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THE DISCOVERY OF THE HIGGS BOSON

] 3 Faras oz E L Areama) ATLAS X §»g ATLAS  +owsam E é § = +omam ATLAs E ATLAS Fioron o0y T 3 i =00 ANLAS Fr " i H
3o 2 ubrazrea [ [ H | - veazz i P Sy eTe— 2 FR 3 WS Wzt H H H ¢
: S st 1 e i '.- 2500100 Z o [ EEETE 3 [ et +ovemn 3 3 - vwnieit H 3
H W : w " & z b 1 § o Em [ owswimane E 1
o e fians crwflasien < S =
1 DI LR CR o Ferafiacon Ao [T o [N
'3 H teoo) Reorsen frzaar
o < - 2§ 1 . “f "
o 3 U a 3 TV 1L el
® oM m w8 m e T wo W @0 . aw % T S e W 0 o0 16 woomenm e e won e e W% B 0 1 e 16 W0 WoW B W T 8 1 W
P ma ] (e . B Lo . K] e K
(a) ) fe (a) e} () ()
3 ot e v fuzears 3 ATLAS -t 5 f Anas - oaazm 5 2 ATLAS Toma E - ¥ 1o ATLAS Wompnoow) o i o 3 3 e ATLAS Wonoso) o i ) 3
2 HeeZZosboy = HeZ2e - e L 2 8 = H2Z0 Im ] » 2 2 ? ® * vooef- E ¥
8 < 2210 [J e vecazrs » imETE F L < tocd = < H —+- w200t < ~
H P i 9 Eooe: i L E B - P & v 4 Demannt . s 4 ow e P s ™ H
i g s s t o Wnmon e £ o £ | ool [ P i o H [Jowsmasens & v [ PO i o H
| LA - Formfuansn “ 3 100 2} L 3 [ o e 2}
9 » y : oo g pani £
. ® . ) e Gorwifuaarn i
4 b | “ . 5 s )
. B o s o E
X B R R O ) T T el . QST o w0 w0 e W en 3
- e e K50 e 101 e 109 M 1004
id) (e} I ie) ) ) n ) )
3 o 3 iy ‘::Ai ) NI 3.4 ATLAS g wf ATLAS o oty ~owean g 3 ATLAS DAa2E 4oz ATIAS Whsath | 4ol 3 L ATLAS Dieves 4w 3 of ATUS 21RE diwse L ATLAS Dioas 4wz
HE e WS | e o e 2 & wawaan - H : b om 5:**““""' i 2 o forvefianary’ [ . care [ e sacnpns = #erefimsen [Jrowsecsormme 3 9 Fvefanary’ Coescon orefionnn [ secrorme
3 P o L ) aitnigmet . . H R i =
[ i 3 ] o | s i3 s i ; E~-ronsam & x 1 D‘\"”"‘"""
3 29 s-vmf,.,.‘u 5 2 o H i 1 pol H
« “3 £ =
e 1. 4 po 1o
o 3 10 1
4 o 9 y :
e e | MR, rheadbE ][] ML T | S ewwmwewmams || Ve e e m e e e mis || G o i m eem e cegaoosadoa Mabed || ol i e | e (B TR JFER
~ (0o GV 1G] ™ K]  (Gev] ERC
W &) (& (n) ) (& (n) i)

1l -ijl'-'!"

ftot Dsim7g|a — Pois nc|Vc « H fc Lce | ) pr ap|ap

cEchannels




PREDICTIONS IN PARTICLE PHYSICS
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PREDICTIONS IN PARTICLE PHYSICS
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DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable
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PARTICLE PHYSICS

Conceptually: Prob(detector response | particles )

Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable

This motivates a new class of algorit
likelihood-free inference, which on

nms for what is called

y require ability to

generate samples from the simulation in the “"forward mode”



A COMMON THEME, A COMMON LANGUAGE

ABC

Home
resources on approximate
Bayesian computational This website keeps track of developments in approximate Bayesian computation (ABC) (a.k.a.
methods likelihood-free), a class of computational statistical methods for Bayesian inference under

b e s PRI G RIS giasoa o s oo

intractable Ilkehhoods The site is meant to be a resource both for blologlsts and statisticians who

want to learn more about ABC and related methods. Recent publications are under Publications

2012. A comprehensive list of publications can be found under Literature. If you are unfamiliar
Home with ABC methods see the Introduction. Navigate using the menu to learn more.

ABC in Montreal ABC in Montreal (2014)

ABC in Montreal

Approximate Bayesian computation (ABC) or likelihood-free (LF) methods have developed mostly beyond the

radar of the machine learning community, but are lmpo'nt tools for 'a large and diverse se ment of the

sc1nt1ccommumtx “This is particularly true forsxstem and pe Eulgp_ggmglologx comEutatlonal

neuroscience, computer vision, healthcare sciences, but also many others.

Interaction between the ABC and machine learning community has recently started and contributed to
important advances. In general, however, there is still significant room for more intense interaction and
collaboration. Our workshop aims at being a place for this to happen.
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Markov chain Monte Carlo without likelihoods

Paul Marjoram*, John Molitor*, Vincent Plagnol’, and Simon Tavare'*

*Biostatistics Division, Department of Preventive Medicine, Keck School of Medicine, and TMolecular and Computational Biology, Department of Biological

Sciences, University of Southern California, Los Angeles, CA 90089

Communicated by Michael S. Waterman, University of Southern California, Los Angeles, CA, October 24, 2003 (received for review June 20, 2003)

Many stochastic simulation approaches for generating observa-
tions from a posterior distribution depend on knowing a likelihood
function. However, for many complex probability models, such
likelihoods are either impossible or computationally prohibitive to
obtain. Here we present a Markov chain Monte Carlo method for
generating observations from a posterior distribution without the
use of likelihoods. It can also be used in frequentist applications, in
particular for maximume-likelihood estimation. The approach is
illustrated by an example of ancestral inference in population
genetics. A number of open problems are highlighted in the
discussion.

One of the basic problems in Bayesian statistics is the
computation of posterior distributions. We imagine data D
generated from a model M determined by parameters 6, the
prior density of which is denoted by m(6). We assume unless
otherwise stated that the data are discrete. The posterior
distribution of interest is f( 6| D), which is given by

f(6|D) = P(D]6)m(6)/P(D), (1]

where P(D) = [ P(D|6)m(0)d is the normalizing constant.

In most scientific contexts, explicit formulae for such posterior
densities are few and far between, and we usually resort to
stochastic simulation to generate observations from f. Perhaps
the simplest approach for this is the rejection method:

Al. Generate 6 from (+).
A2. Accept 6 with probability # = P(D|6); return to A1

of ¢ therefore reflects a tension between computability and
accuracy. The method is still honest in that, for a given p and e,
we are generating independent and identically distributed ob-
servations from f(6|p(D, D) = &).

When D is high-dimensional or continuous, this approach can
be impractical as well, and then the comparison of D’ with D can
be made by using lower-dimensional summaries of the data. The
motivation for this approach is that if the set of statistics § = (S1,
..., Sp) is sufficient for 6, in that P(D|S, 6) is independent of
6, then f(6|D) = f(60|S). The normalizing constant P(S) is
typically larger than P(D), resulting in more acceptances. In
practice it will be hard, if not impossible, to identity a suitable
set of sufficient statistics, and we then might resort to a more
heuristic approach. Thus we seek to use knowledge of the
particular problem at hand to suggest summary statistics that
capture information about 6. With these statistics in hand, we
have the following approximate Bayesian computation scheme
for data O summarized by S:

D1. Generate 6 from ().

D2. Simulate D’ from stochastic model M with parameter 6, and
compute the corresponding statistics S'.

D3. Calculate the distance p(S, S') between S and §'.

D4. Accept 0 if p = &, and return to D1.

There are several advantages to these rejection methods,
among them the fact that they are usually easy to code, they
generate independent observations (and thus can use embar-
rassingly parallel computation), and they readily provide
estimates of Baves factors that can be used for model com-
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D1. Generate 6 from (+).

D2. Simulate O’ from stochastic model M with parameter 6, and
compute the corresponding statistics S’.

D3. Calculate the distance p(S, $') between S and S’.

D4. Accept 6 1f p = g, and return to D].
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10° SENSORS — 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single summary statistic

* choosing a good summary statistic (feature engineering) is a task for a skilled

ohysicist and tailored to the goal of measurement or new particle search

 likelihood p(x|0) approximated using histograms (univariate density estimation)
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This doesn’t scale if x is high dimensional!



HIGH DIMENSIONAL EXAMPLE

When looking for deviations from the standard model Higgs,
we would like to look at all sorts of kinematic correlations

e thus each observation x is high-dimensional
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ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
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Geoffrey E. Hinton
University of Toronto
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Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.
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that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.
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ICML 2017 Workshop on Implicit

Models

Workshop Aims

Probabilistic models are an important tool in machine learning. They form the basis for models that generate realistic data, uncover hidden
structure, and make predictions. Traditionally, probabilistic models in machine learning have focused on prescribed models. Prescribed models
specify a joint density over observed and hidden variables that can be easily evaluated. The requirement of a tractable density simplifies their
learning but limits their flexibility --- several real world phenomena are better described by simulators that do not admit a tractable density.
Probabilistic models defined only via the simulations they produce are called implicit models.

Arguably starting with generative adversarial networks, research on implicit models in machine learning has exploded in recent years. This
workshop's aim is to foster a discussion around the recent developments and future directions of implicit models.

Implicit models have many applications. They are used in ecology where models simulate animal populations over time; they are used in phylogeny,
where simulations produce hypothetical ancestry trees; they are used in physics to generate particle simulations for high energy processes.
Recently, implicit models have been used to improve the state-of-the-art in image and content generation. Part of the workshop's focus is to discuss
the commonalities among applications of implicit models.

Of particular interest at this workshop is to unite fields that work on implicit models. For example:

= Generative adversarial networks (a NIPS 2016 workshop) are implicit models with an adversarial training scheme.

= Recent advances in variational inference (a NIPS 2015 and 2016 workshop) have leveraged implicit models for more accurate approximations.
= Approximate Bayesian computation (a NIPS 2015 workshop) focuses on posterior inference for models with implicit likelihoods.

= Learning implicit models is deeply connected to two sample testing, density ratio and density difference estimation.

We hope to bring together these different views on implicit models, identifying their core challenges and combining their innovations.



TWO APPROACHES TO LIKELIHOOD FREE INFERENCE

Use simulator Learn simulator
(much more efficiently) (with deep learning)
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Optimization (AVO) Normalizing Flows
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PROBABILISTIC PROGRAMMING EXAMPLE

(let [number-of-bumpers (sample (poisson 20))
bumpydist (uniform-continuous 0 10)
bumpxdist (uniform-continuous -5 14)
bumper-positions (repeatedly
number-of-bumpers
# ( (sample bumpxdist)
(sample bumpydist))

3 examples generated from simulator
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(let [number-of-bumpers (sample (poisson 20))
bumpydist (uniform-continuous 0 10)
bumpxdist (uniform-continuous -5 14)
bumper-positions (repeatedly
number-of-bumpers
# ( (sample bumpxdist)
(sample bumpydist))

3 examples generated from simulator



PROBABILISTIC PROGRAMMING EXAMPLE

obs-dist (normal 4 0.1)]

(observe obs-dist num-balls-in-box)

3 examples generated from simulator
conditioned on ~20% of balls land in box
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obs-dist (normal 4 0.1)]

(observe obs-dist num-balls-in-box)

3 examples generated from simulator
conditioned on ~20% of balls land in box



PROBABILISTIC PROGRAMING

ldea: hijack the random number generators and use Neural
Network to perform a very fancy type of importance sampling

probprog/pyprob

NN e Neural Network

oowered inference

engine (python)

e real-world scientific
simulator (C++)

simulator C++

Pythia / Sherpa / GEANT / ...

Observation Mean Simulated Observation

nnnnnnnn

12
10

'

o N B O

NERSC, Lawrence Berkeley National Lab

arXiv:1807.07706



TWO APPROACHES TO LIKELIHOOD FREE INFERENCE

Learn simulator
(with deep learning)
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volcano

Note, same NN can model birds, ants, and volcanos! Is that good or bad?



note, same NN can model
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Figure 9: Five randomly selected e™ showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CALOGAN candidates.
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five nearest neighbors (by euclidean distance) from a set of CALOGAN candidates.

AR KM e RNER (- ReE e
OORNE sl o

Figure 11: Five randomly selected 7+ showers per calorimeter layer from the training set (top) and
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arXiv:1805.12244

LEARNING THE LIKELIHOOD RATIO PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
physics.aps.org/articles/v11/90
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Simulation Machine Learning Inference
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LIKELIHOOD RATIO TRICK

RBF SVM

e binary classifier: find function
s(x) that minimizes loss:
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LIKELIHOOD RATIO TRICK

RBF SVM

RBF SVM
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Simulation Machine Learning Inference

Recently, we realized we can extract more from the simulator.
We can use augmented data to improve training

(connections to reinforcement learning)
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IMPACT ON STUDIES OF THE HIGGS BOSON

(based on a 42-Dim observation X)
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J Brehmer, J Pavez, G Louppe, K.C. PRL & PRD 2018 [arXiv:1805.00013 & arXiv:1805.00020]
"Better Higgs Measurements Through Information Geometry” [arXiv:1612.05261] & CARL [arxiv:1506.02169]



http://arxiv.org/abs/1506.02169

TAKE AWAYS

Many areas of science have simulations based on some well-

motivated mechanistic model.

However, the aggregate effect
low-level components leads to

The developments in machine
effectively bridge the microsco
inverse problem.

of many interactions between these
an intractable inverse problem.

earning and Al have the potential to

oic - macroscopic divide & aid in the

e they can provide effective statistical models that describe
emergent macroscopic phenomena that are tied back to the low-
level microscopic (reductionist) model

e generative models and likelihood-free inference are two

particularly exciting areas

33



Physics-Aware Machine Learning



PHYSICS AT THE INTERSECTION

We can leverage both the power ot deep learning and inject
our expert physics knowledge

Max
Welling

Discriminative or Generative?

# -Deep Learning

-Bayesian Networks

. -Kernel Methods g
o1+ + -Probabilistic Programs :
- -Random Forests O -
\4‘( L>L|< -Simulator Models )ﬁ
’/’db‘\‘ -Boosting ’\.4
I X
K °d
c@ePe X
R P4y
20N g~ U
Advantages generative models:
Advantages discriminative models: « Inject expert knowledge &

Flexible map from input to target (low bias) * Model causal relations
Efficient training algorithms available * Interpretable _e¢
Solve the problem you are evaluating on. « Data efficient %

m-*b * Very successful and accurate! «  More robust to domain shift Qﬂmw

Facilitate un/semi-supervised learning




NARRATIVE MODELING

11

Physics goes into the construction ot a
Kernel” that defines the model

e \ocabulary of kernels + grammar for

composition = powerful modeling

Structure Discovery in Nonparametric Regression
through Compositional Kernel Search

David Duvenaud, James Robert Lloyd, Roger Grosse,
Joshua B. Tenenbaum, Zoubin Ghahramani
International Conference on Machine Learning, 2013
pdf | code | poster | bibtex

(explGG+ G e GG+ G
dependent gaussian scale mixture
(e g. Karklin .md*cwxh. 2005)

(MG +G)GMT +G)+ G
Bayesian clustered tensar factorization

(Sutskeveret al, 2009) UI(;UI LQ) 4+ G
’

. W e \
bimary matrix factorization (exp(G) o G)G + G

(Meeds et al, 2006) sparse cading
\ ’ (eg. Okhausen and Field, 199)

MGMT +G)+ G (CC+C\C+C

co-clustering BG+ G GG+ G linear dynamical system

(e.g. Kemp et al, 2006) binary features  low-ramk spproximusion g A '
(Griffths and (Salakburdmoy and

\ A Ghahramani, 2005) Maib, 2008)

UG+ G

random walk
clustering /
\ o

no structure

Exploiting compositionality to explore a large space of
model structures
Roger Grosse, Ruslan Salakhutdinov, William T.

Freeman, Joshua B. Tenenbaum

Conference on Uncertainty in Artificial Intelligence, 2012

pdf | code | bibtex
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PHYSICS-AWARE MACHINE LEARNING

We can inject our knowledge of physics into the machine learning models!
We can extract knowledge learned from the data!

Physics-aware Gaussian Processes QCD-Aware recursive neural networks
arXiv:1709.05681 arXiv:1702.00748
i Correlation Matrix o ’w\\\
= Final Kernel= | _ A e
3000 @ ® e
" Poisson fluctuations
= + Mass Resolution
ey | QCD-Aware graph convolutional neural networks
« + Parton Density NIPS2017 workshop [http://bit.ly/2AkwYRG]
Functions
—I_ 1.000(¢ 150 _ Y, j:»
orrelation Matrix :.T; / "‘I.'f
0919! . ; “_E;;%;_‘l?{ i 2
« T Jet Energy Scale 1 | o .90 20\ AR
0.999; o i I! - i 21/ — mln(pt?, ) pt’L, ) R2



http://bit.ly/2AkwYRG

CAUSAL GENERATIVE MODELS

JUNIPR is a generative model for jets. *r—
Can train on real data! Ty ——

=0, y_pred=0.1529

n—1
Pee({p1,-.oa}) = | [T B, kR RY)
t=1

x P, (end |k, ... k(™).

... and it is interpretable

0.08
Pythia ete™— ¢q
C/A clustering

0.06 9 JUNIPR cont. prob.

Pythia freq.
0.04 —

probability

0.02

000 | LI | ! L LR | T L
0.002 0.01 0.1 0.5
z (all t’s)

Andreassen, Feige, Frye, Schwartz arXiv:1804.09720




CONCLUSIONS

Our understanding of how to leverage our prior physics
knowledge while letting machine learning do what it's gooad
at Is maturing.

e build in robustness to systematic uncertainties

e ability to inject and extract physics knowledge from
models

e exploit symmetries, hierarchical structure of data

Harnessing the full potential of these techniques will require

deep integration into our scientitic workflow
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LIKELIHOOD-FREE INFERENCE

Parameters Observables
) > Z > T

Prediction (simulation): ¢ Well-understood mechanistic model

* Simulator can generate samples



LIKELIHOOD-FREE INFERENCE

Observables
> I

Parameters
) >

Prediction (simulation): ¢ Well-understood mechanistic model
* Simulator can generate samples



LIKELIHOOD-FREE INFERENCE

Parameters Observables
) > Z > T

Prediction (simulation): ¢ Well-understood mechanistic model

* Simulator can generate samples

Inference: e Likelihood function p(x|f) is intractable
e Goal: estimator p(z|0)



EPIDEMIOLOGY & POPULATION GENETICS

Generation 1 2 3 4

a Hospital School Sexual

Chain of transmission
of the disease

Source
33 infected  §
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e i f
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COSMOLOGICAL N-BODY SIMULATIONS
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[Source: Planck 1502.01589]
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LATTICE FIELD THEORY

PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

QCD Lagrangian
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