Supporting information

Highly Active Ceria Supported Ru Catalyst for the Dry Reforming of Methane: In-situ Identification of Ru^{δ+}-Ce³⁺

Interactions for Enhanced Conversion

Zongyuan Liu,¹ Feng Zhang,² Ning Rui,¹ Xing Li,^{3,7} Lili Lin,¹ Luis E. Betancourt,¹ Dong Su,³

Wenqian Xu,⁴ Jiajie Cen,² Klaus Attenkofer,⁵ Hicham Idriss,⁶ José A. Rodriguez,^{1,2*} and Sanjaya

D. Senanayake1*

 ¹ Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
² Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA
³ Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 USA
⁴ X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
⁵ National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
⁶ Fundamental Catalysis, Centre for Research and Development (CRD), SABIC, KAUST, Saudi Arabia
⁷ Department of Physics and Engineering, Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou, Henan, 450054, China
Corresponding Author: *Bldg. 555A, Brookhaven National Laboratory, P.O. Box 5000, Upton,

NY 11973-5000, 631-344-4343 ssenanay@bnl.gov, rodrigez@bnl.gov *

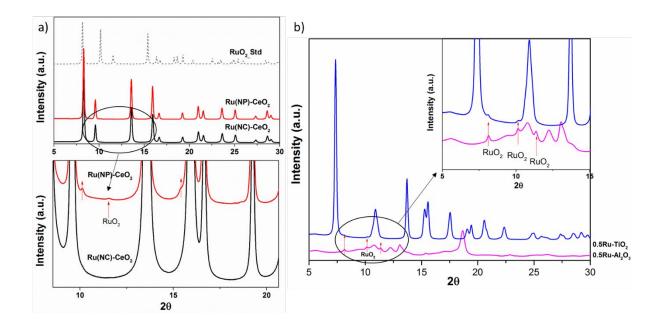


Figure S1. XRD pattern of the as-prepared samples: a) Ru(NP) and Ru(NC) on ceria, b) $Ru-TiO_2$ and $Ru-Al_2O_3$. The RuO_2 diffraction regions were magnified for a clear view.

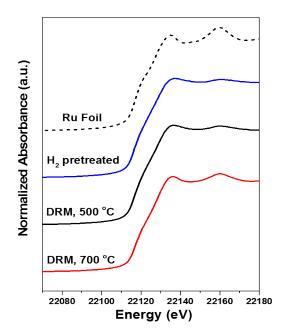


Figure S2. *In-situ* Ru K-edge XANES data of 0.5 wt% Ru(NC)-CeO₂ under H₂ pretreatment (400 °C) and dry reforming of methane (500 °C and 700 °C).

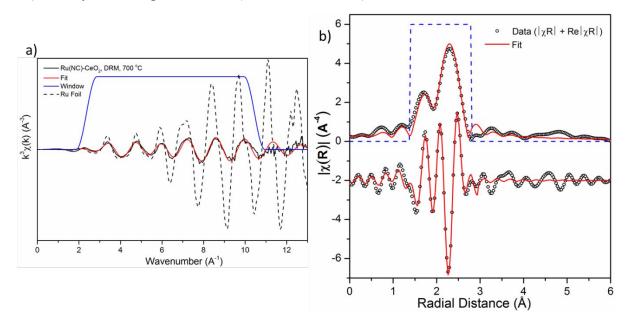


Figure S3. EXAFS Fittings of the 0.5 wt% Ru(NC)-CeO₂ catalyst at 700 °C under DRM reaction conditions, a) K space, b) R space.

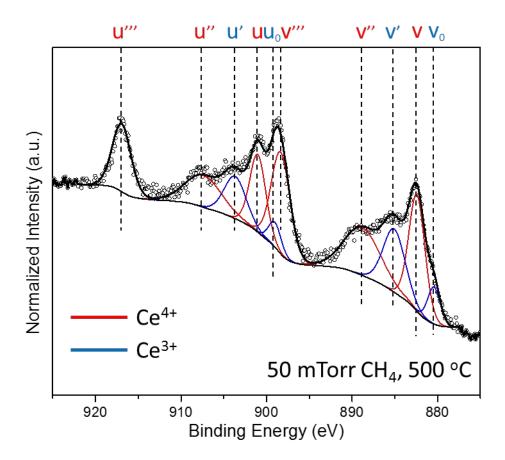


Figure S4. One example of the peak deconvolution for the Ce 3d region of the in-situ AP-XPS data, reaction condition: 50 mTorr CH₄ at 500 °C. The Ce³⁺/(Ce³⁺ + Ce⁴⁺) concentration were derived by taking ratio of the total peak areas of each component.¹⁻² Open circles represent the experimental data.

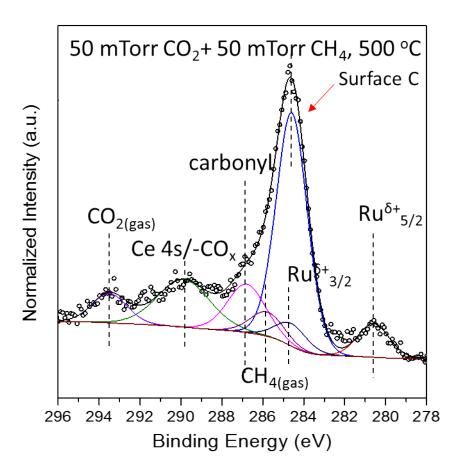


Figure S5. One example of the peak deconvolution for the C 1s + Ru 3d region of the AP-XPS data, reaction condition: 50 mTorr CO_2 + 50 mTorr CH_4 at 500 °C. The C peak areas (284. 6 eV) were then used to estimate the development of surface carbon. Open circles represent the experimental data.

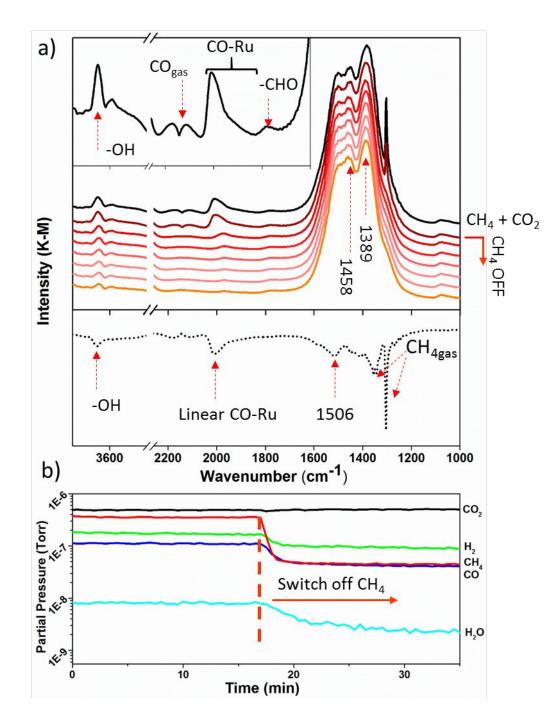


Figure S6. a) In-situ DRIFTS spectra collected over the 0.5 wt% Ru(NC)-CeO₂ sample under steady-state reaction conditions (CH₄/CO₂/He=5/5/30 ml/min) at 500 °C with subsequently switching off CH₄. Spectra were recorded per minute and plotted every third of them. The inset figure shows the blow-up region between 3700-1600 cm⁻¹. The bottom dash line was obtained by subtracting the 'CH₄ + CO₂' spectrum (black line) from the last 'CO₂-only' spectrum (orange line)

to get the dynamic variation of the surface adsorbed species. b) The corresponding gas phases evolution monitored by a mass spectrum.

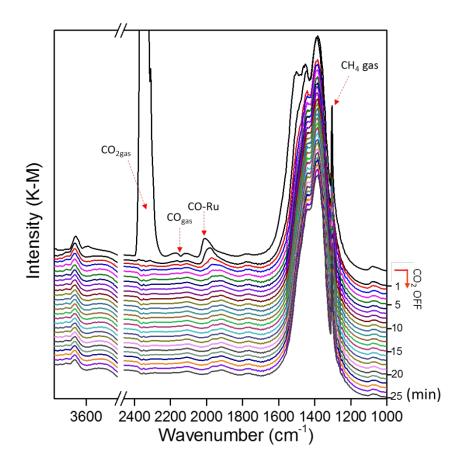


Figure S7. The full set of in-situ DRIFTS spectra collected as a function of time for the experiment in Figure 9.

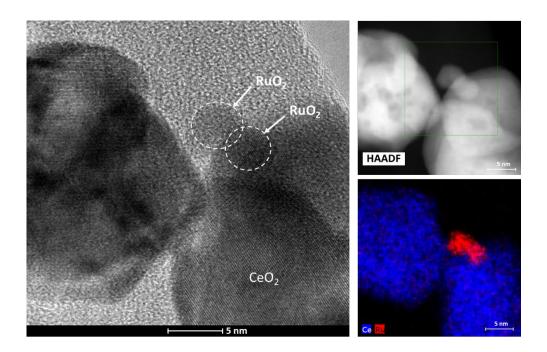


Figure S8. a) TEM image, b) HAADF-STEM image and c) EDX elemental mapping of the asprepared 0.5 wt% Ru(NP)-CeO₂ catalyst.

Reference

 Mullins, D. R.; Overbury, S. H.; Huntley, D. R. Electron Spectroscopy of Single Crystal and Polycrystalline Cerium Oxide Surfaces. *Surf. Sci.* **1998**, *409*, 307-319.
Sohn, H.; Soykal, I. I.; Zhang, S.; Shan, J.; Tao, F.; Miller, J. T.; Ozkan, U. S. Effect of Cobalt on Reduction Characteristics of Ceria under Ethanol Steam Reforming Conditions: Ap-Xps and Xanes Studies. *J. Phys. Chem. C* **2016**, *120*, 14631-14642.