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Figure S1. Fluorescence spectra of the CDs prepared through using different carbon

sources and H,SO, for CDs.
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respectively.
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27
28  Figure S3. Effect of different volume of H,SO,4 (98%) on the fluorescence intensity
29  ofthe RYDE CDs.
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31
32 Figure S4. Effect of different carbonization temperature on the fluorescence intensity
33  ofthe RYDE CDs.
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Figure S5. Effect of different carbonization time on the fluorescence intensity of the

RYDE CDs.

Figure S6. Fluorescence spectra scanned under different excitation wavelength of the

RODE CDs.
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Figure S7. Confocal microscopy fluorescence images of HeLa cells treated with the

RYDE CDs (208 pg/mL) in yellow channel, red channel and the merged image of the

two channels.
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Figure S8. Fluorescence intensity variation of the RYDE CDs as a function of

1llumination time.
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Figure S9. Fluorescence intensity variation of the RYDE CDs as a function of NaCl

concentrations. Three replicate measurements were completed for each point.
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Figure S10. Fluorescence spectra of the RYDE CDs probe under (A) acid and (B)

alkaline pH conditions. Effect of pH of buffer solution on the (C) fluorescence

intensity ratio (Fsp1/Fs66) and the (D) fluorescence intensity centered at 605 nm of the

RYDE CDs solution.
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Figure S11. The zeta

conditions.
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Figure S12. Fluorescence

1llumination time.
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Figure S13. Fluorescence

temperature.
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Figure S14. Fluorescence intensity variation of the RODE CDs as a function of NaCl

concentrations.
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Figure S15. Effect of pH of buffer solution on (Fe1/Fs66)0-(Fe21/Fs566) and AFgos.
(Fe21/Fs66)0 and (Fgp1/Fs66) were the fluorescence intensity of the RYDE CDs solution
in the absence and presence of 50 uM nitrite, AFgys was the difference of the
fluorescence intensity centered at 605 nm in the absence and presence of 50 uM

nitrite, respectively. Three replicate measurements were completed for each point.
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Figure S16. Effect of response time on F;1/Fs¢6. Fiso1 and Fsqq were the fluorescence
intensity of the RYDE CDs solution at 621 nm and 566 nm in the presence of 50 uM

nitrite, respectively. Three replicate measurements were completed for each point.
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Figure S17. Fluorescence spectra of RODE CDs in ethanol solution in the absence

and presence (5 min or even 10 min) of 3.0 mM nitrite.
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Figure S18. Cell viability of the HeLa cells under different concentrations (0, 52, 104,

208, 416 pg/mL) of the RYDE CDs. Three replicate measurements were completed

for each point.
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Table S1. Comparison of the properties of the RYDE CDs with other CDs.

Preparation Preparation Kind of Excitation Emission
ind o
Synthetic raw material ~ temperature time Db wavelength ~ wavelength QY Ref.
s
() (h) (nm) (nm)
ascorbic acid, .
160/180 2 one 365 435/538 not mentioned 1
ethylene glycol
43%*
m-phenylenediamine,
200 10 one 300 360/520 (460 nm 2
sulfuric acid o
excitation)
5.40%
m-aminophenol,
o 180 12 one 380 430/510 (380 nm 3
oxalic acid
excitation)
o-phenylenediamine,
o 200 24 one 380 440/640 14.88% 4
phosphoric acid
9.00%
2,5-diaminotoluene
150 12 one 380 525/603 (380 nm 5
sulfate
excitation)
two 520 566/621 8% this
DAAH 200 2
535 595/644 18% work

*: The QY was measured under 460 nm excitation wavelength, rather than 300 nm. When excited at 460 nm, the

CDs might be single emissive.

Table S2. Comparison of different kinds of CDs probes for the detection of nitrite.

Detection wavelength

Linear range

Limit of detection

Type of probe (am) (M) (M) Ref.
CDs-neutral red 520 0-4.34 0.518 6
N,P-CDs 530 0.01-0.09 33 7
N-CDs 390 15-1110 13500 8
N,P-GQDs 470 0.005-0.03 2.5 9
N-CDs 417 0-1000 1000 10
RYDE CDs 566/621 0.1-100 31.61 this work

11



102  Table S3. The quenching parameters in Stern-Volmer equation.

. K, K,
T (K) Equation R2
(L'mol'")  (L'mol!-sT)
(Fe21/Fse6)o/(F621/Fs566)
4 12
288 =0.9963+1.274X10’2[NO;] 0.992 1.274x10 8.85%10
(Fe21/Fse6)o/ (F621/Fs566)
4 12
303 :0.9922+1.124X10’2[NO;] 0.993 1.124x10 7.81x10
(Fe21/Fse6)o/(F621/Fs66)
313 0.993 1.014x10* 7.04%x10!2

=0.9863+1.014x102[ NO; ]
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Quantum yield (QY) measurements.
QY of the obtained RYDE CDs and RODE CDs was determined by the method
mentioned in our previous work.!! The absolute fluorescence quantum yield can be

simply represented in the equation below:

QY = I Lepision (1)
j- E solvent ~ I E sample

where QY was the absolute quantum yield, Lemission Was the fluorescence (FL)
emission spectrum of the sample, collected using the sphere; Eg,mplc Was the spectrum
of the light used to excite the sample, collected using the sphere; Egyent Was the
spectrum of the light used for excitation with only the solvent in the sphere, collected
using the sphere. The solvent for RYDE CDs and RODE CDs were deionized water

and ethanol, respectively.
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