

Directives of Communicability for Software Models

Adriana Lopes1, Edson Oliveira3, Tayana Conte1, Clarisse Sieckenius de Souza2

1 USES – Grupo de Usabilidade e Engenharia de Software

Universidade Federal do Amazonas (UFAM) Manaus, AM – Brazil

{adriana, tayana}@ufam.edu.br

2 Semiotic Engineering Research Group

PUC-Rio, Rio de Janeiro, RJ – Brazil.

clarisse@inf.puc-rio.br

3 Departamento de T.I.

SEFAZ-AM, Manaus, AM – Brazil.

edson.cesar@sefaz.am.gov.br

USES Technical Report

RT-USES-2019-0002
January, 2019

Institute of Computing (IComp)

Federal University of Amazonas (UFAM)

Manaus, Amazonas 69077-000

2

ABSTRACT
This technical report presents the Directives of Communicability (DCs). The DCs were

proposed to improve the quality of communication among software development team

members. The development of DCs was based on Grice’s Cooperative Principle and Semiotic

Engineering, theories that investigate different ways of communication. Furthermore, UML

class diagrams and activity diagrams produced by two software engineers: one software

engineer produced a diagram with the support of the DCs, while the other produced without

the DCs. These diagrams were used in a study aimed to evaluate the consumption of software

models produced with the DCs.

1. INTRODUCTION

According to Reed and Knight [1], effective communication is one of the most critical
components of working in software teams. In software development, the communication is
carried out through face-to-face discussions in co-located or distributed teams [2], besides the
support offered by tools [3]. Software models are also used as means of communication in
software development teams [4].

Communication failures from software models can come from information that is not
clearly expressed by their producers (people who created the models). Thus, other members of
the development team (i.e. consumers, who comprehend the models for the creation of other
artifacts) may have different interpretations of the ones intended by the producers. Different
interpretations can introduce incorrect information into other artifacts and generate various
defects during the production of software; such as the omission of some necessary
information or the vague definition of information, thus allowing multiple interpretations [5].
Communication failures can occur because producers tend to focus only on the content of
models, although they should also reflect on how model consumers will interpret them.

2. BACKGROUND

2.1 Semiotic Engineering

Semiotic Engineering theory [7], characterizes user-system interaction as a particular case
of human-mediated systems communication. Systems are considered metacommunication
artifacts in Semiotic Engineering, i.e., artifacts that communicate a message from the designer
to users about how they can or should communicate with the system to do what they want.
The content of the metacommunication message, or metamessage, can be paraphrased in the
following template:

“Here is my understanding of who you are, what I’ve learned you want or need to do, in
which preferred ways, and why. This is the system that I have therefore designed for you,
and this is the way you can or should use it in order to fulfill a range of purposes that fall
within this vision”.

Semiotic Engineering extended its original perspective to a Human-Centered Computing
(HCC) perspective. HCC is a field of research that aims to understand human behavior by
integrating technologies in social and cultural contexts [6]. This contribution is related to the
set of conceptual and methodological tools called SigniFYI (Signs For Your Interpretation)
[8]. The SigniFYI Suite assists in the investigation of meanings in a software during the
development process and in the communication between producers and consumers of
software.

3

2.2 Grice’s Cooperative Principle

The Cooperative Principle proposed by Paul Grice [9] to characterize the logic of
conversation can be used to characterize the communication between model producers and
consumers as well. According to Grice, productive conversation (communication) depends on
the observation of reciprocal cooperation, which is established by four maxims:

 Quantity - Make your contribution as informative as necessary, and no more than
necessary;

Quality - Try to make your contribution true. Do not say what you believe to be false and
do not say something that you do not have adequate evidence of;

Relation - Be relevant, that is, do not introduce issues that do not come to the case under
discussion; and

Manner - Be clear, brief and organized with your input. Avoid obscurity of expression,
ambiguity.

Breaking one or more of these maxims may lead to communication failure. However, an
adequate use of Grice’s maxims involves the concept of implicature, that is, information that
can be inferred from statements. Conventional implicatures can be inferred from the
conventional meaning of word. But there are also conversational implicatures, that is,
inferences that can be drawn from participants of a given conversational context in order to
fulfill certain gaps and omissions in order to (re)establish coherence and consistency in
communication. Therefore, unlike conventional implicatures, conversational implicatures
cannot be resolved by invoking the usual meaning of information represented in
communication and require different kinds of inferences.

3. DIRECTIVES OF COMMUNICABILITY

The DCs were developed with expressions that can characterize the producer's
communication to consumers. To support the use of DCs, we based on the Semiotic
Engineering metacommunication template to help producers think about consumers before
model development. We adapted the original template of this theory to:

“Here is my understanding, as a producer of the model, of who is the consumer (to whom
the producer is designing the model), what I’ve learned about what you need to do in system
development (about what should be addressed in the model). This is the solution of the system
that I designed for you to carry out your activities”.

Based on this template, we developed questions that supports the reflection of the producers
on the modeling. Below are the questions developed:

For whom is the model being designed? – “Can the content of the model be
comprehended so that the consumer accomplishes its objectives?” – to support the students (or
producer) to reflect whether the information in the model can be understood by everyone
involved, such as developers and managers, or only developers;

What is being addressed in the model? – “What content should be addressed about the
system’s problem/solution domain in the model?” - in order to encourage the producer to
reflect on the content that he wishes to be comprehended from the model, such as the tasks that
a user can perform on the system. Fig. 1 presents an example about the DCs and the proposal
that supports the reflection of the producers on the modeling.

4

FIG. 1. EXAMPLE OF USE OF THE DCS.

Below we present each DCs. Table 1 shows the process to support the use of the DCs. The
DCs are:

• “Say the truth!” - DC1: Use true information. Do not use information that affects the
quality of the model (maxim of Quality).

• “Say what is needed and no more than necessary” - DC2: Use the necessary content in
the template. Do not use unnecessary content in the model (maxim of Quantity).

• “Say it logically” - DC3: Organize the information in the model consistently (maxim of
Relation).

• “Say it clearly” - DC4: Organize the information in the model clearly (maxim of
Manner).

As suggested in Table 1, students can use the main DCs (DC1, DC2, DC3 and DC4) and
combine them. This helps producers to keep previous DCs in mind while going through the
list. For instance (for the combination of D2.1), when a producer uses the DC2 for a required
information that is “missing” in the diagram, the producer should also be alert so as not to
include information that is not true (DC1). This combination of the DCs evolved from
discussions with a Semiotic Engineering expert and with the researchers involved in this
work. We also proposed the Printed DCs, with the summary of the DCs. The Printed DCs
should be used as additional support in the modeling. The Printed DCs are available in
Appendix A.

TABLE 1. STEPS USING THE DCS.

S# Description of use

Step 1 DC1 (maxim of Quality).

Step 2

DC2 (maxim of Quantity), with the following combinations:

D2.1 – Regarding the information that is necessary and no more than necessary in the model, do

not include information that affects the quality of the model (Quantity and Quality).

Step 3

DC3 (maxim of Relation), with the following combinations:

D3.1 - In the case where incomplete or extra information is relevant in the model, justify

(Relation and Quantity).

D3.2 – In the case where false information is relevant, justify (Relation and Quality).

Step 4

DC4 (maxim of Manner), with the following combinations:

D4.1 - Keep the conciseness, without the sacrifice of coherence (Manner and Relation).

D4.2 - Keep the conciseness, without the sacrifice of what is needed (Manner and Quantity).

D4.3 - Keep the conciseness, without sacrificing quality (Manner and Quality).

Professionals interested in using the DCs can obtain their training in [10]. With our
proposal, we hope to train software engineering to reflect on the content of models that are
consumed by other stakeholders.

5

4. SOFTWARE DIAGRAMS USED IN A STUDY

We invited two software engineers, selected by convenience. The participants had more
than three years in software modeling experience and we considered them to be potential
users of the DCs (modeling professionals with some experience, but not modeling experts).
They were asked to produce UML class diagrams and activity diagrams for a financial control
system: one software engineer produced a diagram with the support of the DCs, while the
other produced it without the DCs. Participants received the following scenario and
requirements for modeling of a financial control system:

Scenario: There are several tools for personal financial control - a pencil and paper and
spreadsheets. Tools are needed to make it easy to organize expenses quickly and easily. Build
an application that contributes to better control of finances. The application will support the
creation of plans that will help the user to organize, besides helping to save money

Requirements:

(i) the system should provide control of credit cards and bank accounts;

(ii) the system should support the user to plan their finances through goals and category
expenses, monitoring the evolution of expenses during the month;

(iii) the system helps prevent paying excessive and penalties by controlling your credit
card and expiration date of your expenses;

(iv) the system notifies the user when the monthly expenses reach more than 80% of the
stipulated limit

4.1 Diagrams produced with the support of the DCs

A. English (translated diagrams)

6

B. Portuguese (diagrams used in the study)

7

8

4.2 Diagrams produced without the support of the DCs

A. English (translated diagrams)

9

10

B. Portuguese (diagrams used in the study)

11

12

APPENDIX A

Directives of Communicability

“Say the truth!”
DC1. Use true information. Do not use information that

affects the quality of the model

“Say what is needed and no

more than necessary”

DC2: Use the necessary content in the template. Do not use

unnecessary content in the model

Note: Regarding the information that is necessary and no more

than necessary in the model, do not include information that

affects the quality of the model

“Say it logically”

DC3. Organize the information in the model consistently

Note: In the case where incomplete or extra information is

relevant in the model, justify

Note: In the case where false information is relevant, justify

“Say it clearly”

DC4. Organize the information in the model clearly.

Note: Keep the conciseness, without the sacrifice of coherence

Note: Keep the conciseness, without the sacrifice of what is

needed

Note: Keep the conciseness, without sacrificing quality

13

REFERENCES

[1] A. H. Reed and L.V. Knight, “Effect of a virtual project team environment on communication-
related project risk”, International Journal of Project Management, vol. 28 (5), 2010, pp. 422–427.

[2] E. Diel, S. Marczak, D. S. Cruzes, “Communication Challenges and Strategies in Distributed
DevOps”, Proceedings of the 11th International Conference on Global Software Engineering
(ICGSE 2016), 2016, pp. 24-28.

[3] V. Käfer, “Summarizing software engineering communication artifacts from different sources”,
Proceedings of the 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2017), 2017, pp. 1038-1041.

[4] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, J. Still, “The impact of agile practices on
communication in software development”, Empirical Software Engineering, vol. 13 (3), 2008, pp.
303-337.

[5] R. M. de Mello, E. N. Teixeira, M. Schots, C. M. L. Werner and G. H. Travassos, “Verification of
software product line artefacts: a checklist to support feature model inspections”, Journal of
Universal Computer Science, vol. 20(5), 2014, pp. 720-745.

[6] Sebe, N. Human-centered computing. In Nakashima, H., Aghajan, H., & Augusto, J (Eds.),
Handbook of ambient intelligence and smart environments, pp. 349–370, 2010. DOI:
10.1007/978-0-387-93808-0_13.

[7] C. S. De Souza, The Semiotic Engineering of Human-Computer Interaction (Acting with
Technology). The MIT Press, 2005.

[8] Clarisse Sieckenius de Souza, Renato Fontoura de Gusmão Cerqueira, Luiz Marques Afonso,
Rafael Rossi de Mello Brandão and Juliana Soares Jansen Ferreira. 2016. Software Developers as
Users: Semiotic Investigations in Human-Centered Software Development. In Springer
International Publishing Switzerland. DOI 10.1007/978-3-319-42831-4.

[9] H. P. Grice, “Logic and conversation”. Syntax and Semantics 3: Speech arts, ed. Peter Cole and
Jerry Morgan, 1975, pp. 41–58.

[10] DCs Material (only the materials) Available:

https://drive.google.com/drive/folders/1z9nZgoWOjXm2Co0_IQ8gulYgR0h5M8NM?usp=sharing

https://drive.google.com/drive/folders/1z9nZgoWOjXm2Co0_IQ8gulYgR0h5M8NM?usp=sharing
https://drive.google.com/drive/folders/1z9nZgoWOjXm2Co0_IQ8gulYgR0h5M8NM?usp=sharing

