared from the internalised *T. marneffei* yeast cells and the the remaining macrophage cell lysates. Western blot analysis using a primary rat anti-mCherry monoclonal antibody (α-mCherry Ab) and secondary anti-rat IgG horseradish peroxidase (HRP)-linked antibody is shown. Molecular mass markers are depicted on the left hand side in kDa. Ponceau S staining was used to check for equivalent loading of proteins for western blot analysis (right hand panels). The *T. marneffei* H1::mCherry fusion protein (~40 kDa) was only detected in *T. marneffei* fraction and not in J774 macrophage fraction (filled arrowhead). The *T. marneffei* Pop::mCherry fusion protein (~72 kDa) was detected in both the *T. marneffei* yeast and J774 macrophage fractions (double arrowhead). The PopP::mCherry protein appears more abundant in the *T. marneffei* yeast cell fraction although this may not truly reflect abundance due to the the highly disparate protein composition of the two extracts.

Supplementary Table 1: Similarity of *A. fumigatus* Pep1 to the aspartyl proteases of *T. marneffei*

Protein ^a	e-value	Percentage identity	Score
РерА	2.00E-118	47.65	885
PopC	9.00E-105	43.92	794
PopR	6.00E-100	43.49	762
PopD	3.00E-99	43.35	757
РорМ	3.00E-98	44.44	751
PopL	9.00E-97	44.95	741
PopG	2.00E-94	42.24	726
PopS	5.00E-91	42.02	702
PopF	7.00E-91	40.56	701
РорВ	2.00E-90	38.15	699
PopI	5.00E-90	40.11	696
РорК	4.00E-89	43.14	689
РорА	4.00E-89	40.37	690
PopJ	4.00E-89	38.56	690
РорТ	1.00E-87	39.73	680
PopV	4.00E-87	40.63	677
PopP	2.00E-85	38.32	665
PopN	2.00E-84	40.7	658
РорН	3.00E-84	39.26	658
PopQ	7.00E-84	40.92	655
РорЕ	4.00E-79	39.39	621
РорО	2.00E-78	36.7	618
PopU	4.00E-59	37.18	481

^a – Similarity is based on BLASTp e-value, identity and scores, and the genes are sorted by similarity.

Primer	Primer sequence
ID	-
QQ100	ACCAGGTGTCGATCAGCTTT
QQ75	GCGTACGGGTTCTGGAAAAG
QQ76	CTGACCATGGCGTTTGTGTA
QQ81	TGCATGTAACTGTGTATGGGTGT
QQ82	CAGGTGCATTTTTCTTACGATG
QQ83	GGGGACCCAGCTTTCTTGTACAAAGTGGTTCTAATATCGGCCCATCACC
QQ84	GGGGAGCCTGCTTTTTTGTACAAACTTGTGATTGTGGAACAAAACATTGCT
QQ87	GGAACAATGGCTTGAAGAGG
QQ88	TAGGGCGAGTTTAACGATCC
QQ89	GGGGACCCAGCTTTCTTGTACAAAGTGGTTGGACTAATTGATTG
QQ90	GGGGAGCCTGCTTTTTTGTACAAACTTGTGTCGGTTCTACACGGTCCAA
QQ93	GTGACAGGCTGGCTGTTCCT
QQ94	GCACTGAAACCCCAACACTT
QQ95	GGGGACCCAGCTTTCTTGTACAAAGTGGTTTTTTCAAGCCTGCACTTCC
QQ96	GGGGAGCCTGCTTTTTTGTACAAACTTGTAGGAACTGGGCCGTTAGACT
QQ98	GCCGAAGGTCAACAAAAG
QQ99	ACAATTGGCGCGATATGATT
RR1	GGGGACCCAGCTTTCTTGTACAAAGTGGTATAGCAGGAACGGAGGGAG
XX17	TTTTACTAGTGGCCTGGGCCGCGATACCGAT
XX18	TTTTACTAGTGGCCTTGGTGGCGAAACCAAC
XX19	TTTTACTAGTGGCCTTGATGGCGAAGCCAAC
XX20	TTTTTCTAGAAGCCTGAGCAGCCAAACCAAT

Supplementary Table 2: Primers used in this study

Strain ID	Full Genotype	Origin
G809	$\Delta ligD::pyrG$ niaD1 pyrG1	(Bugeja et al, 2012)
G816	$\Delta ligD::pyrG$ niaD1 pyrG1	(Bugeja et al, 2012)
G829	∆ligD::pyrG ∆riboB::pyrG niaD1 pyrG1	(Bugeja et al, 2012)
G994	G816, Δ <i>popH::pyrG</i>	This study
G995	G816, $\Delta popH::pyrG [niaD^t popH]$	This study
G996	G816, $\Delta popH::pyrG [niaD^t popH::mCherry]$	This study
G997	G816, $\Delta popO::pyrG$	This study
G998	G816, $\Delta popO$::pyrG [niaD ^t popO ⁺]	This study
G999	G829, $\Delta popP$::riboB	This study
G1000	G829, $\Delta popP$::riboB [niaD ^t popP]	This study
G1001	G829, $\Delta popP$::riboB [niaD ^t popP::mCherry]	This study
G1002	$G809, \Delta popS::bar$	This study
G1003	$G809, \Delta popS::bar [niaDt popP]$	This study
G1004	$G816, \Delta pepA::pyrG$	This study
G1005	G816, $\Delta pepA::pyrG[niaD^t pepA]$	This study
G1006	G816, $\Delta pepA::pyrG[niaD^t pepA::mCherry]$	This study
G1007	<i>ΔligD ΔriboB niaD1 pyrG1 ΔpopP::riboB</i> ΔpopH::pyrG	This study
G1008	<i>AligD ΔriboB niaD1 pyrG1 ΔpopP::riboB</i> ΔpopO::pyrG	This study
G1009	ΔligD niaD1 pyrG1 ΔpopS::bar ΔpopO::pyrG	This study
G1010	ΔligD niaD1 pyrG1 ΔpopO::pyrG ΔpepA::pyrG	This study
G1011	ΔligD ΔriboB niaD1 pyrG1 ΔpopP::riboB ΔpepA::pyrG	This study
G1012	ΔligD niaD1 pyrG1 ΔpopS::bar ΔpepA::pyrG	This study
G1013	$\Delta ligD$ niaD1 pyrG1 $\Delta popS::bar \Delta popP$	This study
G1060	G809, $\Delta popS::bar [niaD^t popS::mCherry]$	This study
G1061	G816, $\Delta popO::pyrG$ [niaD ^t popO::mCherry]	This study

Supplementary Table 3: *T. marneffei* strains used in this study.