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Abstract

The recovery rate (RR), which indicates the proportion of the loss from a par-

ticular defaulted loan that has been recovered, is essential to quantifying credit

risk. Developments in RR modelling are driven by its application in credit risk

management to control, monitor, and mitigate credit risk exposure. These de-

velopments enable creditors to enhance their economic and strategic financial

decision making, which directly improves their competitive advantage. After

the global financial crisis that is largely caused by credit crunch, the modelling

and predicting RR have become very popular in the empirical finance literature.

However, RR modelling has been found very challenging, mostly due to its non-

standard empirical features, such as the RR lies within the unit interval [0,1], its

distribution is bimodal with high concentrations at the boundaries, and nonlin-

earity and complex relationships between the RR and its covariates. Although

there exists a vast literature on RR modelling, because of these atypical properties,

the models studied in the literature have several limitations. They include the

model estimates being biased due to transformation and back transformation of

bounded RR data, predicted RR exceeding the boundaries, and the absence of

model parameter estimates in order to conduct statistical inference on the model

parameters due to black-box functional form.

The core objectives of this study are to: propose non- and semi-parametric meth-

ods for modelling the conditional mean regression and the conditional quantile

regression, apply them to the widely studied Moodys recovery dataset, uncover the

underlying nonlinear relationship between the RR and its covariates which include

loan/borrower characteristics as well as the state of the economy, and improve the
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accuracy of RR prediction. Moreover, this thesis compares and contrasts the pre-

dictive performances of proposed models with the existing ones in the literature.

There are several significant contributions of the thesis to the recent literature

of RR modelling. This is the first study to introduce non- and semi-parametric

regression models for RR data and the aim is also to either eliminate completely

or notably reduce the problem of predicted RR exceeding boundaries 0 and 1.

Additionally, this is also the first study to estimate the response of recoveries

to economic downturns in the context of both the conditional mean regression

as well as the conditional quantile regression. The downturn RR is the crucial

component in calculating mostly needed credit risk exposure during crises.

The proposed data driven local linear estimation of the conditional mean regres-

sion plays an important role in capturing the underlying nonlinear relationship

between the RR and its determinants. The estimation of the marginal effects of

covariates on RR becomes straightforward in this setting, and these results were

utilised in specifying improved functional form for the proposed semi-parametric

partial linear model for the conditional mean regression. Assessed by several

model selection and prediction criteria, we find that the proposed models gen-

erate superior in-sample and out-of-sample RR predictions to those generated

by existing models. Clearly, the proposed models do not only improve the pre-

dictions of defaulted loans recoveries relative to their parametric counterparts,

they also enable reliable statistical inference of marginal and interaction effects of

loan/borrower characteristics and economic conditions on RR.

This thesis takes a step forward from the recent literature and propose a non-

parametric quantile regression for RR, in which the RR-covariate relationship,

and the marginal and interaction effects were estimated at the various quantiles

of the RR distribution. As such the heterogeneity in the marginal and interac-

tion effects can be estimated in this framework. Furthermore, we also introduce

partially linear additive quantile regression to estimate the overall effects of the

covariates in order to generalise the interpretation of the results of nonparametric

model. We provide evidence of the presence of heterogeneous effects at the var-

ious conditional quantiles. These findings improve our understanding of these
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complex relationship between RR and its covariates. In particular, we find that the

results of the proposed quantile regressions can be used in designing strategic risk

management by lenders, as well as downturn credit risk policies by regulators.

In the foregoing investigation into nonparametric and semiparametric methods

for RR modelling, we find that the boundary issues are largely mitigated in the

nonparametric and semiparametric settings, but there is no guarantee that the RR

predictions generated by the local linear or partially linear models would fully

lie within the unit interval. To ensure that the boundary problem is eliminated

completely as well as improving other modelling aspects, we propose a flexible

and robust nonparametric local logit regression for RR, and by its construction, the

RR prediction would lie in [0,1]. This methodology was proposed by integrating

two ideas, one is the QMLE regression for fractional response data and the other

is the local logit model for the binary response variable.

The results highlight significant nonlinear marginal and interaction effects of

conditioning variables on the recoveries of defaulted loans. Moreover, our analysis

indicates that model specification, in particular the functional form plays an

important role in improving the RR prediction. We assessed the merits of both

nonparametric model and nonlinear parametric model whose functional form has

been improved by exploiting the outcomes of the comprehensive marginal and

interaction effects analysis of nonparametric regression. As such, we call this the

calibrated model. The calibrated model performs as good as the proposed model

in the in-sample and out-of-sample RR predictions. The calibrated model will be

attractive to applied researchers and industry professionals working in the risk

management area who are unfamiliar with nonparametric machinery.
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Chapter 1

Introduction

1.1 Background

The recovery rate (RR) of debt in the event of default is a crucial determinant of

the default risk premium required by lenders and the regulatory capital needed

to minimise exposure to losses. The Basel II Accord (2006) on capital adequacy

requires internationally active banks to develop statistical models of credit risk

and use them to determine the capital to be held against credit risk exposure.

Scandizzo (2016) shows that the RR estimates have direct influence on the lender’s

capital adequacy than other risk parameters, as RR reflects the potential loss of the

credit portfolio. Following the recent global financial crisis that is mostly caused

by the credit crisis in the US, Basel Committee on Banking Supervision (2011)

has reported that the regulatory capital requirements that the banks provided

under advanced measurement approach were not sufficient enough to withstand

the credit losses during the crisis, due to inadequate modelling of credit risk.

As a consequence, this has been resulted in a notable increase in research into

RR modelling, mostly for the purpose of recovery prediction by academics and

industry professionals.

1
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In the quest to find a model for RR relating to conditioning variables, several

studies have observed that this modelling exercise presents some challenges due

to several key empirical features of the RR: First, it is continuous, fractional, and

bounded in [0,1]. Second, its empirical density is bimodal and asymmetric, with

high proportions of recoveries at the boundaries zero and one. Third, in the

presence of observations at 0 and 1, trimming and transformation as well as back-

transformation of recoveries are needed for the use of valid statistical theory. Such

transformation introduces bias in the model estimates, resulting in unreliable

statistical inference. Despite the growing body of evidence of the presence of

nonlinearity in the recovery-covariate relationship, there is little attempt that has

been made in the literature to improve the specification of the widely used linear

regression model.

The three aforementioned properties of RR lead to the problems and challenges

intrinsic to building statistical models to account for RR-covariates relationships at

the time of default and to capture the specific features of the recovery distribution.

In analysing the RR-covariate relationship, the loan characteristics, including

collateral status, types of loan, degrees of subordination, and debt cushion are

considered in numbers of studies such as Altman and Kalotay (2014); Siao, Hwang,

and Chu (2015); Chellathurai (2017) among others. Additionally, the macro-

economic environment is also expected to have an effect on the loan’s recovery, as

the RR are generally found to be low during the economic downturns.

This thesis is the first study to propose data driven nonparametric and semipara-

metric regressions for RR modelling using kernel estimation methods to estimate

the RR-covariate relationships in both conditional mean and quantiles of RR.

The proposed models address two main limitations of the existing RR models.

First, our models can capture and explain the underlying complex nonlinear RR-

covariates relationship as well as the atypical RR properties in a flexible manner

2



Non- and Semi-parametric Methods for Modelling Recovery Rates

without the need to pre-specify the key assumptions, including data transforma-

tion, functional form and distribution assumptions. This in turn mitigates the

misspecification issue, inappropriate assumptions and an additional bias in RR

estimates of most parametric models. Second, we pay considerable attention to

uncovering the underlying marginal effect of the covariates on RR, which has been

largely unexplored in the existing studies.

Our study does not only discuss nonlinear marginal effect analysis, but also

the other crucial relationships including interaction effects and heterogeneous

effects at various conditional quantiles of RR. Although the machine learning

algorithms for RR could be as flexible as our proposed models, the black-box

problem remains one of their main limitations in order to estimate the transparent

nonlinear relationships. Moreover, the proposed models for RR facilitate the

estimation of downturn RR. Then, the performances of the proposed models are

compared with those of various existing RR models by numbers of predictive

accuracy criteria.

1.2 Thesis overview

As discussed, we build on insights from the findings of large-scale empirical

research as well as studies documenting the merits of nonparametric and semi-

parametric approaches for recovery predictions and marginal effect analysis. To

this end, the research outcomes of the new flexible modelling framework that we

propose would be useful in developing appropriate policies to mitigate under-

lying credit risk exposure, which in turn would improve risk management, risk

monitoring, and credit risk pricing. In what follows, the outline in each chapter

of the thesis are summarised.

Chapter 2 reviews the development of RR modelling and its applications in

the literature on credit risk modelling. This chapter discusses the way in which
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the existing models attempts to address the specific properties of RR. There is a

vast literature that proposes a wide range of estimation methods, ranging from

standard parametric regressions to sophisticated machine learning algorithms.

This literature review chapter begins by presenting an overall picture of RR

modelling to provide background and address the key empirical features of the RR

data. We then discuss detailed descriptions of recent developments in econometric

techniques to deal with the specific properties of the RR. Subsequently, the key

features of each model are discussed in order to compare their advantages and

limitations. In this brief literature review, we identify the limitations of existing

methods for modelling RR-covariate relationship, and a large gab in the literature.

They provide motivation for the proposed models in the thesis to overcome the

limitations.

In chapter 3, we propose both nonparametric and semiparametric conditional

mean regression models for the RR, and estimate these models using the local

linear and local constant methods. The nonparametric regression with the lo-

cal linear estimation method facilitates a straightforward analysis of nonlinear

marginal effects, which is useful in understanding the underlying relationships

of recovery covariates. With the comprehensive marginal analysis of local linear

model, we improve the functional form of our proposed semiparametric partially

linear regression. This eases the computational difficulties associated with the

fully nonparametric regression and avoids the misspecification problem in the

semiparametric models. We are also interested in the predictive accuracy of the

proposed model. The out-of-sample predictive performance of nonparametric and

semiparametric regressions are evaluated against that of several widely studied

parametric regression models such as inverse Gaussian regression, quasi max-

imum likelihood (QMLE) regression for fractional response variable, the Tobit

model with two-sided censoring, the mixture distribution model proposed by

Altman and Kalotay (2014), and the machine learning regression tree classification
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algorithm. Moreover, we propose a two-sided censored (at zero and one) nonpara-

metric modelling framework, which is an extension of the one-sided censored

nonparametric regression introduced by Lewbel and Linton (2002). A simulation

study is conducted to assess the properties and practicality of this proposed model.

This is followed by an empirical application of the model to RR data.

In chapter 4, we propose a nonparametric quantile regression for RR, in which

the RR-covariate relationship including the marginal and interaction effects are

estimated at the various quantiles of the RR distribution. This leads to further

understanding of the heterogeneity of the RR-covariate relationship on the various

parts of the RR conditional distribution, rather than that at the central tendency

of RR as found in most existing studies. We also propose an improved two-stage

estimation method for the partially linear additive quantile regression. This

model provides an alternative way to estimate the overall linear, nonlinear and

heterogeneous effects of the covariates on RR due to the flexible specification of

the model. Subsequently, the relative performances of the proposed models are

compared with those of their parametric counterpart in various aspects: goodness

of fit, point prediction, distributional fit, and the RR Value-at -Risk evaluation.

In chapter 5, we propose a flexible and robust nonparametric local logit re-

gression for RR, and by its construction, the RR prediction would lie within [0,1]

interval. The proposed methodology integrates the analogous QMLE regression

for fractional response data (QMLE-RFRV) by Papke and Wooldridge (1996), and

the local logit model for the binary response variable introduced by Frölich (2006).

This method guarantees the resolution of the boundary problem. In order to

assess the model’s performance as well as the behaviour of the model parameter

estimates in the finite sample, we conduct a large-scale simulation study under

various experimental designs. The local logit model is then applied to the RR data,

which does not only provide the detailed analysis of nonlinear marginal effects,

but also an additional information on the interaction effects of the covariates on
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RR, which has not been addressed in the literature before. The results of these

marginal and interaction effects of covariates on RR are also utilised to specify an

improved nonlinear functional form of the parametric QMLE-RFRV by means of

a “calibration” method. In addition, the models are robustly evaluated to compare

their in-sample and out-of-sample predictive performances.

Chapter 7 concludes the thesis with an overview of the thesis’ main contribu-

tions, along with an outline of directions for future research.
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Chapter 2

Literature review

2.1 Introduction

The largest and most obvious source of credit risk are loans that fail to meet

their obligations in accordance with the agreed-upon lending terms. Measuring

credit loss is crucial to maintaining credit exposure within acceptable levels

in order to optimise a bank’s risk-adjusted rate of return. Understanding the

mechanism of credit loss using advances in statistical tools is a critical component

of a comprehensive approach to risk management. Overall aim of this chapter is

to: review the statistical models proposed for RR data, discuss advantages and

disadvantages of them, and identify gaps and unanswered questions. In doing so,

we identify potential research topic for the thesis.

The RR, which specifically indicates the proportion of the losses recovered in the

event of default, is essential to quantifying credit risk, together with the probability

of default and the exposure at default (Bohn & Stein, 2011). Developments in RR

modelling are driven by practical needs in banking risk management to control,

monitor, and mitigate credit risk exposure. These developments aid creditors in

enhancing their economic and strategic financial decision making, which directly
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improves their competitive advantage (Gürtler & Hibbeln, 2013). Therefore, RR is

one of the key components for provisioning credit losses, calculating risk capital,

and determining fair pricing for credit risk obligations. The accuracy of the RR

estimates is fundamental to calculating potential credit losses. Recognition of its

importance has led to a growing number of studies in RR modelling, which will

be discussed in this chapter.

Various methods have previously been proposed to deal with the specific proper-

ties of RR data. The central objective of most empirical studies is RR prediction in

order to serve one of the practical needs. However, several trivial aspects remain

challenging due to the empirical features of historical RR, including the bimodal

[0,1] bounded response with high concentrations at the boundaries (Qi & Zhao,

2011; Schuermann, 2004).

In fact, non-negative response variables (y ≥ 0) are very common in financial

data such as percentages, proportions, and fractions. The parametric generalized

linear model with any of the exponential family distributions is fitted to such

one-sided response variables. For the two-sided bounded data, the beta regression

has been recommended due to its support as well as the flexibility in its shapes

(Kieschnick & McCullough, 2003). The model can take into account of the bounded

data with bimodality. However, when the response variables have heavy tails at

the boundaries zero and one, the model would not accommodate them. Although

the support of the empirical density is [0,1], when applied beta regression, the

support will shrink to (0,1) (Bayes & Valdivieso, 2016). As the probability masses

at zero and one are clearly presented in the empirical density of RR, the standard

beta distribution would not be suitable, which leads to applications of several

non-standard regressions for RR modelling.

Econometric models that are able to handle the bounded continuous response

variable are limited, and additional restrictions are normally required to address

such properties. In addition, the underlying relationships between the RR and
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its covariates are complex and are expected to be non-linear. The conventional

parametric linear method is unable to address such relationships. These concerns

have led to the further introduction of various elaborated methods (Loterman,

Brown, Martens, Mues, & Baesens, 2012; Altman & Kalotay, 2014). For example,

Bastos (2010) and Qi and Zhao (2011) present applications of regression tree

models, and Calabrese (2012) and Altman and Kalotay (2014) discuss parametric

regression and mixture models (further details of these studies are provided in

the sections that follow).

Plan of this chapter, we provide an overview of previous studies in RR modelling.

Section 2.2 begins by presenting the definition, importance, and application of the

RR in practice. This section also provides a discussion of some specific empirical

properties of RR followed by the determinants of RR. Then, we turn to a discussion

of the methodologies including back transformation regressions, conventional

parametric regressions for bounded response variable, and data driven models

in Section 2.3. The other statistical approaches for RR modelling are discussed

in Section 2.4. Then, Section 2.5 provides the conclusion of the chapter which

address the research gap and motivation for the forthcoming chapters of this

thesis.

2.2 Credit risk and recovery rate modelling

Defaulted credit loss is inevitable for banks and financial institutions who

recognise lending as one of their core businesses. The amount of the loss reflects

the riskiness of the lenders, which severely affects their fundamentals. To address

the importance of RR modelling, its role in credit risk management is discussed.

This is followed by a discussion of the definition and the stylised facts of the

empirical RR.
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2.2.1 Credit risk modelling

The implementation of the Basel accord encourages banking supervisors glob-

ally to promote sound practices for managing credit risk (Risk Management Group

the Basel Committee on Banking Supervision, 1999). In 2004, the Basel Commit-

tee presented the global standard prudential regulation of banks, Basel II, as an

international standard. The role of the Basel accord is to ensure that banks hold

a sufficient amount of capital as a buffer for periods of economic instability that

may cause banks’ insolvency. The regulatory capital requirement is calculated

based on three main variables, which are the probability of default, the RR, and

the exposure at default (BIS, 2004). Most importantly, the accord allows banks

to model their credit risks through these risk parameters with two main options,

namely foundation and advanced internal ratings-based approaches. The differ-

ence between these two approaches is the degree of the bank’s involvement in

estimating the credit risk variables.

Under the advanced approach, the bank is allowed to estimate all its own

risk variables. On the contrary, some variables are provided by the regulator in

the foundation approach. The flexibility to estimate the values tailored to their

portfolio is likely to be a motivation for a bank to move from the foundation to the

advanced approach (Schuermann, 2004). Estimating their own risk parameters is

not only a better reflection of the risks involved in a particular bank, it also allows

the bank itself to understand the risk structure and their borrower behaviours,

which would lead to various internal applications.

Applications of credit risk models include determining the default risk premium

and credit risk portfolio diversification, pricing default risk insurance, and the

emergence of distressed debt as an investment class (Altman & Kalotay, 2014).

These are essential for risk management to identify and quantify the risk related

to credit exposures, which lead to the proper allocation of banks’ capital as well as
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to an improvement of their strategic and economic decisions (Hartmann-Wendels,

Miller, & Töws, 2014). These benefits are related initially to: the profitability

of the individual bank, stability in the banking system, and efficient allocation

in the economic resource. After the severe consequences of the recent global

financial crisis, of which credit risk defaulted losses were one of the leading causes

(Brunnermeier, 2009), banks can learn from past experiences by raising awareness

and identifying, measuring, monitoring, and controlling the risks that might

prevent a reoccurrence of the crisis.

2.2.2 The empirical recovery rate and its properties

Among the three key risk parameters, the probability of default has been studied

in both academic and practical research for many decades (Saunders & Allen,

2010). On the other hand, after the implementation of Basel II in 2004, an

extensive body of research in RRs arose, remedying the paucity of research in

this area prior to the implementation (Schuermann, 2004). Recent studies have

attempted to satisfy the criteria of the accord, which requires a robust system

in place to validate the accuracy and consistency of rating systems, processes,

and the estimation of all relevant risk components. A bank must demonstrate

to its supervisory that the internal validation process enables it to assess the

performance of its internal rating and risk estimation systems using an appropriate

framework and to interpret the results meaningfully (BIS, 2004).

Furthermore, Basel committee on banking supervision (2001) strongly

encourages banks to estimate their own RR rather than to rely on the foundation

approach. They claim that the former option has the benefit of being able to

recognise banks’ own loss experiences, which can take into account lending

standards and legal environments across markets and products. Furthermore,

and perhaps more importantly, the RR is bank-specific, depending on the internal

definitions of defaults and losses, the financial products offered, the lending
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policies, and procedures in the recovery process. If a bank performs its own

estimation, these specific factors can be taken into account, which has a material

impact on the recovery estimates. Consideration of these factors is limited in a

’one-size-fits-all’ approach.

Definition and empirical features

The RR is defined as the proportion of the loss that has been recovered from

the exposure at default. It is fundamental to estimating the potential credit loss,

which plays an important role in lending, investing, trading, or the pricing of

loans. The accuracy of the estimates determines the efficiency in provisioning

reserves for credit loss, calculating credit capital, and determining fair pricing for

credit-risky obligations (Gupton & Stein, 2005). Scandizzo (2016) suggests that

the role of RR estimates under the Basel accord has a more direct influence on the

lender’s capital adequacy than the probability of default.

The RR is a continuous variable which lies in the unit interval [0,1]. One end of

the boundary represents full recovery (1) and the other represents a total loss (0).

This implies that lenders can neither recover nor lose an amount of the defaulted

loss that exceeds the outstanding amount. In practice, some actual observations

do fall outside of the boundaries, due to additional economic costs such as the

additional collection cost and fees and penalties paid. However, these do not

reflect the nature of the RR structure, so the recovery estimates are expected to be

constrained to this interval (Tong, Mues, & Thomas, 2013).

The bimodal property is commonly observed in the empirical density of the

RR, as the data normally has high concentrations at one followed by zero, with

the remainder of the values dispersed across a broad range of losses (Altman

& Kalotay, 2014; De Servigny & Renault, 2004). Intuitively, there is a clear

incentive for lenders to try to recover the majority of their defaulted debts, which

results in the high mass at the full RR. In a default event, banks can resolve
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the default by restructuring the terms of their debt contracts and renegotiating

before the defaulter files for bankruptcy (Gilson, John, & Lang, 1990). An

accurate recovery estimate and knowledge about the factors affecting the level of

the recovery are useful in order to construct an appropriate restructuring program.

Recovery covariates

Recoveries after default intuitively result from restructured or cured exposures

as well as bankrupt borrower’s assets (Peter, 2011). One of the main factors

determining the amount of recovery is collateral status. Banks favour granting

loans with collateral, as it is crucial to the valuation of a potential loss. Collateral

is a means of compensation for losses as the collateral of a defaulter is being

liquidated after filed bankruptcy. Hence, the quality and value of the collateral

influences the level of the RR (Araujo, Kubler, & Schommer, 2012). On the contrary,

it is difficult to recover losses from uncollateralised loans.

In the past, the value of the collateral was taken as a proxy for the amount

of recovered loss. Later, however, many studies suggested that considering only

collateral value is inadequate. Jokivuolle and Peura (2003) argue that collateral

does not provide as much protection as is normally expected. The value of the

assets that serve as collateral depend on the overall business conditions, which

are driven by common market factors. During an economic crisis, the value of

borrower’s total assets would be lower than the amount of its debts, and thus the

value of the collateral would be so as well.

The capital structure of the defaulter is another important factor (Acharya,

Bharath, & Srinivasan, 2007). For example, in the event of liquidating assets for

different debt and shareholders, commercial loans have first seniority, followed

by corporate bonds. Bruche and González-Aguado (2010) claim that the quality

of the collateral is more important for senior than for junior secured debt, due

to the priority order in which the assets are recouped. Both collateral status and
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seniority are firm-specific or idiosyncratic factors that are highly important from

the lender’s point of view to mitigate credit risk internally.

To adhere to the Basel accord, banks are required to demonstrate that the

recovery estimate of each defaulted loan is reliable and consistent with their

underwriting standards, risk profile, and available relevant data1 (Basel committee

on banking supervision, 2001). Importantly, estimations of the RR cannot rely

solely on the collateral’s estimated current market value: the estimates must take

into account the effects of the macro-economic environment (Han & Jang, 2013;

Thomas, Matuszyk, So, Mues, & Moore, 2016). The Basel accord requires banks to

estimate the downturn recovery rate, which appropriately reflects the estimates

during an economic downturn. Therefore, the relationships between RR and

economic condition must be examined.

Several studies have shown that recovery tends to be high during an economic

upturn and low during a downturn (Resti, 2002; Fong, 2006; Carey & Gordy,

2004; Bruche & González-Aguado, 2010; Altman & Kalotay, 2014; Koopman,

Lucas, & Schwaab, 2012). Carey and Gordy (2004), for example, indicate that the

distribution of the recovery shifts to the right during periods of good economic

conditions compared to bad ones. However, how the macroeconomic variable

affects recovery has not been extensively explored for the following reasons. First,

recovery data might be unavailable for the full business cycle. This leads to

limited information for the investigation of such relationships (Calabrese, 2014).

Second, the macro-economic variables might affect the RR indirectly through the

unobserved credit cycle (Frye, 2000; Altman, 2006; Carey & Gordy, 2004; Bruche

& González-Aguado, 2010). Moreover, the relationship may be nonlinear. The

macroeconomic variables may have different effects during economic upturn and

downturn, whereas linear effects are generally assumed.

1The relevant recovery data under Basel accord refers to be either historic experience or
comparable external data
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2.3 Developments in recovery rate modelling

In this section, we review and discuss the developments in recovery modelling.

The central aim is to show how the existing methodologies handle the specific

features of the data and to compare and contrast their limitations. In what follows,

we categorise the estimation methods into three different groups: conventional

linear regression with back transformation technique, parametric regressions for

[0,1] bounded data, and data-driven approaches.

2.3.1 Ordinary least square linear regression with back-

transformation of [0,1] bounded response variable

Conventional OLS linear regression has been employed in many applied eco-

nomic and financial studies, including RR modelling. The model provides a trans-

parent interpretation with a simple implementation method (Dwyer & Korablev,

2009). Specifically, an implication of the first-order condition, marginal effect,

is generally useful to analyse the economic insight. Although OLS tends to be

preferred by practitioners, linear regression is inappropriate for the RR-covariates:

E(Y |x) = x′β,

where Y ∈ [0,1] is recovery rate, x is a k × 1 vector of explanatory variables, and β

is a k × 1 unknown parameter vector. As the RR is bounded in the unit interval,

the unknown parameter β rarely provides the best description of E(Y |x) due to the

constant effect of any particular variable throughout the domain of x, unless the

range of the variable is very limited (Papke & Wooldridge, 1996). In additional, the

application of OLS is also theoretical misleading as the error term is assumed to be

normally distributed, which is inappropriate for Y ∈ [0,1]. Given the limitations,

however, the model has been used in several studies as a benchmark model in order
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to compare its predictive performance with that of alternative models (Qi & Zhao,

2011; Bellotti & Crook, 2012). These studies suggest that OLS has comparable

predictive accuracy, although some predictions are not in the appropriate range.

Rather than directly estimating the RR with a linear model, Gupton and Stein

(2005) suggest the application of OLS associated with data transformation to ad-

dress the boundary issue. This is referred to the “back-transformation” technique.

It involves a multi-step procedure, which is as follows:

• Step 1: The boundaries zero and one of the empirical RR which is denoted

as Y are adjusted by an arbitrary value ν. The adjustment ensures that the

boundary adjusted RR does not take the values of zero and one, which can

be written as Y (ν) ∈ (0,1), where Y (ν) is the boundary adjusted RR;

• Step 2: Y (ν) is transformed:

Y ∗ = η(Y (ν)), (2.3.1)

where η(·) is any invertible function transforming Y (ν) ∈ (0,1) to Y ∗ ∈

(−∞,∞);

• Step 3: Conventional OLS is applied by regressing Y ∗ on x to estimate the

unknown parameter:

Y ∗ = x′β∗ + e,

where β∗ is the unknown parameter representing the relationship between

Y ∗ and the RR-covariates.

• Step 4: Back-transformation is applied to xβ̂∗ using an inverse function

η−1(·):

E(Y |x) = η−1(x′β̂∗).

This ensures that the back transformed estimate lies within the unit interval.
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In Step 1, several options of transformation function are available. Hu and Per-

raudin (2002) employ the inverse standard Gaussian distribution function as η(·)

in (2.3.1). This is perhaps the function most commonly selected, as it has typically

been applied as a benchmark model for the RR. The logit function can also be

applied (Siao et al., 2015). Alternatively, Gupton and Stein (2005) indicate that

the beta function is more appropriate, as it allows some flexibility to take the

bimodality into account. They specify the conversion of the beta-distributed RR

as:

Y ∗ = Φ−1[B(Y ,a,b)],

where a and b are the beta distribution centre and shape parameters, respectively,

B(·) is the beta distribution function, and Φ−1(·) is the standard inverse Gaussian

distribution function. In particular, the transformation function in (2.3.1)

is defined as: η(·) = Φ−1(B(·)). The beta probability density function allows

a flexibility that can reflect the bimodality through those two distributional

parameters. Hence, many studies claim that the distribution is suitable for

recovery data (Gupton & Stein, 2005; Ferrari & Cribari-Neto, 2004; Hlawatsch &

Reichling, 2010).

The problems with back-transformation regression

There are three main statistical issues with the back-transformation technique.

Firstly, in Step 1, the adjustment of the zero and one boundaries affects the outcome

of the model estimation, as the observations at the boundaries commonly exhibit

a large probability mass, as discussed above. Qi and Zhao (2011) report that the

magnitudes of the arbitrary adjustment value strongly affect the predictability,

while there are no theoretical criteria governing the selection of the appropriate

adjustment. In practice, Altman (2006); Siao et al. (2015), for instance, select an

arbitrary value that minimises the in-sample predictive error.
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Secondly, the interpretation of the parameter estimates in Step 3 may be unclear.

As, OLS regression is applied on the transformed RR, the estimators then reflect

the relationships under the transformation. These do not necessarily reflect the

effect of the particular explanatory variable on the RR.

Thirdly, the back-transformation in Step 4 adds a bias for conditional mean

regression due to Jensen’s inequality:

η(E(Y (ν)|x)) , E(η(Y (ν))|x),

unless η(u) = u. This inequality implies that back-transformation regression leads

to bias as E(Y (ν)|x)) , η−1(x′β∗). However, Tobback, Martens, Van Gestel, and Bae-

sens (2014) suggest that the back-transformation regression performs comparably

to the more sophisticated methods and can yield more comprehensible results.

The technique are also applied on other statistical models which cannot accommo-

date [0,1] response variable (more details will be further discussed in Section 2.4).

Most studies to date overlooked the model estimate bias introduced by the above

transformation technique. One of the aims of this thesis is to eliminate the bias

completely.

2.3.2 Quasi maximum likelihood and two-sided censored TO-

BIT regressions for [0,1] bounded data

To handle the bounded response data without using back-transformation,

Wooldridge (2010) suggests two parametric linear regressions, which are

quasi-maximum likelihood estimation regression for fractional response variables

(QMLE-RFRV) and the two-sided censored Tobit model. These models have

been applied for RR modelling in Bastos (2010); Calabrese (2012); Altman and

Kalotay (2014). The main advantage of these models is that they are theoretically

appropriate for [0,1] bounded RR data. As this thesis aims to mitigate or eliminate
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the boundary problem in chapters 3-5, the review of these two parametric models

provide some guideline to accommodate the problem.

Quasi-maximum likelihood estimation regression for fractional response variable

QMLE-RFRV is one of the most common solutions for dealing with bounded

dependent data, including RR. The model imposes plausible constraints on the

conditional mean to ensure that the recovery estimate lies within the interval [0,1]:

E(Y |x) =Λ(x′β), (2.3.2)

where Y is the continuous [0,1] bounded RR, x is the vector of k covariates in-

dicating the loan specifics, which can be a mixture of continuous and discrete

covariates, Λ(·) is the logit link function, 0 <Λ(·) < 1, and β is a vector of unknown

parameters. The link function plays the role of controlling the boundary of the

predicted RR. Any function that satisfies 0 <Λ(·) < 1 could be also applied, such

as the log-log, the complementary log-log and probit functions (Bastos, 2010;

Calabrese, 2012; Ramalho, Ramalho, & Murteira, 2011).

Papke and Wooldridge (1996) propose a quasi-maximum likelihood estima-

tion method (QMLE) to estimate the unknown parameter of the fractional [0,1]

response variable’s covariate:

β̂ = argmax
β

n∑
i=1

yi log(Λ(x′iβ)) + (1− yi) log(1−Λ(x′iβ)). (2.3.3)

The vector of estimators defined in (2.3.3) is consistent and asymptotically normal

regardless of the conditional distribution assumption. Although the QMLE-RFRV

structure is identical to that of logistic regression, the variance based on the

standard model is unreliable for fractional data. Therefore, Papke and Wooldridge

(1996) propose fully robust sandwich standard errors and test statistics in order

to achieve valid statistical inferences. The valid asymptotic inference of the
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estimators in (2.3.3) is useful for RR analysis, as Khieu, Mullineaux, and Yi (2012)

employ the model to study the determinants of the RR.

The predictive power of this model has been investigated in several studies,

which Bastos (2010) shows an evidence that QMLE-RFRV can outperform the al-

ternative machine learning algorithm in some out-of-sample predictive evaluation

criteria. This model is also one of the common benchmark models to compare the

predictive power with other alternatives included in studies by Yao, Crook, and

Andreeva (2015); Dermine and De Carvalho (2006); Calabrese and Zenga (2010);

Chalupka and Kopecsni (2008); Yang and Tkachenko (2012).

We find that the structure of the model is appropriate and theoretically valid

for RR modelling, as the boundary issue is completely eliminated. The model’s

structure motivate our research in chapter 5, which proposes the nonparametric

local logit regression for [0,1] bounded response variable.

Two-sided censored Tobit model

The Tobit model with two-sided censoring at the values of zero and one is applied

to address the recovery boundaries in Siao et al. (2015); Bellotti and Crook (2012);

Jacobs Jr and Karagozoglu (2011); Tong et al. (2013); Gürtler and Hibbeln (2013);

P. Li, Qi, Zhang, and Zhao (2016). Generally, Wooldridge (2010) suggests that the

likelihood function of the two-sided censored Tobit model can handle the bounded

dependent variable by combining two boundaries (upper bound and lower bound)

and the continuous distribution in between. This likelihood suits the properties

of the RR, since concentrations at both ends are empirically expected (Bellotti &

Crook, 2012). The model employs maximum likelihood with the assumption of
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an underlying latent variable (Y ∗), which assumes:

Y =


0 if Y ∗ ≤ 0;

Y ∗ if 0 < Y ∗ < 1;

1 if Y ∗ ≥ 1,

(2.3.4)

where Y ∗ = x′β + e. Then, the log-likelihood function for the Tobit model is

ln [L(θ|Y1, ..,Yn)] =
n∑
i=1

(
1[Yi = 0] ln[Φ((−xiβ)/σ )] + 1[Y1 = 1] ln[Φ(−(1− xiβ)/σ )]

+ 1[0 < Yi < 1] ln[(1/σ )φ((Yi − xiβ)/σ )]
)
,

(2.3.5)

where θ = {β,σ } is a matrix of unknown parameters, 1[·] is the indication function

which is equal to one when the condition in the bracket holds, Φ(·) and φ(·) are

the normal cumulative and density distribution functions, respectively. This

likelihood function is constructed by considering the probability of the dependent

variable falling between the boundaries and also on each boundary separately

throughout the indicator functions (Greene, 2003). Then, the conditional mean of

the dependent variable is defined as:

E(Yi |xi) = x′iβ
[
Φ[(1− xiβ)/σ ]−Φ[−xiβ/σ ]

]
+ σ

[
φ(−xiβ/σ )−φ((1− xiβ)/σ )

]
+
[
1−Φ[(1− xiβ)/σ ]

]
.

The parameters and the standard asymptotic inferences are estimated by means of

the maximum likelihood estimation in (2.3.5). Gürtler and Hibbeln (2013) explain

the censoring issue in the RR as length-biased sampling due to the duration

of the workout process. They argue that most RR models use the information

regarding the defaulted loan with a completed workout process, while there are

some defaulted loans that may not yet have completed the process. This would

cause interval censored data which results in bias and a less accurate prediction
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of the RR. Although the model structure is suitable for RR and addresses the key

properties of RR data, Tong et al. (2013); Bellotti and Crook (2012) report that

Tobit model has relatively poor predictive performance compared to standard

OLS and back-transformation regression.

Sigrist and Stahel (2011) argue that the normal distribution assumption re-

garding the recovery rate’s latent variable Y ∗ may not be appropriate, and thus

they rather assume a gamma distribution. They then extend the censored gamma

regression model to a two-tiered gamma model by allowing two different sets of

parameters: one for the probability of 1-recovery rate being zero and the other for

0 < 1-recovery ≤ 1. On the other hand, P. Li et al. (2016) simplify the Tobit model

by proposing a two-step estimation: (i) using ordered logistic regression on the

probability of the RR falling into three categories, namely P r(yi = 0), P r(yi = 1),

and P r(0 < yi < 1); and (ii) using OLS on the observations within the range (0,1).

They found that the two-stage estimation outperformed Tobit and the censored

gamma regression models.

One might consider the two-sided truncation model is similar to the two-sided

censored model. Although, their definitions are somewhat similar, there are

some crucial differences. In line with the literature, we assume RR a two-sided

censored data. First, the two-sided truncation assumes that the variable beyond

the boundaries cannot be observed. As such information is totally unobserved,

suitable corrections to account for the observational bias are needed. In Section

2.2.2, we show that it is possible to observe RR that is greater than one or less

than zero due to debt collection cost or financial fees. However, the values outside

the [0,1] interval are not of interest in practice, as they are driven by banking fees

and service charges, rather than the borrower characteristics. Therefore, RR > 1 is

treated as one, whereas RR < 0 is treated as zero. By definition, this process leads

to two-sided censoring.
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Second, by definition, the data outside the boundaries are only partially ob-

served for two-sided censored data, which are restricted to have the boundary

values. This process also explains why high proportion of the data are observed

at the boundary points. It can be clearly seen that the probability of censored

data observed at each of the boundaries will be much higher than those for the

truncated data, which may or may not have data at the boundaries. Clearly, the

two-sided truncation is not an alternative to two-sided censoring.

2.3.3 Data-driven approaches

The main restrictions in the parametric models are the pre-specified assump-

tions, including functional form and distribution, which are assumed to be correct.

As we find that the empirical RR data is non-standard, the parametric specifi-

cation, such as normality and linearity, could be misleading assumptions. For

example, the presence of nonlinear effects among covariates generally leads to

inconsistency and biased estimates in linear models. In fact, these issues could be

addressed in parametric models by including a sufficient number of interaction

terms, imposing nonlinear parameterisations, and through the discretisation of

some continuous variables. However, this remains a difficult task if prior knowl-

edge of the functional form is limited. As the main focus of this thesis is to propose

nonparametric regressions, the methods are robust to a non-normal distribution

and nonlinearity, which is a special feature of RR data. We also fill the gap in

RR model’s functional form in chapters 3 and 5 by taking into account of the

nonlinearity in the RR-covariate relationship.

Instead of relying heavily on pre-specified assumptions, as required in para-

metric models, a number of studies have recently introduced more sophisticated

models to flexibly address the unique properties of the RR (Altman, 2006).

Data-driven approaches require minimal restrictions, allowing the particular

model to be shaped by the data rather than intuitions or prior assumptions. Such
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models may overcome the restrictions in the parametric framework. Moreover,

these approaches are expected to have a higher predictive accuracy rate, which is

highly attractive to practitioners.

Mixture distribution model

Altman and Kalotay (2014) propose a mixture of Gaussian distribution to estimate

the distribution of defaulted debt recovery outcomes. This approach pays signifi-

cant attention to the bimodal property of the recovery data. The study indicates

the likelihood function as:

L(y∗i |xi ,θ,zi) = φ(y∗i ;µ1,σ1)I(zi∈(c0,c1)) · · ·φ(y∗i ;µm,σm)I(zi∈(cm−1,cm)), (2.3.6)

where y∗i is the transformation of the boundary adjusted RR, as previously dis-

cussed in (2.3.1), using the inverse Gaussian function, m is total number of finite

mixtures, θ = {µ,σ ,c}, φ(·) is the probability density function associated with the

given mean µ ∈ {µ1, ..,µm} and variance σ ∈ {σ1, ...σm}, c ∈ {c0, ..., cm} is a cut-off

points to assign zi to a particular mixture component, and zi = x′iβ + ei is data

augmentation of the transformed RR. This study implements a model based on

Koop, Poirier, and Tobias (2007), who apply a Gibbs sampling scheme together

with the multinomial ordered probit model to estimate the unknown coefficients,

the latent variable, and the unrestricted cut-off points.

As the model assumes mixtures of normal distributions on the transformed RR,

it can take into account the bimodality property when m > 1. On the other hand,

the model has several limitations that should be addressed. First, it relies on the

back-transformation procedure, which leads to a bias in the model estimates, as

discussed earlier. Second, the model may be sensitive to the number of mixtures2,

as this is the main assumption controlling the shape of the distribution. The

2Altman and Kalotay (2014) selects the optimum value of m that minimizes the in-sample
predictive error

24



Non- and Semi-parametric Methods for Modelling Recovery Rates

number of parameter estimates and predictive outcomes are dependent on the pre-

specified valuem. Lastly, interpretations of the estimators would be ambiguous, as

they represent the effects of covariates x on z, the latent variable of the transformed

RR. Inferring the effects of the conditional information is required which involves

several steps (Altman & Kalotay, 2014).

A number of other models in mixture distribution and similar frameworks have

been proposed and extended and can address the issues discussed above. Rather

than pre-specifying the number of mixtures, Hartmann-Wendels et al. (2014)

propose a hybrid finite mixture model, which partitions the data into several

subclasses using k-nearest neighbours before applying linear regression on each

subclass. They claim that this method can reproduce the multimodality of the

recovery density and provide improved predictions. To avoid data transformation,

Tanoue, Kawada, and Yamashita (2017) partition the data into two groups, based

on whether the RR is zero or not. They then apply a logistic regression on each

group. Huang and Oosterlee (2011) propose a generalised linear mixed model

using beta distribution with additional normal distributed random effects in the

linear predictor to allow for more flexibility than the traditional model does.

As the main advantage of applying mixture models is that they capture the

multimodality of the RR density, Zhang and Thomas (2012) argue that the

segmentation would be difficult and do not provide additional improvements

compared to a single distribution assumption. Calabrese (2012) emphasises the

intensive mass at the boundaries using multiple-steps estimation, which modifies

the beta likelihood function by incorporating the weights at the boundaries using

two logistic regressions. The estimators are expected to capture the negative

and positive skewness more accurately than the standard beta regression does.

In addition, separated regression models may be problematic when applied for

making prediction. Bijak and Thomas (2015) propose a hierarchical model using
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a Bayesian framework to overcome this issue.

Machine learning algorithms

Machine learning algorithms are the preferable alternative methods for RR mod-

elling and predictions, as they can overcome the misspecification problems in the

parametric model. A number of machine learning algorithms in RR modelling

have recently been proposed. The neural network (NN) was introduced by Qi and

Zhao (2011) and Loterman et al. (2012), while the regression tree (RT), which is a

recursively partitioned algorithm, was proposed by Bastos (2010).

(i) Neural networks algorithm

The neural network algorithm is defined as:

f (x) = α0 +
H∑
h=1

αhΛ(x′βh) + e

where h = 1, ...,H , H is the number of units in a hidden-layer, αh represents a

coefficient from the hth hidden-layer unit, Λ is a logit function, and βh is a k × 1

vector of unknown parameters associated with hth unit. The model’s flexibility is

mainly driven by the total number H units in the hidden-layer, as this increases

the number of the over-imposed parameters by (k + 1)H . The nonlinear effects can

then be captured. Also, the error term has no distribution assumption and can be

arbitrarily small if H is sufficiently large.

There are several drawbacks of the models to be concerned. The large H would

cause an overfitting problem, in which case the in-sample errors are substan-

tially small but the out-of-sample errors may be large. This is one of the main

well-known issues encountered in the application of neural networks (Kalotay

& Altman, 2016; Tobback et al., 2014). In addition, although the model has a

linear structure, the estimators cannot be meaningfully interpreted. In particular,

the parameters are associated with each unit in the hidden layer. This creates a
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highly complex structure between the covariates and the response variable, the

interpretation of which is difficult. It is known as the black box problem.

(ii) Regression tree

The regression tree is a recursive partitioning method that uses a searching algo-

rithm (Breiman, Friedman, Stone, & Olshen, 1984). Shalizi (2013) explains that

the model sub-divides the data space into smaller subsets, which can interact in

complicated and non-linear ways with the specific features of the data structure.

This leads to a series of sequential logical if-then conditions to estimate the RR

with a tree structure appearance as shown in Figure 2.1. In particular, the RR is

estimated by a searching algorithm, which partitions the RR according to the loan

characteristics (Bastos, 2010). There is no requirement for data transformation, as

the predicted values are always in the unit interval.

Figure 2.1: Regression tree structure

Figure 2.13 illustrates an example of the regression tree mechanism, in a case

where there are only two continuous variables {X1,X2}. At the top of the tree chart

there is a root node which is the full dataset before partitioned by whether X1 ≤ t1,

into two binary daughter nodes, where t1 is the cut-off point. This split results from

the searching algorithm assigning a condition which minimises the intra-subset

variation of the recoveries in the daughter nodes. The conditions include the order

3The figure is downloaded from The Beginners Guide to Decision Trees for Supervised Machine
Learning
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of the explanatory variable and the cut-off values of each split. A number of the

nodes are expanded until a further split cannot reduce the variation. The un-split

nodes are defined as ‘leaves’, which determine the fixed levels of the RR, denoted

as R1, ...,R6. These values are the average recovery of the total observations in each

leaf, hence, the boundaries of zero and one are not violated.

This algorithm has been applied in many RR modelling studies in the last

decade, and seems to be one of the most preferable predictive models. Bastos

(2010); Calabrese and Zenga (2010); Hartmann-Wendels et al. (2014); Altman

and Kalotay (2014); Kalotay and Altman (2016); Siao et al. (2015); Qi and Zhao

(2011); Miller and Töws (2017) indicate that the model’s predictive performance

outperforms that of parametric models. On the other hand, Tobback et al. (2014)

conclude that the regression tree’s performance is not as good as that of the

back-transformation regressions with high-dimensional covariates.

It is not only the predictive accuracy of the regression tree that attracts practi-

tioners, but also the tree structure, which offers a simple way to infer the effect of

RR-covariates through the condition of the binary split in each node. For example,

x1 would have a positive effect on RR if we assume the following assumptions

R1 < R2 < ... < R6 and t1 < t3 in Figure 2.1. However, this interpretation of the

model may be restricted, as it cannot provide further detailed information regard-

ing the effect of a particular covariate. For example, the nonlinear marginal effect

analysis cannot be derived from the regression tree algorithm.

A number of other machine learning algorithms have recently been proposed to

predict the RR. Yao et al. (2015) propose a least-squares support vector regression

with different intercepts, which allows for the heterogeneity for different types

of loans. Nazemi, Fatemipour, Heidenreich, and Fabozzi (2017) propose a fuzzy

rule-based model to construct a fuzzy subspace structure. Their study also ac-

commodates macroeconomic conditions by using principal components derived

from 104 variables to improve the model’s predictability. However, these two
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algorithms also suffer from the black box issue when it comes to valid statistical

inference.

As we study nonparametric and semiparametric regression models, they allow

us to conduct marginal and interaction effects analysis in all models proposed and

implemented in this thesis.

2.3.4 Other statistical approaches for recovery rate modelling

As beta distribution can take into account bimodal density, Jacobs Jr and Karago-

zoglu (2011) introduce a beta-link generalised linear model (Ferrari & Cribari-

Neto, 2004). Although the model has desirable properties relative to alternative

linear parametric approaches, its predictability has not yet been investigated.

However, Calabrese and Zenga (2010) and Renault and Scaillet (2004) estimate

the recovery density using a beta kernel estimation method before conducting

a hypothesis test of the appropriateness of theoretical beta distribution for RR

modelling. Renault and Scaillet (2004) conclude that RR does not follow a beta

distribution.

Given that RR can be calculated as:

1− Expected loss
Exposure at default

,

Leow and Mues (2012) apply two OLS models to estimate the expected loss and the

exposure at default separately. Tong et al. (2013) propose a zero inflated gamma

model to estimate the expected loss. Their models can address the clustering of

the full RRs.

Recently, a conventional quantile regression (Koenker & Bassett, 1978) has been

applied for RR modelling. Siao et al. (2015) apply a linear quantile regression with

a logit back-transformation technique for prediction. They estimate regressions at

various quantiles of the RR distribution. Then, the quantile that yields the best
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in-sample predictive accuracy is employed to predict the out-of-sample recovery.

On the other hand, Krüger and Rösch (2017) apply a standard linear quantile

regression and allow the RR to be outside the boundaries zero and one. They find

that the linear effects of the recovery covariates vary across the different quantiles.

Furthermore, they introduce an alternative application of quantile regression to

estimate the downturn recovery as well as the value at risk (VaR). In chapter 4,

we propose the non- and semi-parametric quantile regressions to identify the

presence of potential nonlinearity and heterogeneity in the effect of RR-covariates

on RR at various quantiles, which has not been investigated before in the literature.

We also employ the model selection criteria proposed in their paper, including

the distribution fit measurement and its hypothesis testing as well as the VaR

framework, to evaluate our proposed quantile regression models.

The dependency between the RR and the probability of default has been dis-

cussed in several papers (Altman, 2006; Frye, 2000; Bruche & González-Aguado,

2010; Fischer, Köstler, & Jakob, 2016). A concern arises because a negative relation-

ship between these factors is expected, especially during an economic downturn,

as both risk parameters are sensitive to turmoil in the adverse macroeconomic

conditions (Dermine & De Carvalho, 2006; Acharya et al., 2007; Qi & Yang, 2009;

Grunert & Weber, 2009). Specifically, the probability of default tends to increase

while the RR seems to decrease during economic downturns. Rösch and Scheule

(2014) suggest a joint estimation for forecasting probability of default and the RR.

They propose a likelihood function that can take this issue into account. The study

concludes that without the dependency of these two credit risk parameters, the

capital requirement could be underestimated by 17%. Alternatively, Frontczak

and Rostek (2015) assume that the RR depends on the actions taken immediately

after default until resolution. They model the RR with an exponential Ornstein-

Uhlenbeck diffusion in order to capture the stochastic process, which represents

the workout recovery process.
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Given the importance of the RR in credit risk management, a series of actuarial

studies have discussed the tail risk as well as the limiting distribution of the RR

(Yuan, 2016). Tang and Yuan (2013) estimate the random recoveries from the

borrower at the time of default, and Wei and Yuan (2016) model the heavy tails

underlying the risk factors of a low-default portfolio with weak contagion by

employing a Sarmanov distribution with regularly varying tailed marginal distri-

butions. On the other hand, Bonini and Caivano (2016) allow the workout experts’

opinion to be embedded in a particular predictive model, which is common in

actuarial modelling, to improve the accuracy rate of the estimates.

2.4 Conclusion

In the review of the literature on modelling RR, we have identified that although

there are large number of proposed models to overcome problems associated with

modelling RR-covariate relationships, the models have not adequately accommo-

dated the special features of RR data. Moreover, lack of flexibility in conducting

nonlinear marginal effects analysis, which are essential to design an appropri-

ate treatment program and financial policy in order to mitigate the credit risk

exposure, remains unsolved. The research gaps we identified together with a

discussion of the limitation of the existing models provided motivations to the

research endeavor of this thesis.

In particular, we found several limitations in the existing literature. Firstly, it

was common to employ the transformation and back transformation technique to

accommodate the boundary [0,1] of the RR, although it caused bias to the RR esti-

mates. This technique was used in several studies, as parametric assumptions that

could generate continuous bounded [0,1] respond variable estimate are limited.

One of the main aims of thesis is to eliminate the bias completely. The proposed

nonparametric and semiparametric regression models in the following chapters
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can address the stylized fact of the empirical RR in the data-driven manner using

kernel estimation approach, which do not heavily rely on the back-transformation

and other pre-determined parametric assumptions. The highly flexible features of

the proposed models in chapters 3 and 4 do not require the restricted assumptions

of most parametric models. Furthermore, chapter 5 proposes the nonparamet-

ric regression specifically for fractional response variable, which is suitable to

accommodate the boundary property of the RR.

Secondly, RR model is expected to be nonlinear, but further analysis on the

nonlinear relationships and nonlinear functional form of parametric models are

overlooked. Most parametric models relied intensively on linear functional form,

which might lead to misspecification issue if prior knowledge is not available.

Chapters 3 and 5 aim to improve the functional form of RR models, which will

mitigate the misspecification issue.

Thirdly, to accommodate nonlinearity in the RR-covariate relationship, the data

driven machine learning algorithms were proposed in last decades. However, the

unexplained black box issue remained a major concern of their applications, which

also prevented the understanding of the complex effect of the covariates on RR. In

this thesis, we pay considerable attention to explain the marginal and interaction

effects on conditional mean of RR in chapter 3 and 5, and on various condition

quantiles of RR distribution in chapter 4.
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Chapter 3

Non- and Semi-parametric condi-

tional mean regressions for recovery

rate modelling

3.1 Introduction

In chapter 2, the stylized facts of empirical RR were outlined. Emphasis was

placed on the [0,1] bounded RR with a bimodal density and nonlinearity in the

effect of its covariates. Also, we found evidence suggesting that data-driven mod-

els, such as machine learning algorithms, were more able than linear parametric

models to improve RR predictions. However, although machine learning algo-

rithms offer better predictive performance, they struggle to provide a suitable

explanation of how such a high performance is achieved, which is known as the

black box problem. This leads to a lack of understanding of the nonlinear relation-

ships between RR and its covariates. Moreover, despite the evidence indicating

the presence of this nonlinear relationship, no consideration has been given to
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modelling such nonlinearity in the parametric settings (Gürtler & Hibbeln, 2013;

Bastos, 2010; Hartmann-Wendels et al., 2014).

In this chapter, we propose a nonparametric regression with the local constant

(LC) and local linear (LL) estimation methods, as well as a semiparametric par-

tially linear (PL) regression, to model RR-covariate relationship. These data-driven

models can capture the nonlinearity and, more importantly, transparently explain

relationships between covariates and RR, which have not been much explored in

the literature. We also address the boundary [0,1] requirement of the empirical

RR by proposing a two-sided censored nonparametric regression using the local

linear estimation method (LL2)1, which is an extension of the one-sided censored

nonparametric regression (Lewbel & Linton, 2002). We also conduct an extensive

comparison of our proposed models and the existing models discussed in chapter

2, which include inverse Gaussian back-transformation regression (IG), quasi maxi-

mum likelihood regression for fractional response variables (QMLE-RFRV), the

two-sided censored Tobit model (TOBIT), the mixture distribution model (MM)

proposed by Altman and Kalotay (2014), and the machine learning regression tree

algorithm (RT). The comparison is made in terms of in-sample and out-of-sample

predictability of models.

The nonparametric regression is a full data-driven approach, which does not re-

quire any pre-specified assumptions. Our main findings highlight the application

of LL method to analyse the nonparametric marginal effect estimates. These LL

estimators are useful to uncover the underlying relationships between RR and its

covariates. On the other hand, the semiparametric PL requires the user to spec-

ify the model’s functional form, which is a combination of linear and nonlinear

functions. This leads to a dimensional reduction, which eases the computational

burden in the nonparametric regression. To specify the semiparametric model, we

utilise the insight provided by the marginal effect analysis based on LL method

1The both simulation and empirical studies are conducted, which produce some promising
results.
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to improve the functional form of the semiparametric PL model. We find that

the application of PL leads to outstanding out-of-sample predictive performance

compared to that of nine other models.

This chapter is organised as follows: sections 3.2 and 3.3 discuss our proposed

non- and semi-parametric regressions, respectively. This is followed by the data

description and a preliminary analysis in section 3.4. Then, the empirical results

are reported and analysed in section 3.5 before concluding.

3.2 Nonparametric regression

In this section, we introduce the local constant and local linear kernel estima-

tion methods. These two methods do not require pre-determined distribution

assumptions or functional forms. In addition, Racine and Li (2004) propose a

nonparametric estimation in the presence of a combination of continuous and

discrete covariates by assigning different types of kernel functions. These make

the method more suited to model the RR-covariate relationship, which commonly

has both continuous and discrete/categorical determinants.

Let us define

Xi = (Xci ,X
d
i ),

where the continuous regressors with p dimensions are Xci ∈ R
p, and the remaining

regressors Xdi are a q × 1 vector of categorical variables. For any tth component of

Xdi as t = 1, ...,q, each component can take a discrete value as Xdt,i ∈ {0,1, ..., ct − 1},

where ct ≥ 2 is a total category of Xdt,i , such as ct = 2 for a dummy variable. Hence,

a nonparametric regression is given by

Yi = g(Xi) +ui , i = 1, ...,n, (3.2.1)
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where Yi is the RR as the dependent variable, and g(·) has an unknown functional

form. We explore general relationships relying on the smoothing process using

the kernel functions to estimate the conditional mean, which is defined as:

E(Y |X = x) =

∫
y · f (x,y)dy

f (x)
≡ g(x), (3.2.2)

where f (x,y) is the joint density and f (x) is the marginal density. To estimate this,

we need to define the kernel functions and their bandwidth before applying local

constant or local linear estimation methods.

3.2.1 Kernel functions

Our study employs three different kernel functions: a Gaussian kernel function

for continuous variables and kernel functions for ordered and unordered

categorical variables. These three functions are discussed in what follows before

the general form of the kernel estimations is provided. Gaussian kernel function is

the most common for estimating the semi- and non-parametric regression because

its support is −∞ < 0 < ∞, while other kernel functions such as Rectangular,

Epanechnikov, Biweight, Triangular have limited supports (DiNardo & Tobias,

2001). On the other hand, the kernel function for discrete variables are limited.

Gaussian kernel function

The standard Gaussian kernel function is employed for any continuous variable

(Xci ), which is denoted as:

κs
(
Xcs,i ,x

c
s ,hs

)
=

1
√

2π
exp(−1

2
(
Xcs,i − x

c
s

hs
)2), (3.2.3)

where s = 1, ..,p, κ(·) is the Gaussian kernel function, and hs is a bandwidth

associated with the sth continuous variable.
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Kernel function for categorical variables

The choice of kernel function depends on whether the categorical variable has a

natural ordering or not. First, the following kernel function proposed by Racine

and Li (2004) is applied for any categorical variable with no intrinsic ordering of

the categories:

λt(X
d
t,i ,x

d
t , lt) =


1, if Xdt,i = xdt ,

lt, otherwise,
(3.2.4)

where we assume that the tth categorical variable is unodered, and lt is the band-

width associated with λt(·) which has a range of [0,1].

On the other hand, if there is evidence indicating that the tth categorical variable

has a natural ordering, then we apply:

λt(X
d
t,i ,x

d
t , lt) = l

|Xdt,i−x
d
t |

t (3.2.5)

where we assume that the tth variable has ordinal categories.

Kernel estimation of a probability density function

One of the main applications of these kernel functions is to estimate a probabil-

ity density function. Given that the kernel function discussed is appropriately

assigned to each variable, the joint density and marginal density in (3.2.2) can be

estimated as follows:

f̂ (x,y) =
1

n · h0 · h1...hp · l1...lq

n∑
i=1

κ0(Yi , y,h0)
p∏
s=1

κs
(
Xcs,i ,x

c
s ,ht

) q∏
t=1

λt(X
d
t,i ,x

d
t , lt); and

f̂ (x) =
1

n · h1...hp · l1...lq

n∑
i=1

p∏
s=1

κs
(
Xcs,i ,x

c
s ,ht

) q∏
t=1

λt(X
d
t,i ,x

d
t , lt).

(3.2.6)
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3.2.2 Local constant estimation method

The conditional mean in (3.2.2) can be estimated by replacing the estimates in

(3.2.6). Then, we can estimate E(Y |X = x) by:

ĝ(x) =

n∑
i=1
YiK(Xi ,x,H)

n∑
i=1

K(Xi ,x,H)
(3.2.7)

where K(Xi ,x,H) =
p∏
s=1
κs

(
Xcs,i ,x

c
s ,ht

) q∏
t=1
λt(X

d
t,i ,x

d
t , lt) is product of the kernel func-

tions, and H = {h1, ...,hp, l1, ..., lq} is a collection of bandwidths associated with each

component in Xi . It is worth noting that as K(·) > 0, if the response variable is

bounded between zero and one, then the local constant estimate in (3.2.7) will also

lie within the same interval. This is an additional advantage of the method for RR

modelling as it accommodates the boundary property of the empirical data.

In (3.2.7), the size of the bandwidths in H plays a critical role in estimating the

ĝ(·). Our study employs the least-squares cross-validation method to select the

appropriate bandwidth. We select the bandwidth H by minimising the following

objective function:

CVLC(H) =
n∑
i=1

(Yi − ĝ−i(Xi))2 (3.2.8)

where ĝ−i(Xi) is the leave-one-out kernel estimator of g(Xi), which is defined as:

ĝ−i(Xi) =

n∑
i,j,j=1

YjK(Xi ,Xj ,H)

n∑
i,j,j=1

K(Xi ,Xj ,H)
. (3.2.9)

In particular, we estimate the unknown function g(Xi) by utilising all information

without the ith observation. Then, the bandwidths are selected such that (3.2.8) is

minimised.
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Given the bandwidth H ∗LC selected from the least-squares cross-validation

method, we can estimate the conditional mean by executing (3.2.7), which is

equivalent to the solution of the following minimisation:

min
α

(x)
n∑
i=1

(Yi −α(x))2
K(Xi ,x,H

∗). (3.2.10)

Specifically, the constant α(x) is obtained to approximate the unknown g(x) in the

neighbourhood of x, as we use the local average of Yi ’s to estimate g(x), which is

defined as the local constant kernel estimator.

In fact, it is true that there are numbers of bandwidth selection criteria available

in the literature. They include rule-of-thumb, least squares cross-validation,

likelihood cross-validation, biased cross-validation, plug-in approach, smoothed

bootstrap, binning, among others (Jones, Marron, & Sheather, 1996; Zambom

& Dias, 2012). The least squares cross validation has become popular because

of its attractive feature that it automatically excludes irrelevant variables (Hall,

Racine, & Li, 2004; Q. Li & Racine, 2007). It assigns large optimal bandwidths

to the irrelevant variables, which over-smooth the variables towards the uniform

distribution regardless of the respective marginal distributions. As a result, the

irrelevant covariates are removed through the cross-validation method, which

enhances the reliability of the empirical results.

3.2.3 Local linear estimation method

Although the LC estimation method can accommodate the [0,1] boundary

property, it is difficult to carry out the marginal effect analysis of the LC estimate.

This leads to the application of the LL estimation method, which provides the first

derivative estimate of the unknown function g(x) with respect to x or the marginal

effect estimate. By directly estimating the marginal effect, the model can reveal

the underlying relationships without the prior knowledge of the functional form.
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This method may provide additional insights into RR structure which have not

yet been documented.

The local linear estimator is obtained by minimising the following objective

function:

min
{a(x),b(x)}

n∑
i=1

(Yi − a(x)− (Xi − x)′b(x))2
K (Xi ,x,h) , (3.2.11)

where b̂(x) is the LL estimator, which is a consistent estimator of ∂g(x)
∂x , and â(x) is

an estimate of g(x).

The solution of minimising (3.2.11) can be seen as local least squares in matrix

form as:

min
δ(x)

(Y −Xδ(x))′K(x)(Y −Xδ(x)), (3.2.12)

where δ(x) = (a(x),b(x)′)′, Y is the n × 1 vector of ith component Yi , X is the

n× (1 + (p+ q)) matrix, and K(x) is the n×n diagonal matrix having ith diagonal

element of K(Xi ,x,h). Thus, δ(x) can be estimated by standard generalised least

squares:

δ̂(x) = (X ′K(x)X )−1(X ′K(x)Y ),

which provides the consistent estimators and the asymptotic normality of δ̂(x).

As the LL method employs the local least squares method, there is no guarantee

that â(x) will be bounded between zero and one, as found in the LC estimation in

(3.2.7). We attempt to solve this boundary issue of LL method in section 3.2.4.

Similarly to the LC estimation, the bandwidth H plays a vital role. Hence, least-

squares cross-validation is also applied to determine the appropriate bandwidths:

CVLL(H) =
n∑
i=1

[Yi − â−i(Xi)]2, (3.2.13)
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where â−i(Xi) is the leave-one-out2 LL kernel estimator of g(Xi) from (3.2.12).

Finally, we can estimate the conditional mean and the marginal effects from

(3.2.11), given the selected bandwidth H ∗LL from the solution of (3.2.13).

3.2.4 Nonparametric regression with two-sided censoring

We propose a nonparametric regression model with LL estimation method

which allows two-sided censoring at zero and one. Before introducing this model,

we examine the nonparametric regression with one-sided censoring proposed by

Lewbel and Linton (2002). The estimation method is computationally convenient,

requiring only two nonparametric regressions and a univariate integral approxi-

mation. We then extend the model to that for two-sided censored data to address

the boundary issue in the LL method.

To introduce notations, we define:

Yi =


1, if Y ∗ ≥ 1

Y ∗, if 0 < Y ∗ < 1

0, if Y ∗ ≤ 0,

(3.2.14)

where Y ∗ is an unobserved latent variable. The equation (3.2.14) is equivalent to:

Yi = max(0,min(w(Xi)− e),1), (3.2.15)

where Yi is the observed response variable, which can be written as Y ∗I(0 ≤ Y ∗ <

1) + I(Y ∗ ≥ 1), I(·) is the indicator function, Y ∗i = w(Xi) − ei is unobserved, Xi is

the set of covariates which can be multidimensional and contain both discrete

and continuous variables, the unknown function w is differentiable and has finite

derivatives, the error e is independent of x with an absolutely continuous distri-

bution function F(e) and Lebesgue density function f (e). We want to estimate

2defined in (3.2.9)

41



Non- and Semi-parametric Methods for Modelling Recovery Rates

the latent function w(Xi), and we can then ensure that Yi is in the unit interval as

shown in (3.2.14).

Let us define:

P r(Y = 0|X = x) = P r(w(x)− e ≤ 0) = 1−F(w(x)),

P r(Y = 1|X = x) = P r(w(x)− e ≥ 1) = F(w(x)− 1),

then, P r(0 < Y < 1|X = x) = F(w(x))−F(w(x)− 1).

(3.2.16)

We also have:

E(Y |X = x) = E[Y ∗I(0 ≤ Y ∗ < 1)] +E[I(Y ∗ ≥ 1)]

=
∫ w(x)

w(x)−1
(w(x)− e)dF(e) +F(w(x)− 1)

= w(x)
∫ w(x)

w(x)−1
dF(e)−

∫ w(x)

w(x)−1
edF(e) +F(w(x)− 1)

= w(x)[F(w(x))−F(w(x)− 1)]− [eF(e)]w(x)
w(x)−1 +F (w(x))

−F (w(x)− 1)

= F (w(x))−F (w(x)− 1),

(3.2.17)

where F (w) =
∫ w
−∞F(e)de is the integrated cumulative density function. Given

(3.2.16) and (3.2.17), we define r(x) = E(Y |X = x) and q(r(x)) = E(I(0 < Y < 1|r(X) =

r)). Let

G(w) = F (w)−F (w − 1),

where G is a monotonically increasing function and invertible with G′(w) = F(w)−

F(w − 1) ≥ 0 for all w and with strict inequality for some ranges. Then we can

define

q(r(x)) = G′(G−1(r(x))),

and r(x) = G(w).
(3.2.18)
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Given these assumptions, we can follow the theorem 2 in Lewbel and Linton

(2002), which shows that:

w(x) + k = γ0 −
∫ γ0

r(x)

1
q(r)

dr, (3.2.19)

for some location constant k(γ0), where γ0 is any nonnegative constant. If γ0 < r(x)

then integrals of the form
∫ γ0

r(x)
above are to be interpreted as −

∫ r(x)
γ0

. The equation

(3.2.19) can be proved by using the change of variable r = G(w), dr = G′(w)d(w),

and q(r) = G′(G−1[G(w)]) = G′(w). Then,

γ0 −
∫ γ0

r(x)

1
q(r)

dr = γ0 −
∫ G−1(γ0)

G−1(G[w(x)])

1
G′(w)

G′(w)dw

= γ0 −
∫ G−1(γ0)

w(x)
1dw

= γ0 −G−1(γ0) +w(x),

(3.2.20)

where k = γ0 −G−1(γ0), and the equation (3.2.19) holds. If we choose γ0 such that

q(γ0) = 1, then γ0 = G−1(γ0) (Lewbel & Linton, 2002).

We estimate (3.2.19) as the following steps:

(i) estimate r̂(x) using nonparametric regression with LL estimation method of

Y on X as discussed in section 3.2.3,

(ii) estimate q̂(r) using one-dimensional nonparametric regression of I(0 < Y < 1)

on r̂(X),

(iii) estimate ŵ(x) given the fact that

ŵ(x) = γ0 −
∫ γ0

r̂(x)
[

1
q̂(r)

]dr,
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for some constant γ0. We also apply the Trapezoidal integral approximation

in step (iii) to estimate the unknown function w(x),

(iv) Then, the prediction is generated as max(0,min(ŵ(x),1))

In Appendix A, we provide the simulation result of the proposed model, which

shows that the model works well to estimate the unknown function w(·).

3.3 Semiparametric partially linear regression

The semiparametric partially linear model allows a combination of parametric

linear and non-parametric components. The model partitions the vector of depen-

dent variables Xi as follows: Zbi is a vector of independent variables assumed to

have linear functional form, and Zmi are the remaining regressors with unspecified

functional form (Robinson, 1988; Härdle, Liang, & Gao, 2012). Then, the general

form of the model is written as:

Yi = Zb
′

i β +m(Zmi ) +ui , i = 1, ...,n (3.3.1)

where Zbi and Zmi can be vectors containing both continuous and categorical

variables, β is an unknown parameter vector associated with Zbi , and m(·) is an

unknown function of Zmi . The model specification in (3.3.1) requires pre-specified

functional form to allocate the covariates into either linear function in the first

component or an unknown function in the second component. The choice

between a nonlinear and linear functions of an independent variable in the model

largely depends on a prior knowledge, theory and/or empirical findings. The

inclusion of the variables in the correct functional forms improves the PL model

specification; see (Härdle et al., 2012) for some empirical examples.
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Estimation of parametric component

The unknown parameters β can be estimated by taking the conditional expectation

with respect to Zmi on (3.3.1) as E(Yi |Zmi ) = E(Zbi β|Z
m
i ), then subtracting (3.3.1):

Yi −E(Yi |Zmi ) = (Zbi −E(Zbi |Z
m
i ))′β +ui

By employing a least-squares method, we estimate:

β̂ =

 n∑
i=1

Z̃iZ̃
′
i


−1 n∑

i=1

Z̃iỸi , (3.3.2)

where Z̃i = Zbi − E(Zbi |Z
m
i ) and Ỹi = Yi − E(Yi |Zmi ). Importantly, due to the iden-

tification problem, the intercept term should not be included in the parametric

component.

Since the conditional expectation (E(·|Zmi )) in (3.3.2) is unknown, it can be

consistently estimated by a kernel method:

Ê(Yi |Zmi ) =

n∑
j=1
YjK(Zmi ,Z

m
j ,H)

n∑
j=1

K(Zmi ,Z
m
j ,H)

,

Ê(Zbi |Z
m
i ) =

n∑
j=1
ZbjK(Zmi ,Z

m
j ,H)

n∑
j=1

K(Zmi ,Z
m
j ,H)

,

(3.3.3)

where K(Zmi ,Z
m
j ,H) is a product of the kernel functions3 defined in (3.2.7) associ-

ated with Zmi , and the least-squares cross-validation in (3.2.8) is applied to select

the bandwidths for each conditional expectation estimate in (3.3.3). Since the

estimation process in (3.3.3) involves a random denominator, a trimming function

3Each variable in the vector Zmi could be either continuous or discrete, then the kernel function
should be properly assigned as discussed in Section 3.2.1
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is suggested to construct an asymptotic distribution:

β̂ =

∑
i

(Zbi − Ê(Zbi |Z
m
i ))(Zbi − Ê(Zbi |Z

m
i ))′

−1

∑
i

(Zbi − Ê(Zbi |Z
m
i ))(Yi − Ê(Yi |Zmi ))1i

(3.3.4)

where 1i = 1 if f̂ (Zmi ) =
n∑
j=1

K(Zmi ,Z
m
j ,H) is less or equal to ε, and 1i = 0 otherwise,

and ε = εn ≥ 0 is a trimming parameter which satisfies εn→ 0 as n→∞. By using

the trimming function, the small f̂ (Zmi ), which can cause technical difficulties, is

removed.

Estimation of nonparametric component

Given the parameter estimate in (3.3.4), the unknown function m(·) can be non-

parametrically estimated. The nonparametric component is denoted by rearrang-

ing (3.3) as;

m(Zmi ) = E(Yi −Zb
′

i β|Z
m
i )

As the unknown parameter in the linear component is estimated in (3.3.4), it

allows us to consistently estimate the nonparametric component (Gao, Liu, &

Racine, 2015), which is given by:

m̂(zm) =

n∑
i=1

(Yi −Zb
′

i β̂)K(Zmi , z
m,H)

n∑
j=1

K(Zmi , z
m,H)

(3.3.5)

Then, the smooth parameter estimators are chosen to minimise use of the least-

squares cross-validation:

CVP L(H) =
n∑
i=1

(
Yi −Zbi β̂ − m̂−i(Z

m
i )

)2
(3.3.6)

where m̂−i(Z
m
i ) is a leave-one-out kernel estimator of m(Zmi ).
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The two-step estimation of PL regression eases the computational burden, as it

reduces the dimensions for the nonparametric estimation so that they are less than

p+ q. This overcomes the computational difficulty in nonparametric regressions

discussed in the previous section. It also mitigates the curse of high dimensional

problem encountered in nonparametric regressions, which require sufficiently

large number of observations for the estimation of the model.

3.4 Data and preliminary analysis

In this section, we summarise the empirical RR data which are employed in the

thesis. This includes a preliminary data summary, which provides definitions of

the variables included as well as the intuitive and expected effects on the RR. This

provides an overview of the overall picture and highlights the specific stylised

nature of the data.

3.4.1 Data description and summary statistics

The dataset on realised RR was obtained from the Moody’s Ultimate Recovery

Database, which has been used in several studies, such as Qi and Zhao (2011),

Altman and Kalotay (2014) and Siao et al. (2015), among others. Our data has

3,573 cross-sectional recovery rates from US corporate loans that were defaulted

on and bankrupted between 1994 and 2012. The rates are discounted nominal

rates by the date that the last interest rate was paid. Moody’s also provides

the debt characteristics prior to default, including the debt cushion4 (DC), the

instrumental rank (Rank) in capital structure, the types of the defaulted loan

(Type), and collateral status (Col).

4Moody’s defines debt cushion as the ratio of the face value of a claim to the total debt below it.
The high DC reflects the low outstanding debt in the company capital structure.
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To take into account of economic risk, we obtained the St. Louis Fed Finan-

cial Stress Index (SI) provided by the US federal reserve bank of St. Louis5. It

measures the degree of financial stress in the markets, which moves according to

the economy. The average value of the index is designed to be zero in late 1993,

where positive stress suggests above-average financial market stress. Stress index

is estimated using 17 key indices, such as the federal funds rate, corporate credit

risk spread, interest rate, and inflation (Kliesen, Smith, et al., 2010). As Moody’s

provides the date of default of each loan, the stress index is matched with this

date to reveal the economic condition at each loan’s time of default.

[————— Insert [Figure 3.1] here —————]

Overall, the RRs are bounded between zero and one, representing a permanent

loss and a full recovery, respectively. High percentages at both ends are observed:

6% at zero and 31% at one. This forms the [0,1] bounded data with bimodal

density at the boundaries of zero and one. The sample density is shown in Figure

3.1. The average and median RR are 0.55 and 0.58, respectively.

In terms of the RR covariates, there are five variables in total, which include two

continuous variables: DC and SI, and three categorical variables: Type, Rank, and

Col. For the continuous variables, Figure 3.2a shows the density of DC, where the

average DC is 0.24, and 46% of the total observed defaulters have a DC of zero.

Figure 3.2b represents the density of SI, reflecting the economic conditions

at the time of default. We observe that SI is mostly between -1 and 1, while

SI > 1 reflects the extremely stressed economy observed during financial crises,

such as GFC. Furthermore, we observe that SI ≥ 1.5 is observed only during the

GFC period. Figure 3.3 shows the movement of the SI between 1994 and 2012,

which indicates several economic events such as the dot-com crisis (1999-2003),

economic expansion (2004-2006), as well as the GFC (2007-2010). Figure 3.4

5Federal Reserve Bank of St. Louis, St. Louis Fed Financial Stress Index [STLFSI], retrieved
from FRED, Federal Reserve Bank of St. Louis: https://fred.stlouisfed.org/series/STLFSI
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compares the movements of the annual averages of SI and RR from 1994 to 2012.

It shows that the average RR increases when SI is negative and decreases during

positive SI periods. We find that the sample RR average is 0.56, while the averages

during the dot-com and GFC crises are 0.50 and 0.53, respectively. This implies

that RR is likely to be lower during periods of deeper financial stress. Therefore, a

negative effect of SI on RR is expected.

As we include three categorical variables: first, there are four instrumental

ranks (Rank = {1,2,3,4}) where the lower Rank represents the higher priority in the

capital structure of a particular defaulted borrower. Second, we consider six types

of loan which include two commercial loans including term and revolving loans

(T ype(1), and T ype(2), respectively), and four corporate bonds: senior secured bond

(T ype(3)), senior subordinate bond (T ype(4)), senior unsecured bond (T ype(5)),

junior and subordinate bonds (T ype(6)). Lastly, the collateral status is a dummy

variable, where Col = 0, and 1 represent a loan with and without collateral,

respectively.

[————— Insert [ Figures 3.2 and 3.3 ] here—————]

3.4.2 Preliminary analysis of recovery rates

The preliminary analysis of the effects of all five covariates on RR is provided

in Table 3.1 as a contingency table. Specifically, the RR is dissected based on the

information provided in the first column. We then report the sample average and

quantiles6 of each conditional RR in columns 5-9.

[————— Insert [ Table 3.1] here —————]

Panel A(i) of Table 3.1, type of loan, shows that the data are 42% commercial

loans and 58% bonds. Considering the average RR of each type, revolving loans

have the highest average RR, while junior and subordinate bonds are the most

6We consider 0.05, 0.25, 0.5, 0.75 and 0.95 quantiles
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risky loan types, with the lowest average RR of 0.24. The sample RR densities

of the commercial loans and senior secured bonds tend to have more negative

skewness than the remaining loans, due to the relatively high medians and high

masses at the upper quantiles.

Panel A(ii), the instrumental rank indicates the repayment priority in the capital

structure. If the collateral was liquidated to repay the borrower’s defaulted debts,

Rank 1 loans would be repaid first, followed by other ranks in ascending order.

Therefore, we find that the average RRs decrease as Rank increases. Also, as most

commercial loans generally have Rank 1, the table shows that the RR densities of

Rank 1 are similar to those of the commercial loans.

Lastly, Panel A(iii), collateral is one of the main sources of funds for repaying

outstanding defaulted debt. Thus, collateralised loans are intuitively less risky

than uncollateralised loans. Table 3.1 shows that collateralised loans have sub-

stantially higher average RRs than uncollateralised loans. Fifty percent of the

uncollateralised loans recover less than 20% of the total loss, while more than half

of collateralised loans recover more than 90%.

For the continuous variables, Panel B(i) of Table 3.1 partitions the empirical RR

into three subsamples based on levels of DC: DC = 0, 0 < DC ≤ 0.5, and DC > 0.5.

The results show that the RR of zero-DC defaulted loans, which make up 46%

of the total observations, has an average of 0.4. The average increases to 0.88 for

loans with DC > 0.5, where more than half have a full recovery rate, as the median

RR is 1. Our findings suggest a positive effect of DC on RR.

For the effect of SI, RR is partitioned into three subsamples according to the

levels of SI in Panel B(ii) of Table 3.1. The levels are denoted as negative SI, 0 < SI

< 1, and SI ≥ 1, which represent low-, high-, and substantially high-stress periods,

respectively. Recovery rate during the low-stress period is lowest at 0.7, while

the rates are similar at approximately 0.5 for high- and substantially high-stress
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periods. During good economic conditions, more than half of the defaulted loans

can be recovered to more than 80% of the total loss, compared to 40% for the

other periods. We then expect a negative effect of SI on RR. It can also be noted

that the densities of RR during high and extremely high economic stress periods

are similar, as the RRs at all given quantiles of both periods are approximately

equivalent in the columns 5-9 of Panel B(ii).

3.5 Empirical results

The proposed non- and semi-parametric regressions are applied to RR data

with its five determinants discussed in the previous section. The estimation

results focusing on the marginal effect analysis are discussed. This is followed

by a comparison of the predictive accuracy of the proposed models and that

of the existing models, namely IG, QMLE-RFRV, TOBIT, MM, and RT (these

abbreviations are defined in Section 3.1).

3.5.1 Estimation results and marginal effect analysis

In this section, the results of nonparametric regression with the LL estimation

method and an analysis of the marginal effect of each covariate on RR are firstly

discussed. This analysis informatively identifies both linear and nonlinear effects

of the covariates on RR. This finding positively enhances the model’s specification

of semiparametric PL model in order to correctly identify and allocate the

independent variables to either linear or nonparametric components. Then, the

marginal effect analysis of the PL model estimates is conducted. Lastly, we apply

the nonparametric regression with the LC method and discuss the result thereof.

In what follows, the detail of our estimation result and marginal effect analysis of

each model is discussed.
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Nonparametric regression with local linear estimation method

The LL estimation method is applied to the full sample of 3,573 defaulted loans

with five given RR covariates. The kernel functions are assigned according to

the variables discussed in Section 3.4, where the Gaussian kernel is assigned for

DC and SI, the kernel for unordered discrete variables for Type and Col, and

the kernel for ordered discrete variables for Rank. We treat Rank as an ordered

categorical variable, as the defaulted loan at the top of the structure (Rank = 1) is

commonly paid off first and is followed by debt in the next-highest rank. Hence,

the RR of the lower rank is supposed to be lower than that of the higher rank, as

discussed in the preliminary analysis. In addition, we denote Y = RR, X = (Xc,Xd),

Xc = (DC,SI), and Xd = (T ype,Rank,Col).

The leave-one-out least-squares cross-validation for bandwidth selection in

(3.2.13) is employed. It yields the result of

H ∗LL ∈ {0.1065,1.3609,0.4704,0.1054,0.1122}, (3.5.1)

where H ∗LL is a vector of selected bandwidth minimising (3.2.13) for DC, SI, Type,

Rank, and Col, respectively. Given the optimal bandwidth, we immediately

employ the local least squares method in (3.2.11) to estimate the marginal effect

of each variable b̂(x).

[————— Insert [ Figure 3.5] here—————]

Figure 3.5a illustrates the LL estimate of DC, which clearly shows nonlinear

behaviour. Although the overall effect of DC on RR is positive, as expected, the

effects are insignificant when DC is less than 0.3. This implies that an increase

in DC does not necessarily lead to an increase in RR. Specifically, the RR does

not respond effectively to a change in DC < 0.3. A significant positive effect with

increasing rate of DC is observed when DC is approximately between 0.3 and 0.5.

The effect remains positive while decreasing in strength as DC ranges between 0.5
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and 0.8, before having almost zero effect with a constant rate. This finding would

benefit lenders’ strategies for managing default exposure. In order to increase

RR, lenders should pay extensive attention to stimulating the DC of the defaulted

loans that have a DC between 0.3 and 0.5, rather than those with substantially low

or high levels of DC. This could be a more efficient strategy than equal treatment

across all defaulted loans, as nonlinearity is not taken into account in such a

strategy.

The effects of change in SI are shown in Figure 3.5b. The result shows that an

increase in stress level causes a deterioration of the RR. Our finding also suggests

that the negative effects are approximately linear, as the effects remain constant

over almost the full range of SI. However, the negative effect of SI decreases in

strength for SI > 3 and is not significant at these levels. This implies that during

substantially high-stress periods, such as during the GFC, the additional stress

level does not affect the RR.

[————— Insert [ Figure 3.6] here—————]

In terms of discrete variables, the LL estimators are illustrated in Figure 3.6. The

estimators of Type in Figure 3.6a can be interpreted as similar to those of the para-

metric model. Each estimator represents a difference compared to the reference

group, which is a term loan (Type(1)). Figure 3.6a shows that among six types of

loan, revolvers (Type(2)) are expected to have the highest RR, followed by Type(1),

secured and unsecured senior bonds (Type(3) and Type(5)), and subordinate bonds

(Type(4) and Type(6)), respectively. This finding is consistent with the preliminary

analysis in Table 3.1 of the previous section as well as with intuition. According

to the confidence intervals, the estimator of the revolving loans is significantly

higher than that of Type(1) and that of all bonds with the exception of Type(3).

Figure 3.6c shows that loans with collateral are expected to have signifi-

cantly higher RRs than those without collateral. Lastly, Figure 3.6b shows

the estimators of Rank, which we assume an ordered property. The negative
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estimators of all Ranks indicate that defaulted loans with lower ranks have

higher RRs than those with higher ranks. In particular, loans with Rank(2),

Rank(3), and Rank(4), as expected, have lower RRs than Rank(1) by 0.15, 0.27, and

0.37, respectively. Overall, we find that our estimators for collateral status and

instrumental rank are consistent with what we observe in the preliminary analysis.

Semiparametric partially linear regression

As discussed in the methodology section, PL regression requires a pre-assumption

regarding functional form. The results of the nonparametric regression with the

LL method enable us to identify the appropriate choices of the nonparametric and

parametric components for a particular variable in (3.3.1). Hence, we specify:

Yi = Zbi β +m(DCi) +u,

where Zm = {DC}, and Zb = {SI,T ype,Rank,Col}. Specifically, as DC has a non-

linear effect on the RR (see Figure 3.5a), the effect will be nonparametrically

estimated through m̂(·). On the other hand, the effect of SI is observed to be

approximately linear (see Figure 3.5b). Therefore, we specify the variable in the

linear component together with all discrete variables to estimate the unknown

linear estimators as β̂. This leads to a dimensional reduction in the nonparametric

estimation for DC from multi-dimension to single dimension. This also eases the

computational burden and complexity brought about by high-dimensional issues.

The model requires a two-step estimation process to estimate the parametric and

nonparametric components, respectively.

[————— Insert [ Table 3.2] here—————]

Table 3.2, second column, shows the selected bandwidths required for the

first-step estimation in order to obtain Ỹi and Z̃i in (3.3.3)7. Then, given the band-

widths, we employ the least-square method in (3.3.2) to estimate the parametric

7This involves the kernel estimations of the conditional mean for E(Yi |DCi) and E(Zpi |DCi)
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coefficients of SI, Type, Rank, and Col, which are reported in table 3.2, third

column. These estimates provide as transparent an interpretation as that of OLS,

since they are the partial effects of the variables on the RR.

In table 3.2, the coefficient estimates have signs similar to those of the LL

estimators of nonparametric regression. Significant negative effects are observed

in SI and Rank, which are in line with intuition. Regarding the effect of the change

in SI, the parametric estimate suggests that if we consider the movement from

the least-stressed economy (SI = -1) to a relatively highly stressed economy (SI

= 1), lenders can expect the RR to be approximately 0.03 lower. We also find

that the coefficient estimates of Rank are larger as Rank increases from Rank(2)

to Rank(4). This would show that the defaulted loan with a higher priority in the

capital structure expects to have higher the level of RR. For example, a defaulted

loan with Rank 1 is expected to have a higher RR than a loan with Rank 4 by

0.28. On the other hand, positive effects are found in Type(2) and Col, which are

consistent with the nonparametric results in both direction and magnitude.

[————— Insert [ Figures 3.6 ] here—————]

In the second-step estimation, we estimate the unknown function m̂(DC) using

(3.3.5). The nonlinear relationship estimates between DC and the RR are shown

in Figure 3.7 through the nonparametric component estimate m̂(DC), where the

selected bandwidth is 0.03. We find that an increase in DC does not effectively

increase the recovery rate when DC is at a relatively low level, DC < 0.2. A

positive effect of DC is observed when DC ranges between 0.2 and 0.6. However, a

further increase in DC > 0.6 does not affect the level of RR. As the slope of this

nonlinear function estimates is consistent to what we discussed in the results of

the local linear estimation method.

[————— Insert [ Figures 3.7 ] here—————]
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Nonparametric regression with local constant estimation method

Similar to the LL method, the local constant (LC) estimation method requires the

least-squares cross-validation criteria to select the appropriate bandwidths, as

discussed in (3.2.8). The selected bandwidths are:

H ∗LC = {0.0942,0.4120,0.2956,0.14464,0.1090}, (3.5.2)

where H ∗LC is a vector of selected bandwidths for the local constant method corre-

sponding to {DC, SI, Type, Rank, Col}, respectively. The given bandwidth is then

employed to estimate the unknown function, denoted as the LC estimator â(x)

described in (3.2.2) and (3.2.10).

Unlike the LL estimators, the direct marginal effect estimate is unavailable in

the local constant estimators. To illustrate the effects of the RR covariates on the

LC estimates, we provide a graphical explanation in figure 3.8, which illustrates

the effect of a particular RR determinant on the RR of a defaulted loan with

given fixed and pre-specified characteristics. Specifically, to show the effect of a

particular variable, we hold other variables constant at their sample means8 and

estimate the conditional RR at the various values of the variable of interest.

[————— Insert [ Figures 3.8] here—————]

Figure 3.8a shows the nonlinear effect of DC, which is consistent with the LL

estimation and the partially linear regression. Defaulted loans with DC < 0.2 are

expected to have similar RR of 0.5, the positive effect of DC on RR is observed for

an increase in DC from 0.2. An increase in DC between 0.2 and 0.6 has the largest

effect, which is consistent to our previous findings. We also observe the negative

impact of SI on the conditional RR, especially when SI increases from -1 to 1 in

figure 3.8b. However, the figure shows some unexpected positive effects in some

ranges of SI, when SI is between 1.5 and 2.3, or greater than 3.5.

8The fixed value of each variable is DC = 0.24, SI=0.55 (neutral economic condition), Type = 2
(revolving loan), Rank = 2, Col = 0 (no collateral)
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For the categorical variables, Figure 3.8c shows that revolving loans and senior

secured loans have the highest RR, followed by term loans and other types of

corporate bond. Figure 3.8d shows that defaulted loans with Rank 1 consistently

have the lowest RR, followed by Ranks 2 to 4, respectively. Lastly, regarding

collateral status, Figure 3.8e shows that loans with collateral have a higher RR

than loans without collateral by approximately 0.1.

Other alternative parametric regressions

For comparison purposes, we provide the parametric coefficient estimates from

QMLE-RFRV, two-sided censored Tobit, inverse Gaussian back-transformation re-

gression (IG), and the mixture model (MM), where these models assume standard

linear functional form, in Table 3.3. We find that all estimates are mostly in line

with our expectations regarding the signs of the estimates across the four models.

Positive signs are consistently observed in DC, revolving loan (Type = 2), and Col,

and negative signs are found in SI and Rank. We also find that the coefficient

estimates of all instrumental ranks increase as Rank increases from 1 to 4. These

findings are consistent with the previous results of our proposed models.

[————— Insert [ Table 3.3] here—————]

3.5.2 Predictive performance of models

In this section, the predictive performances of the proposed models are eval-

uated and then compared with the performances of the existing models, which

include QMLE-RFRV, two-sided censored Tobit, IG, MM, and the regression tree

algorithm (RT). We employ the standard mean squared error (MSE) to measure

the predictive accuracy of full sample, in-sample, and out-of-sample data.

Importantly, to imitate the application of RR prediction in practice, we use

intertemporal data partitioning to define the in-sample and out-of-sample data

(Kalotay & Altman, 2016; Gupton & Stein, 2005). In particular, we evaluate 12
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windows of in- and out-of-sample subsamples, where we take the first in-sample

window to be the loans defaulted on from 1994 to 2000, and out-of-sample to be

the remaining observations between 2001 and 2012. Then, the in-sample windows

roll until the last in-sample window is the observation between 1994 and 2011,

while the out-of-sample RR is the loans defaulted on in 2012.

This data partitioning method ensures that there is no overlapping information

between in-sample and out-of-sample data, as we observe that: (i) one borrower

might have multiple defaulted loans; but (ii) all loans from the borrower will

be defaulted in the same year. The predictive evaluation based on these in- and

out-of-sample data partitioning is more robust than a conventional way9 which

allows the overlapping information between two subsamples.

Full sample prediction

Given the specifications and the estimates discussed in Section 3.5.1, their full

sample predictive performances are reported in Table 3.4.

[————— Insert [ Table 3.4] here—————]

The results show that the nonparametric regressions yield high accuracy rates.

The model with the LC estimation method yields the most precise predictions,

with MSE = 0.06 and MAE = 0.2. This is followed closely by the LL estimation

method, with MSE = 0.07 and MAE = 0.21. On the other hand, the performance

of the proposed PL model is comparable to that of the machine learning RT. In

particular, the MSE and MAE of the semiparametric PL model are 0.088 and 0.238,

respectively, compared to 0.083 and 0.224 for the RT. Our result is consistent

with the finding in the existing literature which suggests that nonlinear models

commonly offer better predictive performance than linear models. Furthermore,

although the linear regressions performed poorly in generating RR predictions,

9For example, the full sample is randomly partitioned to form in- and out-of-sample with 70:30
ratio
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QMLE-RFRV performs best among the other parametric models, followed by Tobit.

In-sample predictions

[————— Insert [ Table 3.5] here—————]

Table 3.5 reports the in-sample predictive performances across 12 windows. On

average, the proposed models, with the exception of the LL model, outperform the

existing models, and nonparametric regression with the LC method still provides

the best prediction. On the other hand, the in-sample predictive errors of LL are

high for the first nine windows, before decreasing sharply in the last four windows.

We observe that these are the consequences of the boundary issue in LL, as the

predictions may lie outside of the [0,1] boundary, especially with a small sample

size. We find that this issue is mitigated in the full sample estimation, where the

sample size is large.

To overcome the boundary issue in the LL method, we apply the LL estimation

for nonparametric regression with two-sided censoring introduced in Section

3.2.4, denoted as LL2 in Table 3.5. The result shows a vast improvement in MSE

from LL method to LL2 method, where the MSE in the first in-sample window is

reduced from 0.18 to 0.06, respectively.

A similar boundary problem is found in PL, as the model specification does not

guarantee that the PL predictions will be restricted to within the bounded [0,1].

However, we observe that only 0.5% of the total in-sample predictions exceed

the boundary with small magnitudes10 compared to 5% for LL. This could be

due to the role of dimension reduction in the PL’s functional form as well as the

nonlinearity captured by the nonparametric component, which may mitigate the

boundary problems of PL.

10The maximum predicted recovery is 1.014 while the minimum is -0.001
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Given the average MSEs in Table 3.5, the best model in terms of in-sample

predictive accuracy is LC, followed by LL2 method, where their MSEs are 0.069

and 0.073, respectively. These two models also consistently have the lowest

MSEs in all 12 rolling windows. Interestingly, then, we find that the parametric

QMLE-RFRV offers a relatively low average MSE of 0.078, which is slightly lower

than the predictions of PL with an MSE of 0.079. This could be due to the fact

that QMLE-RFRV is theoretically valid for the [0,1] bounded recovery rate, and it

can accommodate some degree of nonlinearity through the logit link function.

However, the performances of PL and QMLE-RFRV are similar when we consider

each window in Table 3.5. The yearly MSEs of QMLE-RFRV do not consistently

outperform the predictive performances of PL, and the differences between these

two models are small. In addition, although RT performs excellently in full

sample prediction, its performance is poorer than that of PL and QMLE-RFRV for

in-sample predictions, with an average MSE of 0.084 followed by Tobit, IG, and

MM, respectively.

Out-of-sample predictions

Table 3.6 evaluates the out-of-sample predictive errors of the given the models

estimated by the 12 rolling in-sample windows discussed previously. On average,

the table reports that PL provides the most accurate predictions, followed by LC,

RT, and LL2, respectively. We also find that the performance of the nonparametric

regression with LL method has a high MSE, as we observed in its in-sample

prediction performance.

[————— Insert [ Table 3.6] here—————]

The results in Table 3.6 further reveal that the predictive accuracies of QMLE-

RFRV, Tobit, IG, and MM are low during the 2005 to 2009 windows, where the

2008 window yields the highest MSE of these models. This poor performance

might be due to the GFC, as we have shown that the economy experienced the
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highest recorded SI in 2008 in the preliminary analysis of Figures 3.3 and 3.4.

In addition, the SI reached its lowest level in 2005, with the highest average

RR. Given the observed conditions in 2005-2009 together with the predictive

performances of QMLE-RFRV, Tobit, IG, and MM models, our results indicate that

these four models might not be able to accommodate and immediately respond

to sudden changes in macroeconomic conditions, especially during GFC. The

models would be restricted by the linear functional form. On the other hand,

the data-driven approach, including PL, LC, and RT, which do not rely on the

linear functional form can pick up the changes in the economic conditions more

responsively. These models provide flexibility, as the restricted linear functional

form is not required, but is rather estimated nonparametrically. This may yield the

superior predictive power of the non- and semi-parametric regressions compared

to that of the linear models. This finding highlights an advantage of our proposed

PL and LC, as well as the existing RT to estimate the downturn RR.

A common observation for a flexible model is the presence of low MSE in in-

sample prediction and high MSE in out-of-sample prediction. Hence, Table 3.6

also evaluates the degree of difference between the in-sample and out-of-sample

predictions in terms of MSE ratio11. If the ratio is closer to one, it indicates that

the predictions in both subsamples are similar. The results in Table 3.6 show that

PL has the highest ratio of 0.90, followed by IG with 0.88 and Tobit with 0.87. On

the other hand, LC and LL2 methods show relatively low ratios, with 0.73 and

0.68, respectively.

The PL model’s performance seems to be robust, as it shows relatively low

MSE variation across 12 rolling out-of-sample windows, as well as its relative

MSE ratio. The proposed nonparametric regression with LC method also yields a

similarly low MSE, but this model seems to have a large variation of MSE and the

relative MSE ratio than PL model. On the other hand, the proposed nonparametric

11Relative MSE ratio =
MSEin−sample

MSEout−of −sample
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regression with the LL estimation method as well as the model with two-sided

censoring assumption provide a predictive performance as good as that of the

alternative linear regressions.

The outstanding performance of the PL model is expected due to its functional

form. Assigning DC to the nonparametric component and the remaining vari-

ables to the linear parametric component leads to two main advantages over the

other models included. Firstly, the dimension in the nonparametric component is

reduced significantly, which overcomes the computational difficulty in the non-

parametric regressions. Secondly, the nonlinear effects can be taken into account,

which mitigates the misspecification problem in the linear model.

Additionally, we also apply the Receiver Operating Characteristic (ROC)12 curve

to determine how well the predictive model can differentiate between high and

low RRs (Gupton & Stein, 2005; Siao et al., 2015). In our study, if the RR is greater

than 0.5, we define it as high-RR, and low-RR otherwise. Models that yield an area

under the ROC curve (AUC) that is closer to 1 have better discriminatory power.

[————— Insert [ Table 3.7 ] here—————]

Table 3.7 suggests that PL has the highest discrimination rate of 0.82 on average,

while LC, LL2, QMLE-RFRV, Tobit, and IG provide an almost identical AUC of

0.80. Considering the yearly breakdown performances in Table 3.7, all parametric

QMLE-RFRV, IG and TOBIT models show that their AUCs reach the lowest rate

in 2008. The results are consistent with their out-of-sample MSEs performances,

which suggest that the performance of the parametric models are poor during the

GFC period.

12This criterion is common in binary choice model to measure the discriminatory power of the
model, see Hanley and McNeil (1982)
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3.6 Conclusion

In this chapter, we proposed a nonparametric regression with the local constant

(LC) and local linear (LL) estimation methods and a semiparametric partially

linear (PL) model for the recoveries of defaulted loans. We have addressed two

important issues associated with these models: clarifying the nonlinear marginal

effects in the RR-covariate relationship and improving the prediction of RR.

First, attention was directed towards the marginal effect estimates using the

LL estimation method. The results indicate a nonlinear effect of debt cushion

(DC), which is a characteristic variable of loans, and an approximately linear

effect of economic stress index (SI). Moreover, the LL method’s findings enable

us to improve the function form of the PL model by specifying only DC in the

nonparametric component and the remaining variables, SI and categorical loan-

specific variables in the parametric component. In the PL model, the marginal

effect estimates are found to be similar to those of the LL estimates. Non- and

semi-parametric models and the findings together make a significant contribution

to the RR modelling literature.

Second, the predictive performances of the proposed models were compared

with those the existing several approaches, including QMLE regression for

fractional response variable, two-sided censored Tobit, inverse Gaussian back-

transformation regression, the mixture distribution model, and the regression

tree algorithm. Overall, we find that the partially linear regression consistently

outperforms all the other models included in this study, while the nonparametric

regression with the local constant method has slightly weaker predictive perfor-

mance. In addition, the partially linear model’s superior predictability tends to

be more robust and stable than that of the alternative parametric regressions,

especially during the financial crisis period.
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Furthermore, we observe that there is still the boundary problem in the LL

method, as high proportions of RR predictions exceed the [0,1] boundary. There-

fore, we additionally introduced the nonparametric regression with two-sided

censoring using LL method. We then applied the model to the empirical RR

data and find that this method substantially improve the predictability of the LL

estimation method.

The methods introduced and applied to study RR-covariate relationship in this

chapter have not fully accommodated the RR distributional properties such as

asymmetry and bimodality. Therefore, in the next chapter, we will introduce

quantile regression which estimates the RR-covariate relationship over the various

quantiles of the conditional distribution. This allows not only the nonlinear

marginal effect analysis on the conditional mean of RR, but it will also capture the

heterogeneity of the effects on the various conditional quantiles of RR. Moreover,

although the boundary issue is vastly mitigated in this chapter, it has not been

completely eliminated. In chapter 5, we, therefore, will propose and study models

that will completely eliminate the boundary problem.
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3.7 Appendix A: Simulation study of the nonpara-

metric regression with two-sided censoring

To provide evidence on the finite sample performance of the proposed non-

parametric regression with two-sided censoring, we conduct a simulation study.

The data-generation process assumptions are the same as in Lewbel and Linton

(2002). We then further impose the two-sided censoring condition by assuming

fixed two-sided censoring assumptions at -0.5 and 0.2. Then, we generate the

simulated data as follows:

Y = max(−0.5,min(w(X)− e,0.2)),

where Y ∗ = w(x)−e, w(X) = X3, X ∼Uniform[−1,1], and e ∼N (0,0.25). The sample

size is n = 200 for 1,000 iterations. Figure 3.9 shows that the empirical density of

Y is similar to the empirical bimodal density of the RR in Figure 3.1.

[——————[ Figures 3.9 and 3.10 ] here ——————]

Figure 3.10 illustrates the estimates of w(·) over 1,000 iterations. Compared to

the cube function (solid line), the estimates can recover the true latent function

relatively well, as shown in the grey area which represents the variations of the

estimates over the iterations. It clearly shows that the median of the estimates is a

good approximation of the cube function. Furthermore, our result is consistent

and comparable to the main finding in one-sided censoring simulation study

results provided by Lewbel and Linton (2002). The boundary condition can then

be addressed, as we employ ŷ = max(−0.5,min(ŵ(x),0.2)).
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Given the simulation result13,we can apply the proposed model by assuming

two-sided censoring at zero and one. This will ensure that the RR prediction will

lie strictly within the [0,1] boundary.

13The further study of this method including the detailed finite and asymptotic properties will
be one of our future research directions
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3.8 Appendix B: Tables and figures

Recovery rate at q-quantile

Variables Frequency % mean 5% 25% 50% 75% 95%

Recovery rate 3,573 100% 0.5570 0.0000 0.1849 0.5888 1.0000 1.0000

Panel A: Discrete Variables

(i) Type of loans

Term loans (Type(1)) 746 21% 0.7054 0.0222 0.4343 0.8638 1.0000 1.0000

Revolving loans (Type(2)) 738 21% 0.8251 0.2147 0.6934 1.0000 1.0000 1.0000

Senior secured bonds (Type(3)) 446 12% 0.5896 0.1079 0.2093 0.5682 1.0000 1.0000

Senior subordinated bonds (Type(4)) 355 10% 0.2429 0.0000 0.0080 0.1005 0.3779 0.9225

Senior unsecured bonds (Type(5)) 1,061 30% 0.4263 0.0000 0.1027 0.3578 0.7257 1.0000

Junior bond (Type(6)) 227 6% 0.2352 0.0000 0.0000 0.0968 0.3491 1.0000

(ii) Instrument rank

Rank(1) 1,711 48% 0.7476 0.1221 0.5151 1.0000 1.0000 1.0000

Rank(2) 1,258 35% 0.4294 0.0000 0.1159 0.3170 0.7422 1.0000

Rank(3) 393 11% 0.2994 0.0000 0.0041 0.1531 0.5255 1.0000

Rank(4) 211 6% 0.2514 0.0000 0.0010 0.1027 0.3615 0.9122

(iii) Collateral

Uncollaterized loans 1,712 48% 0.3685 0.0000 0.0396 0.2372 0.6638 1.0000

Collaterized loans 1,861 52% 0.7303 0.1240 0.4545 0.9622 1.0000 1.0000

Panel B: Continuous variables

(i) Debt Cushion (DC)

DC = 0 1,631 46% 0.3969 0.0000 0.0738 0.2840 0.6959 1.0000

0 < DC < 0.5 1,049 29% 0.5345 0.0043 0.2092 0.5476 0.8961 1.0000

0.5 < DC < 1 893 25% 0.8766 0.2386 0.9435 1.0000 1.0000 1.0000

(ii) Stress index (SI)

SI ≤ 0 853 24% 0.7058 0.0022 0.4728 0.8585 1.0000 1.0000

0 < SI < 1 2,272 63% 0.5102 0.0000 0.1533 0.4654 1.0000 1.0000

SI ≥ 1 448 12% 0.5105 0.0000 0.1344 0.4617 1.000 1.0000

Table 3.1: Preliminary analysis of the empirical recovery rate data

Note: We provide the contingency table of recovery rates in the column 4-9, where we partition

the recovery rate conditional on the information provided in the first column.
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Partially linear model

Variables Bandwidth Coefficients

Dependent variable

Recovery rate 0.0178 N/A

Independent variables

Debt cushion 0.0343 N/A

Stress index 0.0055 -0.0308 *

(0.0062)

Revolving loan 0.0791 0.0591 *

(0.0180)

Senior secured bond 0.2547 0.0061

(0.0248)

Senior subordinate bond 0.0494 -0.0693

(0.0353)

Junior secured bond 0.0377 -0.0019

(0.0327)

Subordinate bond 0.0131 -0.0888 *

(0.0375)

Rank 2 0.0074 -0.1400 *

(0.0190)

Rank 3 0.0566 -0.1954 *

(0.0250)

Rank 4 0.0782 -0.2827 *

(0.0334)

Collateral status 0.0574 0.1138 *

(0.0299)

Table 3.2: Estimates of the partially linear regression

Note: The table reports the estimates using two-step estimation method discussed in section

3.3 which we assign all covariates except DC in a linear component. In the first-step estimation,

bandwidths of all variables except DC are selected as discussed in (3.3.3) and reported in column 2.

Given these bandwidths, their parametric coefficients are estimated using (3.3.4) and reported in

column 3. To estimate the nonparametric component in the second-step estimation, the bandwidth

of DC is selected by minimizing (3.3.6). (*) indicates that the estimator is significant at 5% level of

significance.
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Variables
Linear models

QMLE-RFRV Tobit IG MM

Debt cushion 2.5590 * 0.7932 * 1.8066 * 1.8593 *

(0.1603) (0.0359) (0.0827) (0.0052)

Stress index -0.1928 * -0.0578 * -0.1058 * -0.1854 *

(0.0353) (0.0078) (0.0195) (0.0003)

Revolving loan 0.4388 * 0.1612 * 0.3302 * 0.3069 *

(0.1130) (0.0260) (0.0606) (0.0080)

Senior secured bond 0.0539 -0.0155 -0.0480 -0.0260 *

(0.1387) (0.0291) (0.0735) (0.0041)

Senior subordinate bond -0.1731 -0.0876 -0.3827 * -0.2297 *

(0.1915) (0.0467) (0.1205) (0.0110)

Junior secured bond 0.1143 0.0767 0.1106 0.1937 *

(0.1748) (0.0414) (0.1065) (0.0086)

Subordinate bond -0.2367 -0.1256 * -0.5057 * -0.1857 *

(0.2050) (0.0495) (0.1270) (0.0123)

Rank 2 -0.6270 * -0.1307 * -0.3205 * -0.3780 *

(0.0999) (0.0217) (0.0536) (0.0024)

Rank 3 -0.9109 * -0.2384 * -0.6974 * -0.5739 *

(0.1356) (0.0302) (0.0788) (0.0047)

Rank 4 -1.4636 * -0.2834 * -0.8888 * -0.6339 *

(0.2107) (0.0367) (0.0958) (0.0069)

Collateral status 0.5057 * 0.1459 * 0.3532 * 0.3335 *

(0.1577) (0.0379) (0.0980) (0.0073)

Table 3.3: Estimation results of four alternative existing linear models linear paramet-
ric estimators of alternative parametric models

Note: The table reports the coefficient estimates for QMLE regression for fractional response

data (QMLE-RFRV), Tobit regression with two-sided censoring at zero and one (TOBIT), linear

regression on invert Gaussian transformed recovery rate (IG), and three mixture-distribution

model on transformed recovery rate (MM). (*) indicates significance at 5% level
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Models MSE MAE

Proposed models

Local constant method 0.0677 0.2033

Local linear method 0.0747 0.2164

Partially linear regression 0.0886 0.2384

Alternative parametric regressions

QMLE-RFRV 0.0892 0.2408

Tobit 0.1107 0.2944

IG 0.1271 0.2444

MM 0.1319 0.2464

RT 0.0813 0.2244

Table 3.4: Full sample predictive accuracy

Note: The table reports the full sample prediction of the proposed models and other five alternative

models: QMLE regression for fractional response data (QMLE-RFRV), Tobit regression with two-

sided censoring at zero and one (TOBIT), linear regression on invert Gaussian transformed recovery

rate (IG), three mixture-distribution model on transformed recovery rate (MM), and regression

tree algorithm (RT).
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Figure 3.1: Density of the empirical recovery rate
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Figure 3.2: Densities of debt cushion and stress index
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Figure 3.3: The movement of Stress index between 1994 and 2012

Figure 3.4: Annual averages of recovery rate and stress index
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Figure 3.5: Marginal effect of debt cushion and stress index on RR, estimated by local
linear estimation method

Note: The dark solid lines are the marginal effect estimates using local linear method for the given

continuous variables as described below each figure. The dotted lines represent the bootstrapping

confident bounds at 5% level of significance, where we employ 1,000 iterations

76



Non- and Semi-parametric Methods for Modelling Recovery Rates

1 2 3 4 5 6

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Type of loans

E
st

im
at

e 
of

 m
ar

gi
na

l e
ffe

ct

(a) Types of loan

Instrumental rank

E
st

im
at

e 
of

 m
ar

gi
na

l e
ffe

ct

1 2 3 4

−
0.

30
−

0.
24

−
0.

18
−

0.
12

−
0.

06
0.

00
0.

06

(b) Instrumental rank

Collateral status

E
st

im
at

e 
of

 m
ar

gi
na

l e
ffe

ct

0 1

0.
01

0.
04

0.
07

0.
10

0.
13

(c) Collateral status

Figure 3.6: Marginal effects of types of loan, instrumental rank, and collateral status
on RR, estimated by local linear estimation method

Note: The figures represent the box-plot of the marginal effect estimates using local linear esti-

mators for categorical variables described below each figure. We also provide the bootstrapped

confident interval of each estimate.
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Figure 3.7: Nonlinear effect estimates of debt cushion using partially linear regression

Note: As DC is assigned in the nonparametric component in PL model specification, this figure

represents the estimates of the unknown function of DC, m̂(DC), with its bootstrapped confident

interval with 5% level of significance.
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Figure 3.8: Effects of RR-covariates using local constant estimation method

Note: To obtain the functional plots, we predict the recovery rate by given any variable of interest

varying within its support range while fixed other remaining variables fixed at their means. Then

we plot the predicted recovery as a function of the variable of interest described below each figure.
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Figure 3.9: Density of the simulated two-sided censoring response variable

Note: The data generating process assumption is Y = max(−0.5,min(X3 − e,0.2)
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Figure 3.10: Simulation result of the w(x) estimate using two-sided censored nonpara-
metric regression

Note: The dark line solid is the true w(x) = x3. The grey area is the ŵ(x) estimated across 1,000

simulations. The dash lines at m(x) = -0.5 and 0.2 indicate the two-sided fixed censoring points.
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Chapter 4

Nonlinear quantile regressions for

recovery rates

4.1 Introduction

So far, the modelling of RR has been limited to central tendency (see chapters 2

and 3 for details), it would be beneficial to banks and regulators to determine

the influence of covariates on RR, and their heterogeneity across various parts of

the conditional distribution of RR. These lead to the applications of the quantile

regression (QR) in RR modelling in this chapter. Moreover, as the QR models’

estimates vary across the conditional RR distribution, they would accommodate

the heteroscedastic errors and the bimodality of the distribution. In comparison

to the applications of the proposed conditional mean regressions in Chapter 3,

although the distribution of error terms was not assumed, because of peculiar RR

distribution, the quantile regression is more appropriate than the mean regression

to address such property.
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QR has been employed in several of areas. Fitzenberger, Koenker, and Machado

(2013) have reviewed studies in the labour and public economic applications

of quantile regressions, which are mostly related to income inequality. These

studies highlight significant effects of, for example, education (Arias, Hallock,

& Sosa-Escudero, 2002) and gender (Buchinsky, 2002) on income, which were

found to vary across the quantile. In public finance, Okada and Samreth (2012),

and Billger and Goel (2009) investigate the effects of macroeconomic and country-

specific variables on the level of corruption using QR. They find that some current

anti-corruption policies may be reconsidered for nations that are at the lower 0.1

and upper 0.9 quantiles of the corruption distribution. The QR is also applied

in financial studies in various areas such as housing price analysis (Zietz, Zietz,

& Sirmans, 2008), capital structure (Fattouh, Scaramozzino, & Harris, 2005),

financial market (Ma & Pohlman, 2008; Baur, Dimpfl, & Jung, 2012; Meligkotsidou,

Panopoulou, Vrontos, & Vrontos, 2014), among others. Moreover, the analysis

using nonlinear QR can be found in Fenske, Kneib, and Hothorn (2011), who

employ additive quantile regression using gradient boosting estimation method

to identify risk factors of childhood malnutrition. They reveal that the effects of

some factors such as the ages of children and their mothers have nonlinear effects

on childhood malnutrition, and those effects vary at the different conditional

quantiles.

In this chapter, motivated by the attractive properties of QR, we focus on the

QR proposed by Koenker and Bassett (1978), which provides more complete infor-

mation regarding the statistical analysis of the relationship between the response

variable and the covariates. Recently, Siao et al. (2015); Krüger and Rösch (2017)

applied the conventional parametric linear QR (L-QR) to analyse heterogeneous

effects and predict RR. The aim of this chapter is to propose nonparametric (NP)

and partially linear additive (PLA) quantile regression models and uncover the

nonlinear and heterogeneous effects of the covariates on RR at various quantile of
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the RR distribution. Although the nonlinearity in RR modelling was addressed

in the conditional mean regressions in Chapter 3, it has not been explored in

the conditional quantile specifications. We will fill this gap in this chapter. In

addition, the QR regression has an invariant property under data transformation

and back-transformation, which does not introduce bias in the model’s estimates

(discussed in section 4.2.4). Thus, we also apply a partially linear additive model

with logit transformation of RR (PLA-QR(tr)) to restrict the model’s predictions to

be within the unit interval. To evaluate the performances of the models included

in this chapter, we employ several model selection criteria: goodness of fit and

point prediction measurement for QRs, as well as distributional fit and the appli-

cation in the Value at Risk framework which were proposed and implemented by

Krüger and Rösch (2017).

This chapter makes several significant contributions to the literature on RR

modelling. First, this is the first study to propose a NP-QR model for RR. Such a

model, along with the local constant estimation method, generates RR predictions

in the bounded [0,1] interval. As a consequence, there is no requirement for

trimming and transforming the RR data as done in parametric regression models

discussed in chapter 2. Second, there is no need to assume any shapes for the

functional forms for the responses of the covariates. The data-driven method

estimates the underlying responses as functions of the covariates themselves,

which facilitates the estimation of the idiosyncratic marginal and interaction

effects. For example, the response of debt cushion on RR for a specific loan

characteristics of each individual can be nonparametrically estimated, as well as

the way in which this response varies over the entire DC range during economic

upturns and downturns. These idiosyncratic effects may differ among individuals

conditioning on their own loan’s characteristics. The model would provide tools

that lenders can use to design optimal treatment rules for a particular borrower.
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Third, the proposed PLA-QR contains two functions, as the model’s specification

allows both nonlinear effect in the additive functions, and linear effect in the

parametric functional form. It provides an alternative marginal effect analysis,

which offers more general and straight forward estimates of the effect, due to its

estimates of linear coefficients and the nonlinear additive functions. This might be

useful for regulators, who are more interested in the overall effect of the covariate

on RR, rather than the idiosyncratic effects analysis as banks do.

It is apparent that accurate RR predictions would aid banks and regulators

in adequately quantifying credit risk. However, an imperative question is how

banks can mitigate the expected credit risk exposure. Providing banks with

information on the heterogeneous marginal and interaction effects of borrower

characteristics on RR under certain economic conditions would constitute an

answer. For example, if a defaulted borrower has an expected low level of RR, a

treatment program could be initiated to reduce the potential loss to the bank. The

treatment could be designed using the outcomes of the marginal effect analysis.

However, the impact of a characteristic or an economic condition could depend on

the values of other characteristics themselves as well as on the point of the quantile

of the conditional distribution. Our analysis could be beneficial to developing

appropriate policies to mitigate the underlying credit risk exposure, which in turn

would improve risk management, risk monitoring, and credit risk pricing.

As we apply the proposed models to the realised RR from the Moody’s Ultimate

Recovery Database1, we find evidence of nonlinearity and heterogeneity in the

effects of the covariates on RR. A noteworthy point is that the empirical outcomes

of the impact of economic downturns on RR provide detailed and distinct associa-

tions between the RR and economic downturns across the various quantiles of the

distribution. This is much more informative than the average effect provided by

the mean regression. As Basel requires banks to estimate the downturn RR and

1The full data description, summary statistics as well as the preliminary analysis are discussed
and provided in section 3.4 of this thesis
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thus downturn credit risk, the findings based on QR models are very beneficial to

banks.

The remainder of chapter 4 is organised as follows: the next section explains

the model specifications and the estimation methodologies. The results of the

empirical study are reported and analysed in section 4.3. Concluding remarks are

made in section 4.4.

4.2 Methodology

In what follows, we consider three different conditional quantile regressions: (i)

linear quantile regression (L-QR); (ii) nonparametric quantile regression (NP-QR);

and (iii) partial linear additive quantile regression (PLA-QR). One of the main

differences between these three models is the degree of flexibility in estimating

the nonlinear relationship. The fully nonparametric model does not require

a presumed functional form. Also, we introduce the PLA-QR, which contains

linear and nonlinear components, and we also propose an improved estimation

method for bandwidth selection in PLA-QR. Lastly, we also consider the linear and

partial linear additive models with back-transformation (L-QR(tr) and PLA-QR(tr),

respectively) to address the boundary problem of RR data.

4.2.1 Linear quantile regression

Let the conditional distribution function be F(y|x) = P (Y ≤ y|x), and the condi-

tional τ th quantile of the conditional distribution function be defined as:

qτ(x) ≡ inf{q : F(q|x) ≥ τ} = F−1(τ |x), (4.2.1)
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where τ ∈ (0,1), x is k × 1 realization of the vector of covariates. One can estimate

q in (4.2.1) by minimizing the following loss function:

ρτ(u) = u(τ − I(u < 0)), (4.2.2)

where I(·) is the indicator function, u = Y − q, and then we find q̂ minimizes

expected loss. We seek to minimize:

E[ρτ(Y − q)] = (τ − 1)
∫ q

−∞
(y − q)dF(y|x) + τ

∫ ∞
q

(y − q)dF(y|x).

The first derivative of the expected loss function with respect to q is defined as:

0 = (1− τ)
∫ q

−∞
dF(y|x)− τ

∫ ∞
q
dF(y|x) = F(q|x)− τ,

where F(q|x) = τ , and q is the estimator of the τ th conditional quantile defined in

(4.2.1). In the linear quantile regression, let

y = x′θτ + ε, τ ∈ (0,1), (4.2.3)

where x is a k × 1 vector of independent variables, θτ is a vector of unknown

parameters, and P (ε ≤ 0|x) = τ . Therefore, the conditional quantile is defined as:

qτ(x) = x′θτ , (4.2.4)

where qτ(x) is the τ th conditional quantile of y given x. The parameter θτ is

estimated by minimizing the following check function:

θ̂τ = min
θτ∈R

n∑
i=1

ρτ(yi − x′iθτ ), (4.2.5)

where the estimate of the τ th conditional quantile in (4.2.1) is x′iθ̂τ . This optimiza-

tion problem can be solved efficiently using a linear programming method. The
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asymptotic covariance matrix of
√
n(θ̂τ −θτ ) using the asymptotic distribution of

θ̂τ :

Q−1/2
n

√
n(θ̂τ −θτ )→N (0, (1− τ)), (4.2.6)

where Qn = H−1
n JnH

−1
n , Jn(τ) = n−1

n∑
i=1
xix
′
i , Hn(τ) = n−1

n∑
i=1
xix
′
ifi(qτ(xi)), and

fi(qτ(xi)) is the conditional density of yi evaluated at the τ th conditional quantile.

4.2.2 Nonparametric quantile regression

To nonparametrically estimate the quantile function, we apply two-stage esti-

mation as follows:

(i) estimate the conditional distribution F̂(y|x) nonparametrically using the

weighted Nadaraya-Watson method introduced by Q. Li and Racine (2008);

and

(ii) estimate the conditional quantile q̂τ(x) through F̂(y|x) given the definition

of the quantile function in (4.2.1).

In (i), the conditional distribution is estimated by smoothing both dependent

and independent variables:

F̂(y|x) =

n∑
i=1
Gh0

(Yi , y)KH (Xi ,x)

n∑
i=1

KH (Xi ,x)
, (4.2.7)

where G(v) =
∫ v
−∞w(u)du is the distribution function associated with the density

function w(·); h0 is the bandwidth for Yi ; Xi = (Xci ,X
d
i ) is a mixture of continuous

and discrete covariates defined as Xci ∈ R
p, and Xdi is a vector of r × 1 discrete

variables; H ∈ {h, l}, which h and l are bandwidths associated with Xci and Xdi

respectively; and KH (·) = κh(Xci ,x
c)·λl(Xdi ,x

d) is the product of all kernel functions

of continuous and discrete variables discussed in Chapter 3.
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To select the bandwidths, we apply the data-driven least-square cross validation

method (Q. Li, Lin, & Racine, 2013). In this method, the bandwidths are chosen

by minimizing the following objective function:

CV (h0,H) =
1

n(n− 1)

n∑
i=1

n∑
j,i

[
I(yi ≤ yj)− F̂−i(yj |xi)

]2
Mi , (4.2.8)

where I(·) is an indicator function, Mi is a trimming parameter to ensure that the

objective function CV is finite, and F̂−i(·) is the leave-one-out estimator of F(y|xi)

defined as:

F̂−i(yi |xi) =

n∑
j=1, j,i

Gh0
(Yj , yi)KH (Xj ,xi)

n∑
j=1, j,i

KH (Xj ,xi)
,

In the step (ii), we use the conditional distribution estimate (F̂(y|x)) in (4.2.7) to

define the conditional quantile in (4.2.1), which can be written as:

q̂τ(x) = F̂−1(τ |x) = inf{y : F̂(y|x) ≥ τ}. (4.2.9)

As we directly estimate the conditional distribution, it allows us to estimate the

conditional quantile by minimizing the following loss function:

q̂τ(x) = min
q
|τ − F̂(q|x)|. (4.2.10)

Advantages of NP-QR include the following aspects: (i) the model is fully

flexible, and there is no need to impose assumptions; (ii) the model can capture the

underlying nonlinearity in the relationship of RR-covariates for each individual;

and (iii) the predicted values of y are bounded within the range of observed y.

The application of this nonparametric methodology is suitable for RR modelling

in terms of capturing nonlinearity and addressing boundary problems. However,

one of the main difficulties is obtaining the marginal effects of the independent
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variables, especially in the high dimensional covariates (De Gooijer & Zerom,

2003), as the marginal effect estimates are not directly available.

One of the aims of this chapter is to estimate the partial marginal effects. There-

fore, we turn to an additive model, the specification of which facilitates the

estimation of the partial marginal effects of the continuous variables. However,

the traditional additive model normally does not accommodate categorical and

dummy variables. As the set of variables that we use in the empirical study in-

cludes continuous and discrete variables, we adopt the partially linear additive

quantile regression model proposed by Hoshino (2014) for our purposes.

4.2.3 Partially linear additive quantile regression

In this section, we specify the model and explain in detail the estimation

method, which involves a two-stage process. We also discuss the ways in

which we integrate the methods proposed by Hoshino (2014), Wang and Yang

(2009), Horowitz and Lee (2005) and Q. Li and Racine (2008), and present

methods to improve the two-stage estimation process of the PLA-QR model using

least-squares cross-validation method for bandwidth selection.

Model specification and assumptions

Consider the PLA-QR model:

y = µτ +
t∑
j=1

mj,τ(xmj ) +
s∑
j=1

zjβj,τ + ε, τ ∈ (0,1) (4.2.11)

where m1,τ(·), ...,mt,τ(·) are unknown continuous univariate functions2, x is parti-

tioned as {xm, z}, xmj (j = 1, ..., t) is a continuous variable assumed in the additive

2mj,τ (·) can accommodate only a continuous variable.
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functions3, zj(j = 1, ..., s) denotes the jth component of s remaining covariates

which are all discrete variables and the remaining continuous variables, t + s = k,

µτ is an unknown constant, βj,τ(j = 1, ..., s) is the jth component of an unknown

(s × 1) parameters vector βτ , and ε ≡ ετ is the quantile error such that

P (ε ≤ 0|xm, z) = τ, for τ ∈ (0,1).

Estimation method

This section describes a two-stage procedure for estimating mj,τ (·). Let us assume

t = p, hence we include all continuous variables in the additive component. We

assume that the support of xm is Xm ≡ [−1,1]t, and normalize m1, ...,mt so that∫ 1
−1
mj(v)dv = 0 for j = 1, ..., t. As in Horowitz (2009, 2012), the assumption

that xm takes value in the compact set can be made without loss of generality,

because it can always be satisfied by monotonically increasing function of the

components of xm. For notational simplicity, we write mτ(xm) ≡ µτ +
t∑
j=1
mj,τ(xmj ),

where xm = (xm1 , ...,x
m
t )′ is a generic element in X . The PLA-QR model in (4.2.11)

can be written in a vector form as:

y =mτ(xm) + z′βτ + ε, τ ∈ (0,1).

We describe the two-stage estimation of mτ(xm):

Stage I:

Let {Πd : d ∈ Z+} denotes a complete orthogonal basis for smooth functions on

[-1,1], where Z+ is a positive integer; see Horowitz and Lee (2005) for conditions

that the basis functions must satisfy. For any positive integer d, we define:

Πd(xm) = [1,π1(xm1 ), ...,πd(xm1 ),π1(xm2 ), ...,πd(xm2 ), ...,π1(xmt ), ...,πd(xmt )].

3 Given that xc ∈ Rp in (4.2.7), we define t ≤ p, as it is not necessary to include all continuous
variables in the additive component. This allows the flexibility in accommodating both linear and
nonlinear effects of xc
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Then, for αd,τ ∈ Rdt+1, Πd(xm)αd,τ is a series approximation to µτ +mτ(xm). For

sufficiently large d, ατ is the set of (dt + 1)× 1 unknown parameter vector, and βτ

can be estimated by minimizing the following check function:

{α̂τ , β̂τ } = min
ατ ,βτ

n∑
i=1

ρτ(yi −Πd(xmi )′ατ − ziβτ ). (4.2.12)

Note that we use B-spline function denoted as Πd(·). Πd(xm)′α̂τ is the stage I

series approximation of µτ +
t∑
j=1
mj,τ (xmj ) which is defined as µ̃τ + m̃τ (xm). In other

words, the series estimate m̃j,τ(xmj ) is the product of π1(xmj ), ...,πd(xmj ) with the

appropriate components of α̂τ (Doksum & Koo, 2000). Finally, we choose an

optimum value for integer d∗ by selecting d that minimizes:

SIC(d) = log

 n∑
i=1

ρτ(ε̃i)

+
td logn

2n
, (4.2.13)

where ε̃i = yi −Πd(xmi )′α̂τ − zi β̂τ .

Stage II:

We describe the second stage estimate of mj,τ(xmj ) for j = 1, ..., t. To estimate the

unknown additive function of xmj=δ which is mδ,τ(xmδ ), we define:

m−δ,τ(x̄m) = µτ +m1,τ(xm1 ) + ...+mt,τ(xmt ) with mδ,τ(xcδ) being excluded,

and its series approximation from the estimation in Stage I is:

m̃−δ,τ(x̄m) = µ̃τ + m̃1,τ(xm1 ) + ...+ m̃t,τ(xmt ) with m̃δ,τ(xmδ ) being excluded.

Then, let us define, for i = 1, ...,n,

yδ ≡ y −m−δ,τ(x̄m)− z′βτ

=mδ,τ(xmδ ) + ε,
(4.2.14)
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and

ỹδ ≡ y − m̃−δ,τ(x̄m)− z′β̂τ .

From (4.2.14), it is clear that one can obtain a consistent estimate for mδ,τ (xmδ ) by a

one-dimensional nonparametric quantile regression of yδ on xmδ . However, as yi,δ

in (4.2.14) is unknown for i = 1, ...,n, it can be replaced with ỹi,δ, i = 1, ...,n defined

in (4.2.14).

Finally, we can estimate the unknown additive component mδ,τ(·) by appling

nonparametric quantile regression of ỹi,δ, i = 1, ...,n. We employ the nonparametric

quantile regression using weighted Nadaraya-Watson estimator proposed by Q. Li

and Racine (2008). Furthermore, we introduce the least-square cross validation for

bandwidth selection, rather than the plug-in bandwidths as suggested by Hoshino

(2014). Thus, we estimate mj,τ(xmi,j); j = 1, ..., t using (4.2.7) and (4.2.8), which

completes stage II estimation.

To describe the estimation of mj,τ(xmi,j) given {ỹi,j ,xi,j}ni=1 for j = δ, applying

(4.2.7) yields:

F̂(ỹδ|xmδ ) =

n∑
i=1
Gh0

(ỹi,δ, ỹδ)κh(x
m
i,δ,x

m
δ )

n∑
i=1
κh(x

m
i,δ,x

m
δ )

, (4.2.15)

where κh(·) is a univariate kernel function with bandwidth h. The bandwidth is

selected via the least-square cross validation in (4.2.8). Then, we estimate the

unknown function mδ,τ(·) by:

m̂δ,τ(xmδ ) = argmin
ŷδ
|τ − F̂(ŷδ|xmδ )|. (4.2.16)

One of the main advantages of the two-stage approach is that the asymptotic

properties of the estimate m̂δ,τ(xmδ ) can be established (Hoshino, 2014). It can be

shown that:

n
2
5 (m̂δ,τ(xmδ )−mδ,τ(xmδ ))→d N (bτ(xmδ ),Vτ(xmδ )), for δ = 1, ..., t, (4.2.17)
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bτ(xmδ ) = −1
2
C2
hκ2F

(2)
ε,δ(0|xmδ )/fε,δ(0|xmδ ),

and

Vτ(xmδ ) =
v0τ(1− τ)

Chfxmδ (xmδ )f 2
ε,δ(0|x

m
δ )
,

where Ch = hn
1
5 , κ2 =

∫ 1
−1
u2K(u)du, F(2)

ε,q(·|xmδ ) is the second derivative4 of the

CDF of ε conditional to xmδ , fε,q(·|xmδ ) is the PDF of ε conditional to xmδ , fxmδ (xmδ )

is the PDF of xmδ , and v0 =
∫ 1
−1
K(u)2du. Asymtotic results are useful to conduct

statistical inference.

Implementation of the PLA-QR method to recovery rate modelling

Let us assume the specification of the partially linear model in (4.2.11) as:

RR = µτ +m1,τ(DC) +m2,τ(SI) +Zβτ + ε, (4.2.18)

where RR is the observed recovery rate, mj,τ(·); j = 1,2, are the unknown additive

components of the debt cushion (DC) and the stress index (SI), and Z = (loan type,

instrumental rank, collateral) is a matrix of three discrete variables. The above

two-stage estimation process is implemented for model (4.2.18) in the following

steps:

1. Estimate the unknown parameters of the stage I:

{α̂τ , β̂τ } = min
ατ ,βτ

n∑
i=1

ρτ(RRi −Πd(Xmi )′ατ −Ziβτ ),

where Πd(Xmi ) = (1,π1(DCi), ...,πd(DCi),π1(SIi), ...,πd(SIi)), integer d is a

degree of B-spline function that minimizes SIC in (4.2.13), and ατ =

(α0,α1,DC , ...,αd,DC ,α1,SI , ...,αd,SI )′ is (2d + 1)× 1 vector of unknown parame-

ters associated with each component in Πd(Xmi ).

4Hoshino (2014) suggest linear power series regressions with the higher order than 3
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2. Obtain the unknown oracle responses in (4.2.14) of the stage II using the

estimates {α̂τ , β̂τ } in step 1:

• R̃RDC = RR− m̃SI,τ(SI)−Zβ̂τ ,

where m̃SI,τ(SI) = (1,π1(SI), ...,πd(SI))α̂−DC,τ ,

and α̂−DC,τ = (α̂0, α̂1,SI , ..., α̂d,SI ).

• R̃RSI = RR− m̃DC,τ(DC)−Zβ̂τ ,

where m̃DC,τ(DC) = (1,π1(DC), ...,πd(DC))α̂−DC,τ ,

and α̂−SI,τ = (α̂0, α̂1,DC , ..., α̂d,DC).

3. Estimate the unknown additive functions of DC and SI by regressing DC on

R̃RDC , and SI on R̃RSI , respectively, using one dimensional nonparametric

quantile regression in (4.2.15) and (4.2.16). Also, the bandwidths are chosen

by least-square cross validation in (4.2.8). The additive function estimates

are denoted as m̂1,τ(DC) and m̂2,τ(SI).

4.2.4 Quantile regressions with logit back-transformation

To overcome the problems associated with the boundaries zero and one, a

transformation can be applied to both linear models and partially linear additive

models. In fact, the additive component in PLA-QR may mitigate the boundary

issue of the estimates, as the model allows for some degree of nonlinearity in

the effects of the continuous covariates. However, there is no guarantee that the

conditional quantile function estimates will lie within the unit interval [0,1].

As discussed in the earlier chapters, the inequality resulting in the bias of back-

transformation in mean regression has been criticised in chapter 2, section 2.3.1.

Such a bias does not arise in the present study, as it focuses on QR modelling

(Bottai, Cai, & McKeown, 2010). Thus, the following equality holds:

τ = P (Y < y|x) = P (Φ(Y ) < Φ(y)|x), (4.2.19)
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where Φ(·) is the transformation function.

In this chapter, the transformation function is defined as:

Φ(y) = ln
( y + ν
1 + ν − y

)
= y∗, (4.2.20)

where −∞ < y∗ <∞ is the transformed y, and ν is an arbitrary positive value. The

transformation function in (4.2.20) is in fact the logit function with an adjustment

(ν), which ensures the validity of transformation since y ∈ [0,1]. With this logit

transformation function, we can derive its inverse function:

Φ−1(y∗) =
(1 + ν)exp(y∗)− ν

1 + exp(y)
= y, (4.2.21)

where Φ−1(·) is a logistic function that takes into account of the adjustment value

ν, rather than trimming the boundaries of one and zero discussed in chapter 2,

section 2.3.1. In what follows, the linear model with the logit transformation

is explained. This is followed by the partially linear additive model with the

transformation.

Linear quantile regression model with logit transformation (L-QR(tr))

The linear quantile regression with the logit transformation of y can be specified

as:

Φ(y) = x′ϕΦ ,τ + ε, or qΦ ,τ(x) = x′ϕΦ ,τ , (4.2.22)

where P (ε < 0|x) = τ , and qΦ ,τ(x) is a conditional quantile of the Φ(y) given x. To

estimate ϕ̂τ , we regress the Φ(y) on the set of covariates x using the linear quantile

regression discussed in section 4.2.1.

Due to the invariant property of the probability distribution in (4.2.19), it can

be shown that:

τ = P r(Y ≤ qτ(x)) = P r(Φ(Y ) ≤ qΦ ,τ(x)),
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then we immediately have:

P r(Y ≤ qτ(x)) = P r(Y ≤ Φ−1(qΦ ,τ(x)),

whereΦ−1(·) is an inverse of the transformation. Hence, we can applied the logistic

transformation function in (4.2.21) to q̂τ(x):

Φ−1(q̂Φ ,τ(x)) =
(1 + ν)exp(x′ϕ̂Φ ,τ )− ν

1 + exp(x′ϕ̂Φ ,τ )
= q̂τ(x), (4.2.23)

where q̂Φ ,τ(x) = x′ϕ̂Φ ,τ . Therefore, this allows us to estimate the conditional

quantile of the bounded [0,1] RR.

Partially linear additive model with logit transformation (PLA-QR(tr))

We can also apply PLA-QR in (4.2.11) to Φ(y), defined as:

Φ(y) =mτ,Φ(xm) + zβτ,Φ + ε, or qΦ ,τ(x) =mτ,Φ(xm) + zβτ,Φ , (4.2.24)

where mτ,Φ(xm) = µτ,Φ +
t∑
j=1
mj,τ,Φ(xmj ). Hence, the two-stage estimation of the

additive model can be employed toΦ(y) in (4.2.20). Then, the same transformation

procedure as the linear model is applied where the estimation of the PLA-QR with

the transformation is q̂τ(x) = Φ−1(m̂τ,Φ(xm) + zβ̂τ,Φ ).

4.2.5 Model selection criteria for quantile regressions

In this section, we explain several criteria used to evaluate the performances

of our QRs. First, we compare the conditional quantile goodness of fit of all

included QRs at the given quantiles. Second, each model is evaluated based on the

difference between the sample and predicted distributions. Finally, we evaluate

the models with the Value at Risk framework.
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Quantile regression goodness of fit

In order to evaluate the goodness of fit for the quantile regression, the pseudo R2

is used. The pseudo R2 is defined as:

R̃2 = 1− Ŝ
S̄
, (4.2.25)

where Ŝ =
∑n
i=1ρτ(yi − β̂τxi) is the sum of the residuals using the loss function

in (4.2.2), and S̄ =
∑n
i=1ρτ(yi − qτ(y)) is the sum of the loss function evaluated at

qτ(y), which is the τ th sample quantile of y. This is similar to the standard R2,

which is one minus the sum of squares of residuals over the total sum squares at

the mean. However, the pseudo R2 constitutes a local measure of goodness of fit

for a particular quantile (Koenker & Machado, 1999) instead of an average.

Point prediction of quantile regression

It is possible to apply the QR at a particular quantile for prediction purposes.

The median regression5, for example, provides the conditional median estimate,

which is commonly expected to be more robust to outliers than a conditional

mean regression. The standard criteria to evaluate the point prediction, such as

mean squared error (MSE) and mean absolute error (MAE), can be employed to

compare the predictability of the conditional mean and median regressions (Siao

et al., 2015).

In our study, the QR’s predictions are generated by allowing τ = τi , where τi

is a sample quantile of yi associated with realizations y1, ..., yn. Let us define the

sample quantile as:

τi =
1
n

n∑
j=1

I(yj ≤ yi),

5The conditional median regression is estimated by specified τ = 0.5 in the QR’s specification
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where I(·) is indicator function. Then, we denote:

MSE(q) =
1
n

n∑
i=1

(yi − q̂τ=τi (xi))
2, and

MAE(q) =
1
n

n∑
i=1

|yi − q̂τ=τi (xi)|,
(4.2.26)

where q̂τ=τi (xi) = ŷi is the predicted yi from a given quantile regression given

τ = τi and xi . For example, if we observe that yi is a sample median (τi = 0.5),

then the prediction of yi will be generated by a median regression, q̂τ=0.5(xi).

These allow us to compare the predictive errors of the given quantile regressions,

namely L-QR, NP-QR, and PLA-QR, for the various quantiles. Importantly, we

note that this is only for model selection purposes among the quantile regressions,

as the additional information of τi remains unknown for prediction purposes in

practice.

Distributional fit of the quantile regression

To evaluate the sample distribution of QR predictions defined in (4.2.26) in

comparison to the observed sample distribution of y, let u = (u1, ...,u2n)′ be a 2n×1

vector of ordered {y(1), ..y(n), ŷ(1), ..., ŷ(n)}, and define:

F(uj) =
1
n

n∑
i=1

I(yi ≤ uj), and

F̂(uj) =
1
n

n∑
i=1

I(ŷi ≤ uj),
(4.2.27)

where j = 1, ...,2n, F(·) and F̂(·) are the sample quantiles associated with the

realisations of y1, ..., yn and ŷ1, ..., ŷn, respectively. Then, the distributional fit of

QR can be seen as the difference between F(u) and F̂(u) which is measured by:

HWMI =
1

2n

2n∑
j=1

|F(uj)− F̂(uj)|, (4.2.28)
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where HWMI stands for Harmonic Weighted Mass Index for two finite sample

distributions (Hinloopen, Wagenvoort, & van Marrewijk, 2012). High values of

HWMI indicates that the underlying samples are less likely to be drawn from the

same distribution.

Furthermore, given the definition in (4.2.27), the Kolmogorov-Smirnov (KS)

test can be performed to evaluate whether the sample and estimated distributions

have a common distribution (Krüger & Rösch, 2017). The KS test statistic is:

D = max
j=1,...,2n

|F(uj)− F̂(uj)|, (4.2.29)

where the critical value is Dα = c(α)
√

2
T , c(α) =

√
−0.5ln(α2 ), T = 2n, and α is

a level of significance. The null hypothesis that F(·) and F̂(·) have a common

distribution is rejected, if the maximum difference between both of them

measured by D is larger than the critical value Dα.

Value at Risk evaluation

For the credit risk management purposes of RR modelling, the lower quantile

of the RR distribution would be of most interest to lenders and regulators, as it

shows the extreme losses that these lenders would experience. This leads to the

application of QR at the lower-specified quantiles, also known as the Value at Risk

(VaR) of defaulted loan recoveries. To estimate VaR of RR, this chapter considers

QRs at the lower tail quantiles of τ̄ = {0.05,0.10,0.15,0.20}.

The VaR for a given τ̄ quantile represents that there is (1− τ̄) ·100 percent chance

that we will underestimate RR. As far as the risk exposure is concerned especially

during the economic downturns, we would prefer the model that generates the low

percentage of the overestimations. Therefore, we can evaluate the VaR prediction

by:

HRτ̄ =
1
n

n∑
i=1

I(q̂τ̄(xi) < yi) · 100%, (4.2.30)
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where HRτ̄ denotes as a hit rate of predicted VaR for a given τ̄ which is the

percentage of underestimated RR, q̂τ̄ (xi) is a predicted VaR using a QR with τ = τ̄ .

The model with a hit rate which has the smallest distance between the predicted

hit rate and the expected rate of (1− τ̄) ∗ 100% is the most preferable (Krüger &

Rösch, 2017).

4.3 Empirical results

The dataset used in this empirical application is described in chapter 3, section

3.4. In this section, the NP-QR and PLA-QR models are applied to RR data at the

three quantiles τ = {0.25,0.5,0.75}. In what follows, we discuss these results.

4.3.1 Empirical results of nonparametric quantile regression

The conditional distribution and the quantile functions of the RR are nonpara-

metrically estimated given the five determinants as specified in section 3.4. We

then study the marginal and interaction effects among RR covariates and the way

these effects change over the various quantiles of the conditional distribution. As

NP-QR does not directly provide such information, we infer the effects by the

following steps. First, we hold the categorical variables constant at three levels of

risk characteristics6: high-, medium-, and low-risk. Second, the RR is estimated at

various values of DC and SI. In doing so, it allows us to analyse the idiosyncratic

marginal and interaction effects of these three given risk characteristics loans.

Finally, we plot the estimated RR as a function of DC and SI, in order to illustrate

the conditional effect of a particular variable on the given loans recoveries.

Table 4.1 reports the selected bandwidths by the least-square cross validation

method in (4.2.8). Then, the conditional quantile functions are estimated at

τ = {0.25,0.5,0.75}, which represents lower, median and upper quantiles, by
6These variables are collateral status, instrumental rank and the types of loan. The definition

of each risk characteristic will be provided later in this section
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minimizing the objective function (4.2.10). The following results of the NP-QR

provide the more complete picture of the relationships of RR-covariates on the RR

of the loans with low-, medium-, and high-risk characteristic, respectively.

The effects of debt cushion and stress index on low-risk characteristic loan

To explain the impact, we consider the collateralised revolving loan with rank 1,

which is specified by three categorical variables: Col = 1, Type = 2 and Rank = 1;

and define it as a low-risk characteristic loan7. Figure 4.1 depicts the contours for

all three quantiles, τ = {0.25,0.5,0.75}. It clearly shows that the effects of DC and

SI are nonlinear and their nonlinear shapes have changed across three different

quantiles.

[————— Insert [Figure 4.1] here —————]

(i) The effect of debt cushion

To illustrate the effect of DC in Figure 4.1 , we let the SI be fixed as SI = {-1.0,

-0.5, 0.0, 0.5, 1.0}, reflecting various economic conditions8. Figures 4.2a to 4.2c

illustrate the effects of DC on the low-risk characteristics loan recoveries at the

0.25th, 0.5th, and 0.75th quantiles, respectively.

[————— Insert [Figure 4.2] here —————]

At the 0.25th quantile, as presented in 4.2a, a nonlinear positive effect of DC is

observed and is similar in all given economic conditions. Debt cushion has the

weakest impact on the RR for DC < 0.2, while a positive but increasing effect is

found for the other range of DC. An increase in DC from 0 to 0.2 in Figure 4.2a

leads to an increase in RR of the low-risk loans during neutral conditions (SI = 0)

by only 0.1, while the RR increases by 0.4 with an increase in the DC from 0.4 to

0.6. The similar nonlinear effects of DC are observed for the median regression in

7In chapter 3, section 3.4 on data description, we found that the collateralised revolving loan
with rank 1 has the highest RR on average

8The negative and positive SI are the proxies of economic upturn (SI <0), and downturn (SI >
0), respectively. See section 3.4 for the detailed explanation.
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Figure 4.2b. We also find that the given defaulted loan is more likely to achieve

full RR if its level of DC is greater than 0.6 at the 0.25th quantile, and greater than

0.4 at the median, except during the downturn economic (SI > 0).

At the upper 0.75 quantile, however, Figure 4.2c shows that DC mostly has no

effect on RR of the low-risk loans, and the full RR is expected at any level of DC.

Although the RRs of these loans are slightly less than one during the economic

downturn, they are highly responsive to changes in DC. Our finding in Figure 4.2

suggests that lenders would be advised to pay more attention to loans with DC >

0.2 at the 0.25 quantile and the median, as a further increase in level of DC is

more effective to improve the loan recoveries.

(ii)The effect of stress index

[————— Insert [Figure 4.3] here —————]

Figure 4.3 represents the effects of SI on the low-risk characteristic loan condi-

tional on five fixed levels of DC = {0.00,0.25,0.50,0.75,1.00}. Figures 4.3a to 4.3c

illustrate the effects of SI at the 0.25, 0.50 and 0.75 quantiles, respectively. Stress

index mostly has a negative impact on RR, which is in line with expectations. On

the other hand, only when the loan has a very high level of DC, especially when

DC = 1, there is no effect of SI on RR. The low-risk characteristics loans with a

DC of 1 are most likely to have a full RR at all conditional quantiles and are not

sensitive to changes in economic conditions.

For the negative effect of SI, we find that the negative SI typically has a stronger

effect than positive SI. At the lower 0.25 quantile, with DC fixed at 0.00, 0.25, and

0.50 in Figure 4.3a, an increase in SI from -1 to 0 causes a drop in RR by 0.3, while

the RR decreases by only 0.1 as SI increases from 0 to 1. This behaviour is also

consistent with the results at the median when the given DCs are 0 and 0.25 in

Figure 4.3b. This implies that the RR is more sensitive to changes in economic
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stress during an upturn than changes during a downturn, especially when the

loan has relatively low DC. On the other hand, the change in economic condition

does not affect the RR at the upper 0.75 quantile as observed in Figure 4.3c.

The nonlinear effect of SI can be explained, as banks may impose more conser-

vative policies during the downturn to mitigate the systematic risk. This then

leads to the reduced impact of economic conditions on the given loans recoveries.

We also find that the effect of SI seems to be weaker at the upper 0.75 quantile

than at the median and lower quantiles, as well as the loan with higher level of DC.

Effect of debt cushion and stress index on the recovery rate for medium- and high-risk

characteristic loans

We now consider the conditional effects of DC and SI on loans with other risk

characteristics. Medium- and high-risk characteristic loans are specified as (i) un-

collateralised revolving loans with Rank 1 (Col = 0, Type = 2, Rank = 1); and

(ii) uncollateralised senior bonds with Rank 4 (Col = 0, Type = 5, Rank = 4 ),

respectively9. To analyse the effects on RR of both specified loans, we employ the

same procedure as the low-risk characteristic loans.

(i)The effect of debt cushion

In terms of the effects of DC at the 0.25, 0.5, and 0.75 quantiles, the findings and

explanations of each quantile of the medium-risk characteristic loans (figures

4.4a to 4.4c) are mainly similar to those of the low-risk characteristic loans in the

previous analysis (figures 4.2a to 4.2c). An increase in the low range of DC < 0.2

typically has less effect on RR than an increase in the higher ranges. Only when

we consider such effect at 0.25 quantile during the economic upturn conditions (SI

= {-1,-0.5}), the effect of the low range DC is as high as the other ranges in Figure

4.4a.

9This is based on the data description and preliminary analysis in chapter 3 which suggest that:
(i) the uncollateralized loan is riskier than collateralized loan; (ii) revolving loan is less risky than
the bond; and (iii) the loan with rank 1 is less risky than that with rank 4.
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We find that it is more difficult for medium-risk characteristic loans to reach the

full RR by increasing DC than it is for the low-risk characteristic loans. For the

medium risk loans at the 0.25 quantile during a high-stress economic condition

where SI = {0.5,1.0} in Figure 4.4a, an increase in DC does not appear to lead to the

full RR as found in low-risk loans. The maximum RR is approximately 0.70-0.75

during those economic conditions.

[————— Insert [Figure 4.4] here —————]

The effect of DC for high-risk characteristic loans, shown in Figures 4.4d to

4.4f, differs substantially from its effects on low- and medium-risk characteristic

loans. This would imply that the effect of DC on RR might depend on type of

loan and/or instrumental rank 10. At the 0.25 quantile in Figure 4.4d, defaulted

loans with DC < 0.5, their recoveries are nearly zero (RR = 0), and an increase in

DC does not improve the RR of the given loan in all economic conditions. Then,

positive effects are observed when DC is greater than approximately 0.6, with a

strong effect during an economic upturn (SI = {-1,-0.5}). However, in practice, it is

less likely for loans with the given high-risk characteristics to have a DC greater

than 0.5. Our finding implies that DC would not be an effective tool to improve

RR for high-risk characteristic loans at the lower quantile.

For the median quantile in Figure 4.4e, although a change in DC between 0 and

0.4 tends to have no effect on the RR, the conditional effect of DC is positive with

an increasing rate as DC increases from 0.4. Additionally, we find that the effect

of DC on high-risk characteristic loans RR at the upper 0.75 quantile (Figure 4.4f)

is similar to that on medium-risk characteristic loans at the median (Figure 4.4b).

(ii) The effect of stress index

The effects of SI, conditional on fixed levels of DC for loans with medium- and

high-risk characteristics, are illustrated in Figure 4.5. Overall, the result is still

10The low- and medium-risk characteristics are revolving loans with Rank 1, while the high-risk
characteristic is a senior bond with rank 4
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consistent with the previous findings, where the effect of negative SI is mostly

stronger than that of positive SI, especially when the effect is conditional on fixed

levels of DC less than 0.2 in Figures 4.5a to 4.5c, 4.5b and 4.5e.

There are some exceptions for the nonlinear effect of SI on the high-risk char-

acteristic loans recoveries. At the 0.25 quantile in Figure 4.5d, there is no effect

of SI on RR of the high-risk characteristics loan with the given DC less than 0.5.

Although, there is a strong negative impacts of SI on RR of the loan with DC =

{0.75,1} are observed in Figure 4.5d, the high-risk characteristic loans with DC

higher than 0.5 is not observed in practice.

Moreover, for the effect of SI at the 0.75 quantile in Figure 4.5f, the negative

effect of the positive SI tends to be stronger than the negative SI, which is different

from most findings in low- and medium-risk characteristics. This behaviour is

also found in the effect of SI given high level of DC in Figure 4.5a and 4.5b for

medium-risk characteristics at 0.25 and 0.50 quantiles respectively. These results

imply that these loans are highly sensitive to the economic downturn, while the

smaller effects are expected for the other loans.

[————— Insert [Figure 4.5] here —————]

Notably, the marginal effect analysis using NP-QR can be extended to reveal

the idiosyncratic effect of the RR covariates on other given risk characteristics.

This provides the lender with a comprehensive analysis of the specific defaulted

loan which reveals various complex forms of the RR covariates’ effects: nonlinear

marginal effects, interaction effects, and heterogeneous effects. Such an analysis

would be useful for lenders to understand each defaulted loan in their portfolio.

On the other hand, we also provide, in the following section, an alternative analysis

of the marginal effects using PLA-QR.
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4.3.2 Empirical results of the partially linear additive quantile

regression

In this section, we discuss the estimation results of the two-stage estimation

method of PLA-QR model, which contains linear and additive components, fol-

lowed by the marginal effect analysis using those components. The first-stage

estimation of PLA-QR begins with the application of the B-spline function to

approximate the nonlinear relationships of DC and SI in (4.2.13). The result is

reported in the first row of Table 4.2, Panel (A). It shows that SICs are minimized

as the degrees of the spline functions for DC are d = 9, d = 5, and d = 6 for the 0.25,

0.5, and 0.75 quantiles, respectively; and d = 1 is selected for SI in all quantiles.

This suggests that the effect of SI is approximately linear, which is similar to our

result in chapter 3.

Comparing this first-stage estimation of the PLA-QR in Table 4.2, Panel (A), with

the linear model in Panel (B), the SICs of the proposed models at all given quantiles

are smaller than those of the linear quantile regression model. These results

indicate that some improvements can be made when the nonlinear relationships

are estimated via the spline functions. Therefore, we specify our PLA-QR model

specification as follows:

qRR,τ(x) = µτ +mτ(DC) +Zβτ , (4.3.1)

where qRR,τ(x) is the τ th conditional quantile of RR, Z is a vector of covariates

{SI, types of loan, instrumental ranks, collateral status}, which are assigned in

the parametric component, βτ is a vector of unknown parameters for the linear

component, and DC is assigned to the additive component mτ(·). Due to the

model structure, the marginal effect analysis is more transparent and general

than the previous analysis using NP-QR. The insight idiosyncratic effects are
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generalized to the estimates of parametric coefficients and additive functions.

[————— Insert [Table 4.2] here —————]

Marginal effect estimates of linear components

Given the selected degrees of the spline functions, consistent parameter estimates

are provided for the variables in the linear component, which are the marginal

effects of categorical variables and SI. Negative relationships are consistently

found for SI and the instrumental ranks, while a positive relationship is found

for the collateral status in Table 4.2, panel (A). These relationships are mostly

in line with expectations. However, we observe some heterogenous effects: first,

there are substantial differences in the impacts of SI at the 0.25th and 0.75th

conditional quantiles. The negative effect of SI is relatively small and insignificant

at the 0.75 quantile compared to the median and lower quantiles. These findings

reveal that loans at the lower quantile of RR tend to be more sensitive to the

economic environment compared to those in the upper parts of the distribution.

This could imply that the decrease in overall RR during an economic downturn is

caused mainly by loans at the lower quantiles. The effect of the macroeconomic

conditions impacts the level of RR differently, depending on the location of the

distribution. These findings are also consistent with the standard linear quantile

regression model in Table 4.2, panel (B), although the estimated parameters of SI

are insignificant at all three quantiles.

Second, we expect that the higher the instrumental rank, the more risky the

borrower is expected to be, which lowers RR. This intuition is reflected in our

empirical analysis in Table 4.2, especially at the median and 0.75 quantiles. The

RR of loans at the lower 0.25 quantile with Rank 2-4 is expected to be lower than

the RR of those with Rank 1 by approximately 0.13. This observation implies that

the effects of instrumental rank tend to be binary (either rank 1 or not) at the

lower quantile. On the other hand, any increase in rank causes a lower RR only
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in the median and upper quantiles. For example, borrowers at the median and

upper quantiles with Rank 4 have the lowest RR, followed by those with Ranks 3,

2, and 1 respectively, given that other variables are held constant.

Third, loans with collateral are intuitively expected to have higher RRs than

those without, and our results in Table 4.2 indeed show what is expected. The

parameter estimates of collateral are negative at all three conditional quantiles.

However, the marginal effect estimates of collateral on RR are relatively high at the

lower quantile, and become smaller magnitudes in the median before insignificant

at the upper 0.75 quantile. Specifically, loans with collateral are expected to have

an RR that is 0.17 higher than those of loans without collateral for lower 0.25

quantiles, while there is no significant difference between these loans at the 0.75

quantile. This implies that collateral status has an insignificant effect on RR level

for loans in the higher quantiles.

Fourth, loan types impact RRs differently depending on the level of quantile in

Table 4.2. Compared to term loans (baseline), revolving loans have significantly

higher RRs than term loans at the 0.25 and 0.5 quantile regressions, while

significantly lower RRs are expected for bonds at the median and upper quantiles.

Marginal effect estimates of additive components

[————— Insert [Table 4.3] here —————]

The second-stage estimation focuses solely on DC in the additive component.

Table 4.3 shows the optimal bandwidth based on least-squares cross-validation

in (4.2.8), which is employed to estimate the additive component. The selected

bandwidths are reported in Table 4.3. Then, we proceed to the second-stage

estimation based on the optimal bandwidths to estimate the additive function

using the nonparametric quantile regression estimate given in (4.2.15).

[————— Insert [Figure 4.6] here —————]
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Figure 4.6 represents the additive component estimates across the different

quantiles, along with the 95% bootstrapping confidence intervals. The figures

clearly show a nonlinear relationship between DC and RR with different shapes

depending on the level of the conditional quantiles, which diverge notably from

the linear relationship. The results show that an additional increase in DC has no

impact on RR when DC ranges between [0.0,0.2] and [0.6,1.0] for the 0.25 quantile;

between [0.0,0.1] and [0.5,1.0] for the median quantile; and between [0.3,1.0] for

the 0.75 quantile. These findings are somewhat similar to the analysis in NP-QR

in terms of the functional shapes: a change in the low levels of DC ineffectively

increases the RR in the lower quantiles. Specifically, we find that an increase in

DC of [0.0,0.2] has the most effect on loans at the upper quantiles.

Our finding suggests that for the observed heterogeneous and nonlinear effects

of DC, the strength of the effects depends on the conditional quantile as well

as on the level of DC itself. We find that an increase in DC from 0.0 to 0.4

leads to an increase in RR at the median and 0.75 quantile by 0.2, compared to

that of the lower 0.25 quantile by 0.1. This implies that the effect of the given

DC is stronger for the upper quantiles. On the other hand, if we consider an

increase in DC between 0.4 and 0.6, this leads to a 0.3 increase in RR for the

0.25 quantile, a 0.2 increase for the median quantile, and no change for the 0.75

quantile. Thus, the effect of the higher range of DC at the low quantile is strongest.

Boundaries issue of PLA-QR compared to the linear quantile regression

We now turn to problems associated with boundaries. As discussed earlier, RR is

bounded in the [0,1] unit interval. We find that the nonlinear effect of DC, which is

captured by the additive component, ensures that most estimates will fall between

zero and one. Table 4.4 reveals the degree of the boundary problems in PLA-QR

compared to L-QR. Overall, PLA-QR has consistently lower percentages of negative

predicted RRs than L-QR, while comparable percentages of estimates exceeding

109



Non- and Semi-parametric Methods for Modelling Recovery Rates

full RR (1) are observed in both models. However, the upper and lower bounds for

the additive models are substantially closer to the unit interval than those for the

linear model. Specifically, the boundaries of the fitted 0.25, 0.5, and 0.75 additive

quantile models are [−0.0170(0.9%), 1.0006(0.5%)]; [0.0100(0.6%),1.0349(4.10%)]; and

[0.2627(0.25%),1.0138(22.22%)], respectively, where the percentages in brackets are

the number of estimates exceeding the boundaries. The lower and upper bounds

of the additive models are approximately five times and two times smaller than

those of the linear model. Although we find that 22% of the PLA-QR estimates at

0.75 quantile are greater than one, the maximum of value of the estimates is 1.01,

compared to 1.03 for L-QR.

[————— Insert [Table 4.4] here —————]

4.3.3 Empirical results of the partially linear additive regres-

sion on transformed recovery rate

In order to overcome the boundary problems, we introduce a model with a

logit transformation of RR to ensure that the predicted conditional quantile RR

would lie in the [0,1] interval. As the set of RR determinants are regressed on the

transformed RR, the parameter estimates reflect the relationships between the

covariates and the transformed RR.

[————— Insert [Table 4.5] here —————]

Table 4.5 shows the result of the first-step estimation. Firstly, the SIC suggests

the degrees of B-spline as d=2 for the 0.25 quantile and d=3 for both the 0.5

and 0.75 quantiles for DC, and d=1 for SI in all cases. These degrees are lower

than those of the models with no transformation. Secondly, the signs of the

estimators in the linear component of PLA-QR(tr) in Table 4.5 are consistent with

the results of PLA-QR (Table 4.2). Specifically, in Table 4.5, negative relationships

are consistently observed for SI and rank, while collateral shows negative signs

across all quantile regressions.
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[————— Insert [Figure 4.7] here —————]

Given the output of the first-step estimation, Figure 4.7 illustrates the additive

estimates of DC11. The nonlinear shapes of the additive component estimates

across the three quantiles are comparable to the findings provided by PLA-QR in

Figure 4.6.

4.3.4 Evaluation of the quantile regressions performance

In this section, the performances of NP-QR, PLA-QR, L-QR, PLA-QR(tr), and

L-QR(tr) are compared according to various aspects, including their goodness of

fit, predictability, distributional fit, and predicted VaR evaluation.

Goodness of fit

The goodness of fit of each model is measured by an average residuals using the

loss function in (4.2.2) and R̃2 in (4.2.25). Overall, Table 4.6 suggests that the

nonlinear quantile regressions outperforms the linear model. NP-QR provides the

best goodness of fit in both criteria in all three quantiles, as it yields the lowest

average errors and the highest R̃2, followed by PLA-QR. Although the PLA-QR(tr)

can overcome the PLA-QR’s boundary issue, the goodness of fit of both models is

comparable. PLA-QR(tr) slightly outperforms PLA-QR in R̃2.

[————— Insert [Table 4.6] here —————]

Point prediction performance

As discussed in (4.2.26), we generate the predicted RR for the entire family of

empirical RR quantiles given τ = τi . The predicted RR of each model is then

denoted as ŷi = q̂τ=τi (xi). Table 4.7 shows the MSE and MAE of the in-sample

and out-of-sample predictions. To define the in- and out-of-sample data, the split

was made by randomly partitioning 30% of the full data and defining it as the

11This is the effect of DC on the transformed RR
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out-of-sample data, with the remaining observations forming the in-sample data.

The result shows that NP-QR and PLA-QR provide the most precise predictions

for the in-sample data. On the other hand, NP-QR provides the least accurate

out-of-prediction, while PLA-QR’s predictive error remains small. We also find

that L-QR offers a lower out-of-sample MSE and similar MAE when compared

to PLA-QR. Moreover, we find that PLA-QR(tr) and L-QR(tr) provide the least

accurate predictions.

[————— Insert [Table 4.7] here —————]

Distributional fit

Table 4.8 reports the HWMI of all the included models to measure the dis-

tributional fit of the RR predictions. It shows that our proposed PLA-QR

has the best distributional fit for the in-sample data, followed by L-QR and

NP-QR, respectively. On the other hand, L-QR yields the highest out-of-sample

HWMI, followed by PLA-QR. Regarding the models with back-transformation,

the performances of both PLA-QR(tr) and L-QR(tr) are consistently poor.

In terms of the hypothesis test, for which the KS test was used, our results

suggest that the null hypothesis of all models is rejected, due to the high KS

statistics. The sample distribution differs significantly from the predicted

distributions generated by all models. However, Krüger and Rösch (2017)

caution against the application of the KS test, as the test statistic only con-

siders the maximum deviance and fails to take into account the entire distribution.

Value at Risk evaluation

[————— Insert [Table 4.9] here —————]

To estimate the VaR, we consider the various lower conditional quantile regres-

sions, where τ = {0.05,0.1,0.15,0.2,0.25}, using all five included models. The hit

rate of each model is then calculated using (4.2.30), which is compared with the

expected hit rates are 95%, 90%, 85%, 80%, and 75%, respectively. The results are
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shown in Table 4.9. They indicate that NP-QR offers the best hit rates in generating

the VaR at all five given quantiles, while PLA-QR(tr) provides relatively poor hit

rates. Among the given five conditional quantiles, the VaR estimates at the 0.2 and

0.25 quantiles of NP-QR have hit rates of approximately 79% and 76%, which are

almost the same as the expected hit rates (80% and 75%, respectively); followed

by PLA-QR and L-QR. Furthermore, we find that the VaR estimates generated by

L-QR(tr) at τ = 0.05,0.1,0.15 have noticeably high hit rates, which are better than

those of all models except for NP-QR.

4.4 Conclusion

This study proposes conditional nonparametric regression and partially linear

additive quantile regression models, denoted as NP-QR and PLA-QR, respectively,

and investigates which model(s) provide(s) a complete picture of the relation-

ships between the response variable, RR, and the determinants over the entire

conditional probability distribution. The conditional QR models are flexible and

constitute improvements of the conventional conditional mean regression stud-

ied in chapter 3, which focuses on modelling the central tendency. Moreover,

we assess their performance in four aspects including goodness of fit, in- and

out-of-sample predictions, distributional fit, and the value at risk. Our findings

deepen the understanding of the effects of covariates on RR which are found to be

nonlinear, dependent on other variables (interaction), and heterogeneous across

different quantiles.

The effect of debt cushion (DC) is nonlinear, where RR is less responsive to

an increase in DC when DC < 0.2, especially at the lower quantiles. Although a

positive effect is observed, the strength of the effect varies idiosyncratically and is

strongly dependent on the other risk characteristic variables. The analysis using
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NP-QR indicates that the effect of DC is much weaker for defaulted loans with high-

risk characteristics (unsecured senior bonds with Rank 4) compared to its effect

on low- and medium-risk characteristic loans (collateralised and uncollateralised

revolving loans with Rank 1, respectively). The RR of the high-risk characteristic

loans do not response to the change in DC when DC < 0.4, at the 0.25, median,

and 0.75 quantiles.

The results of PLA-QR suggests that the effect of SI on RR is strong only at the

lower quantile. Then, the analysis using NP-QR further reveals that an increase

in SI during the economic upturn (SI ≤ 0) is likely to affect the RR more than

during the economic downturn (SI > 0). However, the effect of the downturn

economy is prominent for the RR of high-risk characteristics loans at the upper

0.75 quantile and that of medium-risk characteristics loans at the 0.25 and 0.5

quantiles, especially those loans with DC > 0.5.

Furthermore, based on four criteria to compare the performances of the models

studied in this chapter, we find that the proposed NP-QR performs the best in

terms of goodness of fit, in-sample prediction, and VaR. On the other hand, the

proposed PLA-QR outperforms most alternative models in goodness of fit, in- and

out-of-sample prediction, in-sample distributional fit, and VaR at the 0.20 and

0.25 quantiles. Moreover, as the boundary problem in PLA-QR is vastly mitigated

but not completely resolved, we apply the model with a back-transformation

technique (PLA-QR(tr)) to eliminate the problem. However, the models with data

transformation are the least preferable according to our model selection criteria.

Despite the proposed QR models performing well at the various quantiles

of conditional RR distribution and demonstrating the heterogeneity in the RR-

covariate relationship, the problems associated with boundary are not resolved in

the PLA-QR. Also, an analysis of NP-QR reveals an evidence of interaction effects

of some covariates on RR, and by taking such effects into account might lead to

outstanding performances of the model proposed in this chapter. In the next
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chapter, we will propose a model which by construction will not have boundary

problems and will be able to address the interaction effects of the covariates on

defaulted loan recoveries.
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4.5 Appendix C: Tables and Figures

Variables NP-QR Bandwidth

Recovery rate 0.0133

Debt cushion 0.2327

Stress index 0.5021

Type of loan 0.6819

Instrumental rank 0.1180

Collateral status 0.2440

Table 4.1: Selected bandwidths of the nonparametric quantile regression

Note: These bandwidths of NP-QR are selected based on least square cross validation method in

(4.2.8). Then, they are applied to estimate the conditional distribution in (4.2.7), and the quantile

function in (4.2.10)
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(A) Partially linear additive quantile regression (B) Linear quantile regression

τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

Additive component

Degree of B-spline for DC 9 5 6 1 1 1

SIC 5.5275 6.0069 5.7700 5.6185 6.0384 6.0148

Linear component

Debt cushion NA NA NA 0.6308 *** 0.4444 *** 0.0549 *

(0.0143) (0.0203) (1.9276)

Stress Index -0.0378 ** -0.0266 *** -0.0049 -0.0168 -0.0406 -0.0072

(0.0164) (0.0027) (0.0303) (0.0033) (0.0046) (0.0097)

Revolving loan 0.0450 *** 0.0170 *** 0.0005 0.1163 *** 0.0084 0.0015

(0.0131) (0.0060) (0.0014) (0.0238) (0.0134) (0.0094)

Senior Secured Bond -0.0098 0.0102 -0.0006 0.0480 ** -0.0683 *** -0.0118

(0.0128) (0.0120) (0.0043) (0.0238) (0.0184) (0.0150)

Senior Subordinated Bond -0.0079 -0.2283 *** -0.3698 *** -0.0052 -0.2147 *** -0.5194 ***

(0.0129) (0.0377) (0.0601) (0.0273) (0.0401) (0.0515)

Senior Unsecured Bond 0.0086 -0.0134 -0.0667 ** 0.0133 -0.0076 -0.2045 ***

(0.0161) (0.0338) (0.0313) (0.0297) (0.0384) (0.0506)

Subordinated Bond -0.0088 -0.2420 *** -0.3849 *** -0.0072 -0.2409 *** -0.5463 ***

(0.0129) (0.0398) (0.0719) (0.0270) (0.0386) (0.0724)

Rank 2 -0.1242 *** -0.1526 *** -0.0186 -0.1230 *** -0.1657 *** -0.0244

(0.0108) (0.0178) (0.0245) (0.0088) (0.0188) (0.0231)

Rank 3 -0.1373 *** -0.2063 *** -0.1098 *** -0.1358 *** -0.2154 *** -0.1387 ***

(0.0111) (0.0332) (0.0388) (0.0092) (0.0312) (0.0369)

Rank 4 -0.1352 *** -0.2443 *** -0.1622 *** -0.1302 *** -0.2635 *** -0.1995 ***

(0.0111) (0.0217) (0.0372) (0.0097) (0.0187) (0.0582)

Collateral 0.1982 *** 0.0676 ** 0.0009 0.1462 *** 0.1307 *** -0.0078

(0.0117) (0.0304) (0.0188) (0.0387) (0.0341) (0.0452)

Table 4.2: Linear component estimates of the partially linear additive model

Note: Panel (A) reports the estimates of PLA-QR in which DC is included as an additive component.

Panel (B) reports the estimates of the linear quantile regression as specified in (4.2.3). *** and **

represent significances at the 1% and 5%, respectively. The value in bracket is a standard error.
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Bandwidth

Variables τ = 0.25 τ = 0.5 τ = 0.75

ỹdc,τ 0.0001 0.0018 0.0172

mDC,τ(DC) 0.1073 0.0500 0.1878

Table 4.3: Selected bandwidths of the partially linear additive model for the second-step
estimation

τ = 0.25 τ = 0.5 τ = 0.75

PLA-QR L-QR PLA-QR L-QR PLA-QR L-QR

The predicted RR exceeding upper boundary(1) 0.50% 1.17% 4.10% 6.88% 22.22% 15.08%

The predicted RR exceeding lower boundary(0) 0.97% 4.75% 0.62% 1.04% 0.25% 0.31%

Maximum estimate (upper bound) 1.0006 1.0537 1.0349 1.1458 1.0138 1.0331

Minimum estimate (lower bound) -0.0170 -0.0802 0.0100 0.0104 0.2627 0.2091

Table 4.4: The percentage of predicted RR exceeding zero and one boundaries

118



Non- and Semi-parametric Methods for Modelling Recovery Rates

(A)Partially linear additive quantile regression (B) Linear quantile regression

τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

Additive component

Degree of B-spline for DC 2 3 3 1 1 1

SIC 5.5706 5.9741 5.9468 5.5949 5.9907 5.9666

Linear component

Debt cushion NA NA NA 6.3014 *** 7.3820 *** 0.6351

(0.4098) (0.0286) (0.5630)

Stress Index -0.1720 *** -2.3796 *** -0.6231 -0.3317 *** -0.5385 *** -0.0778

(0.0265) (0.2415) (0.3616) (0.0380) (0.0633) (0.0854)

Revolving loan 0.5216 *** 0.3820 *** 0.0620 ** 1.4683 *** 0.6442 *** 0.0123

(0.1221) (0.0802) (0.0303) (0.2644) (0.2208) (0.1619)

Senior Secured Bond 0.2741 *** 0.0927 -0.1894 1.2988 *** -0.5153 ** -0.2172

(0.0962) (0.1169) (0.0996) (0.1398) (0.2185) (1.0177)

Senior Subordinated Bond -0.9004 *** -1.0205 *** -2.5564 *** -0.1445 -0.8272 ** -6.5882 ***

(0.2551) (0.2914) (0.7351) (0.4185) (0.3659) (0.5669)

Senior Unsecured Bond 1.1402 *** 0.4946 ** -1.2236 1.6824 *** 0.6103 -5.3511 ***

(0.2016) (0.2057) (0.6747) (0.3978) (0.3418) (0.4813)

Subordinated Bond -1.5508 *** -1.2565 *** -2.5152 *** -0.7021 -0.9649 ** -6.6625 ***

(0.1854) (0.3016) (0.7132) (0.4110) (0.4099) (0.4974)

Rank 2 -0.6984 *** -0.7675 *** -0.2586 -0.7501 *** -0.7449 *** -0.3088

(0.0848) (0.0872) (0.2094) (0.1423) (0.1293) (0.2264)

Rank 3 -2.5000 *** -1.2440 *** -0.7619 *** -2.8155 *** -1.3058 *** -0.8095 ***

(0.0985) (0.2492) (0.1967) (0.1491) (0.2139) (0.2138)

Rank 4 -2.5289 *** -1.8577 *** -1.2304 *** -2.7392 *** -1.6205 *** -1.2717 ***

(0.2578) (0.3309) (0.4620) (0.4209) (0.3690) (0.3826)

Collateral 1.9699 *** 0.7697 *** -0.4339 1.5915 **** 1.0227 *** -0.1070

(0.1733) (0.1935) (0.2254) (0.3946) (0.2866) (0.3247)

(0.2577) (0.1935) (0.2004) (0.1645) (0.2866) (0.4310)

Table 4.5: Linear component estimates of the partially linear additive model with back
transformation

Note: The models in Panel (A) and (B) are estimated by regressing the set of the determinants on the

transformation of the recovery rate. Hence, the parameter estimates reflect only the relationships

between the determinants and the transformed recovery rate.
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Models without transformation Models with transformation

Models τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

(i) Average residuals using the loss function

Fully nonparametric quantile regression 0.0844 0.1100 0.0846 - - -

Partially linear additive quantile regression 0.0865 0.1149 0.0910 0.0870 0.1122 0.0895

Linear quantile regression 0.0896 0.1190 0.0920 0.0917 0.1141 0.0913

(ii) Pseudo R2

Fully nonparametric quantile regression 0.3397 0.3943 0.2563 - - -

Partially linear additive quantile regression 0.3128 0.3509 0.1803 0.3219 0.3606 0.1910

Linear quantile regression 0.2903 0.3303 0.1698 0.2907 0.3614 0.1736

Table 4.6: Goodness of fit of the quantile regressions

Models
In-sample Out-of-sample

MSE(q) MAE(q) MSE(q) MAE(q)

NP-QR 0.0374 0.1124 0.0954 0.2075

PLA-QR 0.0386 0.1151 0.0404 0.1202

L-QR 0.0400 0.1228 0.0389 0.1205

PLA-QR(tr) 0.0452 0.1235 0.0512 0.1342

L-QR(tr) 0.0539 0.1363 0.0527 0.1358

Table 4.7: Point prediction of the quantile regressions

Note: Out-of-sample data is formed by randomly selected 30% of the full sample data. Each model

is estimated by the remaining 70% to predict the out-of-sample RR.
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Models
In-sample Out-of-sample

HWMI KS-statistic HWMI KS-statistic

NP-QR 0.0314 0.0877 0.0389 0.1003

PLA-QR 0.0296 0.0841 0.0324 0.0823

L-QR 0.0302 0.0904 0.0266 0.0720

PLA-QR(tr) 0.0348 0.0990 0.0530 0.1073

L-QR(tr) 0.0391 0.1097 0.0550 0.1118

Table 4.8: Distributional fit of the quantile regressions

Note: HWMI is the Harmonic Weighted Mass index which is defined in (4.2.28). The KS-statistic

is calculated by the maximum difference in the sample quantiles of the RR sample and predicted

RR sample distributions defined in (4.2.29). The critical values at 1% and 5% levels of significance

are 0.004 and 0.003.
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Model τ̄ = 0.05 τ̄ = 0.1 τ̄ = 0.15 τ̄ = 0.2 τ̄ = 0.25

NP-QR 89.92% 87.04% 82.99% 79.39% 75.65%

(difference) (5.08%) (2.96%) (2.01%) (0.61%) (0.65%)

PLA-QR 87.17% 83.44% 79.30% 75.34% 71.24%

(difference) (7.83%) (6.56%) (5.70%) (4.66%) (3.76%)

L-QR 86.72% 82.99% 78.89% 75.02% 71.11%

(difference) (8.28%) (7.01%) (6.11%) (4.98%) (3.89%)

PLA-QR(tr) 87.58% 82.68% 76.51% 72.41% 67.46%

(difference) (7.42%) (7.32%) (8.49%) (7.59%) (7.54%)

L-QR(tr) 88.24% 85.24% 80.51% 74.39% 64.76%

(difference) (6.76%) (4.76%) (4.49%) (5.61%) (10.24%)

Expected hit rate 95.00% 90.00% 85.00% 80.00% 75.00%

Table 4.9: Hit rates of the predicted Value at Risks using quantile regressions

Note: The hit rate is defined as a percentage of underestimated predicted VaR for each model. The

percentage in bracket is a difference between the expected hit rate and the hit rate from predicted

VaR of each model. The model that provides the lowest difference is the most preferable.
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(a) τ = 0.25 (b) τ = 0.5 (c) τ = 0.75

Figure 4.2: Conditional effects of the debt cushion on RR of the low risk characteristic
at various economic conditions

Note: Sub-figures (a)-(c) illustrate the NP-QR estimates of the conditional effects of debt cushion

on RR of low risk characteristics loan for 0.25, 0.5, and 0.75 quantiles, respectively. The effects

are conditional on five economic scenarios as SI = {−1,−0.5,0,0.5,1}. In each sub-figure, the blue

dotted line and the blue dashed line are the conditional effects of DC on RR during the negative

SI (economic upturn) at -1 and -0.5, respectively. On the other hand, the red dotted and dashed

lines are the conditional effects of DC during the positive SI (economic downturn) at 0.5 and 1,

respectively. The dark solid line is the conditional effect of DC given SI = 0 (neutral condition).

(a) τ = 0.25 (b) τ = 0.5 (c) τ = 0.75

Figure 4.3: Conditional effects of the stress index on RR of the low risk characteristic
at various levels of debt cushion

Note: Sub-figures (a)-(c) illustrate the NP-QR estimates of the conditional effects of stress index on

RR of low risk characteristics loan for 0.25, 0.5, and 0.75 quantiles, respectively. The effects are

conditional on five levels of DC as DC = {0,0.25,0.5,0.75,1}. In each figure, the blue dotted line

and the blue dashed line are the conditional effects of SI on RR with DC at 0 and 0.25, respectively.

On the other hand, the red dotted and dashed lines are the conditional effects of SI given DC at

0.75 and 1, respectively. The dark solid line is the conditional effect of SI given DC = 0.5.
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(a) τ = 0.25, medium risk (b) τ = 0.5, medium risk (c) τ = 0.75, medium risk

(d) τ = 0.25, high risk (e) τ = 0.5, high risk (f) τ = 0.75, high risk

Figure 4.4: Conditional effects of debt cushion on the recovery rate for the loans with
medium and high risk characteristics

Note: The figures illustrate the NP-QR estimates of the conditional effects of debt cushion on RR of

medium- and high-risk characteristics loan. The effects are conditional on five economic scenarios

as SI = {−1,−0.5,0,0.5,1}. Sub-figures (a)-(c) represent the effect on the medium-risk characteristic

loan: Type = 2, Rank = 1, and Col = 0, at 0.25, 0.5, 0.75 quantiles, respectively. Sub-figures (d)-(e)

represent the effect on RR of high risk characteristic: Type = 5, Rank = 4, and Col = 0, at 0.25, 0.5,

0.75 quantiles, respectively. In each sub-figure, see the descriptions in Figure 4.2.
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(a) τ = 0.25, medium risk (b) τ = 0.5, medium risk (c) τ = 0.75, medium risk

(d) τ = 0.25, high risk (e) τ = 0.5, high risk (f) τ = 0.75, high risk

Figure 4.5: Conditional effects of the stress index on the recovery rate of the revolving
loan with medium and high risky characteristics

Note: The figures illustrate the NP-QR estimates of the conditional effects of stress index on RR

of medium- and high-risk characteristics loan. The effects are conditional on five levels of debt

cushion as DC = {0,0.25,0.5,0.75,1}. Sub-figures (a)-(c) represent the effects on the medium-risk

characteristic loan: Type = 2, Rank = 1, and Col = 0, at 0.25, 0.5, 0.75 quantiles, respectively.

Sub-figures (d)-(e) represent the effects on RR of high risk characteristic: Type = 5, Rank = 4, and

Col = 0, at 0.25, 0.5, 0.75 quantiles, respectively. In each sub-figure, see the descriptions in Figure

4.3
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(c) τ = 0.75

Figure 4.6: Nonlinear effect estimates of debt cushion using the partially linear quantile
regression

Note: As we assume DC in the additive component m(DC) of PLA-QR, the dark line illustrates

additive estimates representing the effect of DC. The red lines are the bootstrapping confident

interval at 5% level of significant. The grey solid line represents the marginal effect of DC using

L-QR.
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(c) τ = 0.75

Figure 4.7: Nonlinear effect estimates of debt cushion using the partially linear quantile
regression with logit transformation

Note: The figures show the additive component estimates of DC using PLA-QR(tr). Note im-

portantly, the figures show the effects of DC on the transformed RR, as we employ the logit

transformation technique. In each figure, see the detailed descriptions in Figure 4.6
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Chapter 5

Local logit regression for recovery

rate modelling

5.1 Introduction

The topic investigated in this chapter is motivated by the findings in chapters 3

and 4. Although the partially linear conditional mean regression (PL) in chapter

3 and the partially linear additive quantile regression (PLA-QR) in chapter 4,

both extensively studied in the respective chapters, offer relatively high out-of-

sample predictive accuracies, the boundary problem has not been completely

resolved. Despite the fact that the PL and PLA-QR models greatly mitigate the

[0,1] boundary issue of the RR by allowing nonlinearity in the relationship between

the RR and its covariates, we find that a very small percentage (say, 0.5%) of the

out-of-sample RR predictions exceed the boundaries zero and one. On the other

hand, the nonparametric regressions with local constant method were able to

ensure the boundary condition, but the out-of-sample predictive power was rather

low due to the problem of high dimensional covariates.
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Furthermore, the popular and simple transformation and back-transformation

technique introduces bias to the conditional mean model estimates, as previously

discussed in chapters 2 and 3. The studies that have used back-transformation ap-

pear to have overlooked the presence of bias in the model estimates. An exception

is the QMLE1 regression developed by Papke and Wooldridge (1996) specifically

for fractional data (QMLE-RFRV). The aforementioned bias does not arise in this

model by construction. Several studies have applied linear QMLE-RFRV regres-

sion to RR modelling and have found that this model provides better RR prediction

than the other regression models (Dermine & De Carvalho, 2006; Khieu et al.,

2012; Qi & Yang, 2009). In chapter 3, we show that the QMLE-RFRV has better

out-of-sample predictive accuracy than the alternative parametric regressions that

have been popular in the RR modelling literature.

In this chapter, we build on insights from the findings of large-scale empirical

research in the literature as well as our studies in chapters 3 and 4 documenting

the merits of non-parametric and semiparametric approaches and regression

for fractional data for the purpose of recovery predictions, marginal effect and

interaction effect analysis. The primary aim of this chapter is to propose a flexible

and robust nonparametric local logit model for the RRs of defaulted loans. The

proposed model specification facilitates marginal and interaction effects, as well as

generating RR predictions that would lie within[0,1]. This chapter makes several

principal contributions as follows.

First, our proposed local logit model has a flexible model specification, in that

the unknown coefficients are assumed to be functions of all covariates and can

be locally estimated. The data-driven kernel estimation method uncovers the

underlying nonlinear recovery covariate relationships. This facilitates the analysis

of the marginal and interaction effects of the conditioning variables on RR, as will

be demonstrated in our empirical application presented in this chapter.

1Quasi maximum likelihood estimation
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Second, the local logit model estimates are robust to the various shapes and

features of recovery distribution discussed in the previous paragraphs, thus pro-

viding reliable statistical inference. Third, our model is developed specifically for

fractional data. In proposing the local logit model for fractional data, we integrate

the studies of Papke and Wooldridge (1996) who preoposed QMLE-RFRV, and

Frölich (2006) who developed the local logit model for binary discrete variables,

and demonstrated its superiority to its parametric counterparts. Thus, there is

no need for trimming and transforming recoveries for regression modelling. As a

result, the aforementioned bias will not arise in the local logit model estimates,

improving further the reliability of statistical inference and recovery prediction.

Fourth, we apply the local logit regression to the widely studied Moody’s RR

dataset, which spans 18 years. We demonstrate the ways in which loan/borrower

characteristics and the economic condition at the time of default and their in-

teractions influence the recoveries of defaulted loans and their predictions. We

provide a comprehensive analysis of nonlinear marginal and interaction effects

on recoveries, whereas the main focus of previous studies has largely been on the

prediction of recoveries and linear marginal effects. Our model does not only

capture the nonlinearity in the marginal effects of DC and SI, it also accommodates

nonlinear interactions between continuous and discrete variables, and their effects

on RR.

In addition, we illustrate the framework that integrates the applications of

the nonparametric regression to improve the QMLE-RFRV model specification.

Specifically, we improve the parametric functional form by means of a “calibration”

method using the information gained from the comprehensive empirical analysis

of the local logit estimates. This aims to mitigate the misspecification problem in

the parametric regression.
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These contributions highlight the novelty of our proposed local logit model,

in particular its flexibility in accommodating nonlinear recovery covariate rela-

tionships and thus enriching the model specification, which supports improved

recovery prediction.

The remainder of this chapter is organised as follows: in the next section,

we propose the nonparametric local logit regression for [0,1] bounded response

data along with the estimation method. This is followed by a brief discussion of

the parametric QMLE-regression for fractional data and the estimation method.

Section 5.3 conducts a simulation study to assess various properties and the

robustness of the proposed model and analyses the results. Section 5.4 provides

a specification test. Section 5.5 conducts the empirical analysis and assesses the

out-of-sample recovery predictability of the models. Section 5.6 concludes this

paper. Some additional results of the simulation study in Section 5.3 are further

discussed in Appendix D.

5.2 Methodology

In this section, we discuss the parametric QMLE regression for fractional re-

sponse variable (QMLE-RFRV) and propose a nonparametric local logit model

and the estimation methods which include the choice of kernel functions and

bandwidth selection criterion. Furthermore, we briefly discuss several criteria in

order to evaluate the predictive performance of the proposed model relative to

the parametric counterpart.

5.2.1 Parametric regression for [0,1] bounded data

The parametric QMLE-RFRV is the theoretically valid model for the fractional

response variable, such as the recovery rate (RR). The conditional mean is given
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as:

E(Y |X = x) =Λ(x′γ) , (5.2.1)

where Y is the continuous [0,1] bounded variable (i.e. 0 ≤ Y ≤ 1), X is the vector

of k covariates (which is individual loan characteristics - a mixture of continuous

and discrete variables in the empirical example), Λ(·) is the logistic function,

0 < Λ(·) < 1, and γ is a vector of unknown parameters. Papke and Wooldridge

(1996) proposed a quasi-maximum likelihood estimation (QMLE) method. The

unknown vector of parameters are estimated as:

γ̂ = argmax
γ

n∑
i=1

Yi log(Λ(X ′iγ)) + (1−Yi) log(1−Λ(X ′iγ)). (5.2.2)

The estimator in (5.2.2) is consistent and asymptotically normal, these properties

being robust to various conditional distributional assumptions.

The main assumption of the QMLE-RFRV is the correctly specified functional

form for the conditional mean. However, the conditional mean of this model

can be misspecified in practice because the underlying correct functional form is

largely unknown. We want to improve the specification of the conditional mean

of QMLE-RFRV, which might include sufficient number of interaction terms, poly-

nomials and discretized continuous variables and so on, by exploiting information

provided by the estimates of local logit model. The calibrated QMLE-RFRV is

presented in Section 5.5.3.

5.2.2 Local logit regression

This study proposes a local logit regression for fractional response variable and

a data driven nonparametric method to estimate the model. As will be seen, the

local logit model is flexible to accommodate the underlying any complex nonlinear

relationship between RR and covariates. The conditional mean is defined as:
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E(Y |X = x) =Λ(x′β(x)) (5.2.3)

where x = (x1, ..,xk)′ is k×1 vector, β(x) is a vector of unknown local logit estimator

is the function of x.

We obtain the estimators of local logit model by maximizing the local likelihood

function (Tibshirani & Hastie, 1987) as:

β̂(x) = argmax
β(x)

n∑
i=1

Yi log(Λ(X ′iβ(x))) + (1−Yi) log(1−Λ(X ′iβ(x)))KH (Xi ,x), (5.2.4)

where KH (Xi ,x) is a product of k kernel functions associated with (x1, ...,xk) for

a given a vector of bandwidths H = (h1, ...,hk)′. The local logit model parameter

β(x) - which is a function of covariates x - is locally estimated based on a kernel

weights KH (Xi ,x), which determine the local distance between Xi and a specified

value of vector x for a given set of bandwidths H .

Our study employs two different kernel functions: a Gaussian kernel function

for continuous variables and a kernel function which is constructed specifically

for categorical variables. Let us define:

Xi = (Xci ,X
d
i ),

where the continuous regressors with p dimensions is Xci ∈ Rp, the remaining

regressors Xdi is a q × 1 vector of categorical variables, and p + q = k. For any

tth component in Xdi , where t ∈ {1, ...,q}, each component can take a discrete

value such as Xdt,i ∈ {0,1, ..., ct − 1}, where ct ≥ 2 is the number of categories of Xdt,i .

Clearly, ct = 2 for the dummy variable. In what follows, the two kernel functions

that we use in the estimation of local logit are defined, which also have been fully

discussed in Chapter 3.
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A kernel function for continuous variable

The standard Gaussian kernel function is employed for any continuous variable

(Xci ) which is defined as:

κs
(
Xcs,i ,x

c
s ,hs

)
=

1
√

2π
exp(−1

2
(
Xcs,i − x

c
s

hs
)2), (5.2.5)

where s = 1, ..,p, κ(·) is the Gaussian kernel function, and hs is a bandwidth

associated with sth continuous variable.

A kernel function for discrete variable

For the discrete variable, we apply the kernel function proposed by Racine and Li

(2004) which is defined as:

λt(X
d
t,i ,x

d
t , lt) =


1, if Xdt,i = xdt ,

lt, otherwise,
(5.2.6)

where we assume that the tth categorical variable, lt is the bandwidth associated

with λt(·), and 0 < lt ≤ 1.

The product of the kernel functions2 in (5.2.5) and (5.2.6) are functions of

bandwidths and the optimum selection of which are crucial in the estimation of

the local logit model. There are several bandwidth selection methods available

for the non-parametric estimation. Although the plug-in method is popular, its

application is limited as it does not work well in the small sample setting and the

high dimensional independent variables x. This study use, on the other hand, the

least-squares cross-validation which is commonly applied in practice to select the

bandwidth that minimize a certain loss function.

2which is defined as K(Xi ,x) = κ1(Xci,1,x
c
1,h1) · · ·κp(Xci,p,x

c
p,hp) ·λ1(Xdi,1,x

d
1 , l1) · · ·λq(Xdi,q,x

d
q , lq)
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In this study, we select the set of bandwidths H = (h1, ..,hp, l1, .., lq) that mini-

mizes an objective function, which is the sum of prediction error squares, defined

as:

CV =
n∑
i=1

(
Yi −Λ(X ′i β̂(x−i |H))

)2
, (5.2.7)

where β̂(x−i |H) is a k × 1 vector of leave-one-out estimates of local logit estimators

associated with xi which is a solution to:

argmax
β(Xi )

n∑
j=1,i,j

Yj log(Λ(X ′jβ(Xi))) + (1−Yj) log(1−Λ(X ′jβ(Xi)))KH (Xj ,Xi). (5.2.8)

It is worth noting that the optimal bandwidth in (5.2.7) would be very large if

the unknown underlying functional form is indeed the standard linear function,

Λ(X ′γ). When the sizes of all bandwidths increase as n goes to infinity, the

approximately equal kernel weights are assigned for all i. Specifically, the large

bandwidths would cause the product of kernel functions in (5.2.4) to be the same

regardless of the local distance between Xi and x. Thus, the local estimators β(x)

in (5.2.4) converge to the global estimator γ in (5.2.2) as the bandwidths become

larger. It shows that the local logit model encompasses the global parametric

QMLE-RFRV.

Moreover, when the dimension p of continuous variables is large, in general, the

nonparametric estimation method has curse of dimensionality problem (Greene,

2003). This is a common criticism in nonparametric method due to the sparsity of

data in hight dimensional space which leads to a decrease in convergence rate for

regression function estimators as number of regressors increase. As mentioned

in Frölich (2006), the variance of the error term is bounded in the model with

fractional response variable, and therefore, the curse of dimensionality problem

does not arise in the local logit model we study in this paper. In addition, in

the estimation of local logit model with binary response variable, Frölich (2006)

assigns one common bandwidth for all discrete and another common bandwidth

136



Non- and Semi-parametric Methods for Modelling Recovery Rates

for all continuous regressors. In our study, we apply different bandwidths for the

continuous variables and only one bandwidth for all discrete variables.

5.3 Simulation study

In this section, we conduct an extensive simulation study in order to assess the

finite sample properties of the proposed local logit model estimators and their

robustness to various nonlinear functional forms for the conditional mean and

to various symmetric and asymmetric error distributions. For the comparison

purpose, we consider the QMLE-RFRV as the benchmark model with correct linear

and nonlinear functional forms. On the other hand, there is no assumption on

the conditional mean specification of local logit model. Additionally, the shape of

the error distribution is assumed to be unknown for both models. We also ensure

that the response variable generated is bounded in [0,1] with high intensity at the

boundaries zero and one, which reflect the typical features of the RR data to be

modelled in the empirical application - one of the main objectives of this paper.

We generate the data for two sample sizes, n=200 and n=500.

5.3.1 Experimental design

We generate seven sets of univariate and multivariate X variables with different

degrees of nonlinearity in the conditional mean specifications. Furthermore, the

data-generation processes include various distributional assumptions.

A1 Univariate data-generation process

We generate the data as follows: X1 ∼ N (1,1), U ∼ N (0,1), and the response

variable with two-sided censoring as Y = max(0,min(1,Y ∗)). Y ∗ = f (X1) is the

conditional mean specification with three different functional forms:
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(U1) Y ∗ = 0.5X1 +U

(U2) Y ∗ = X2
1 +U

(U3) Y ∗ = sin(X1) +U

In other words, the univariate functional forms include linear, quadratic, and

sine functions. Figures 5.1a to 5.1c demonstrate the densities of the simulated

response variable under U1 to U3, respectively, which indicates the boundaries of

[0,1] with intensities at both ends. Although, we assume two-sided censoring, this

information is assumed to be unavailable. Therefore, both parametric fractional

regression and local logit regression incorrectly specify the likelihood assumption

and the link function.

[————— Insert [Figure 5.1] here —————]

A2 Bivariate data-generation process Bivariate data (X1,X2) is generated. Then,

similar to A1, Y = max(0,min(1,Y ∗)), where Y ∗ = f (X1,X2). For a given data-

generation process U where U ∼N (0,1), (X1,X2) and Y ∗ are generated as follows:

(B1) X1 ∼N (0,1), X2 ∼N (0,1), and Y ∗ = 0.2X1 + 0.5X2 +U

(B2) X1 ∼N (0,1), X2 ∼N (0,1), and Y ∗ = 0.2X1 + 0.5X2
2 +U

(B3) X1 ∼ χ2
(3), X2 ∼N (0,1), and Y ∗ = 0.5sin(X1) + 0.5X2 + 0.2X2

2 +U .

These assumptions assume the linear functional form and its combination with

quadratic function in B1 and B2, respectively. On the other hand, a highly

nonlinear functional form, which is a mixture of sine and quadratic functions, is

applied in B3.

[————— Insert [Figure 5.2] here —————]
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Figures 5.2a, 5.2b, and 5.2c show the densities of the generated Y for B1,

B2, and B3, respectively, which are bounded with different proportions of the

clustering at zero and one.

A3 Multivariate data-generation process

We generate a multiple data set which is a mixture of continuous and discrete

independent variables. This is common in many practical applications arising in

economics, finance, and other disciplines.

(M1) Y = Φ(−0.02X1 + sin(X2) +D1 + 0.5D2 +D3 + 0.5X1D2 +U ),

where Φ(·) is a probit link function, X1 ∼ χ2
(3), X2 ∼ N (1,1), D1 ∼ Ber(1,0.75),

D2 ∼ Ber(1,0.4), D3 ∼ Ber(1,0.2), and U is generated from an equally weighted

mixture of N (−2,1) and N (2,1). Given the complexity of the functional form3, we

consider only n = 500. The sample density is presented in Figure 5.3.

[————— Insert [Figure 5.3] here —————]

5.3.2 Results of the simulation study: A summary

We assess the finite sample properties of the proposed local logit model in

comparison with those of the parametric QMLE-RFRV, which is the bench-

mark model in terms of in-sample and out-of-sample predictabilities and

the interpretability of the model estimates. We do this in the following four

steps: (i) partition the full sample into in-sample and out-of-sample data;

(ii) evaluate the predictability of the models using MSE and MAE criteria;

(iii) repeat steps (i) and (ii) 1,000 times, then compute the average MSE and

MAE; and (iv) compare the local logit model estimators with those of the

benchmark model with correct model specifications. We assess these properties
3As there are three dummy variables, we consider only the moderate sample size to avoid the

possibility of causing discontinuity in the conditional mean
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for the three data-generation processes given in A1 to A3, and n = 200 and n = 500.

Predictive performance

Tables 5.1 and 5.2 report the in- and out-of-sample predictive measures MSE and

MAE of the local logit and the benchmark model for n = 200 and 500, respectively.

The results show that the proposed model consistently outperforms the benchmark

model in in-sample prediction, while the out-of-sample performance of the local

logit model is comparable to that of the benchmark model with correctly specified

functional form. Full detailed results and discussion of the simulation study in

terms of the predictive performance is provided in Appendix D1.

A noteworthy result is that the performances of the proposed model in U1 and

B1 are identical to the benchmark model. We observe that the selected bandwidths

are large when the true conditional mean is linear. This might indicate that the

local logit estimates identify the model specification correctly as discussed in

section 5.2.

[————— Insert [Tables 5.1 and 5.2 ] here —————]

Local logit analysis

In this section, we examine how close the local logit estimates are to those of

the benchmark model with correct functional form when the data-generation

process is multivariate (M1) a mixture of continuous and discrete variables. The

remaining results of assumptions A1 and A2 are also provided in Appendix D2.

Let us denote the estimate of the benchmark model as:

ŷ =Λ(γ̂ + γ̂1x1 + γ̂2 sin(x2) + γ̂3d1 + γ̂4d2 + γ̂5d3 + γ̂6x1d2). (5.3.1)
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and the estimate of the local logit regression as:

ŷ =Λ(β̂0(x) + β̂1(x)x1 + β̂2(x)x2 + β̂3(x)d1 + β̂4(x)d2 + β̂5(x)d3) (5.3.2)

First, we analyse the interaction of x1 and d2. That is, the effect of x1 on y

depends on d2. We expect the local estimate β̂1(x) conditional on d2 to be the

same as the benchmark model estimate γ̂1 + γ̂6 when d2 = 1, and γ̂1 when d2 = 0.

A plot of the local estimate β̂1(x) given d2 = 0 appears in Figure 5.4, which is

clearly comparable to γ̂1 in Figure 5.4c. The results suggest that both models

generate similar conditional marginal effect estimates of x1. On the other hand,

the local estimate β̂1(x) given d2 = 1 is shown in Figure 5.4b, which we compare

with γ̂1 + γ̂6 in Figure 5.4d. We find that the average estimates over the iterations

in both models are approximately 0.5. These findings indicate that on average the

local logit estimate adequately captures the interaction effect between x1 and d2,

although its variation is higher than that of the benchmark model estimate.

[————— Insert [Figure 5.4] here —————]

Second, consider the nonlinear component sin(x2). The local marginal effect

estimate β̂2(x) in Figure 5.5a is compared with γ̂2 cos(x2) in Figure 5.5b. These

figures show that the local estimate approximates some of the nonlinear behavior

of the benchmark model. The local logit estimate shows a positive effect with a

diminishing rate when x2 > 0. The effect is then negative, which is similar to the

estimate of the correctly specified benchmark model.

Third, the marginal effect estimates of the discrete variables d1 and d3 are

plotted in Figures 5.6a and 5.6b for the local logit and the parametric QMLE-

RFRV, respectively. It is approximately 0.6 for both the local logit and benchmark

models. However, the local estimates have slightly higher variations than those of

the QMLE-RFRV model.

[————— Insert [Figures 5.5, 5.6] here —————]
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Fourth, Figure 5.7 shows the estimate of the interaction of d2 and x1. Given the

correct specification of the benchmark model in (5.3.1), the marginal effect of d2 is

γ̂4 + γ̂6x1, which is shown in Figure 5.7b. Clearly, the effect of d2 on the response

variable is a linear function of x1. The local logit estimate β̂4(x) indicates a positive

relationship between d2 and x1, as shown in Figure 5.7a, which is approximately

linear.

[————— Insert [Figure 5.7] here —————]

The overall results of the simulation study show that the local logit estimators

can detect the nonlinear relationship between the response variable and covariates,

including various forms of nonlinearity and interactions between continuous and

discrete variables. In the empirical study of RR modelling, we will exploit this

information from the local logit estimation to “calibrate” the QMLE-RFRV model

(see section 5.5 for details).

5.3.3 Robustness of the local logit model

In this section, we evaluate the robustness of the proposed model under various

assumptions regarding the error distribution, including bimodality and asymme-

try. We consider two model specifications, which include (M1), defined in section

5.3, and (M2) defined as:

(M2) Y = Φ(−1.5
√
X1 + sin(X2) +D1 + 0.5D2 + 0.5X3D2 + 0.2X3 + d3 +U )

where X1 ∼ χ2
(3), X2 ∼ χ2

(1), X3 ∼ N (0,2), D1 ∼ Ber(1,0.75), D2 ∼ Ber(1,0.4), and

D3 ∼ Ber(1,0.2). We consider two assumptions for the error distribution: an

asymmetric U (1) ∼ χ2
(1), and a bimodal U (2) which is generated as the equally

weighted mixture of N (−2,1) and N (2,1).
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This study estimates the MSE and MAE measures of the local logit model

and the benchmark model relative to those of the correctly specified parametric

QMLE-RFRV model for the purpose of performance assessment. Note that the

QMLE-RFRV with a standard linear functional form is the benchmark model used

here for comparison purposes. Specifically, if the relative MSE and MAE are equal

to or less than one, then the model performance is the same or better than that of

the correctly specified QMLE-RFRV. We set three sample sizes, n = 200, 500 and

1,000, where evaluations are made in both the in-sample and out-of-sample data.

The in-sample performance measures (the relative MSE and MAE) of the pro-

posed local logit model are reported in Panel (a) of Tables 5.3 and 5.4, respectively.

These relative measures are consistently lower than those of the parametric re-

gression. The results also show that both relative MSE and MAE are mostly less

than or equal to 1.00 for both asymmetric and bimodal error distributions. On

the other hand, the QMLE-RFRV, as the benchmark model, performs poorly for

asymmetric error distribution, with both the MSE and MAE being greater than

1.00 and close to 2.00 in many cases.

Panel (b) of Tables 5.3 and 5.4 reports the models’ out-of-sample performance

measures. The local logit model continues to outperform the parametric regression

in most cases. Additionally, the local logit model tends to have substantially lower

MSE and MAE for the Chi-squared error assumption compared with the bimodal

error distribution. Moreover, we notice that the local logit model has relatively

large MSE and MAE for bimodal distributions for a small sample size n = 200,

while vast improvements are observed for the larger sample sizes.

[————— Insert [Tables 5.3 and 5.4 ] here —————]
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5.4 Specification testing

In this section, we briefly discuss a specification test for the null hypothesis that

the parametric QMLE-RFRV model with a given specification fits the RR data well

against the alternative hypothesis that the local logit model fits the data well. The

testing procedure employs the generalised maximum likelihood ratio (Fan, Zhang,

& Zhang, 2001) and is augmented with a bootstrap method for calculating the

p-value of the test statistic. The test statistic is defined as:

T S =
RSS0 −RSS1

RSS1
(5.4.1)

where RSS0 is the residual sum square under the null hypothesis which is∑n
i=1(Yi−Λ(X′i γ̂))2

n , and RSS1 is under the alternative which is
∑n
i=1(Yi−Λ(X′i β̂(x)))2

n . The

null hypothesis is rejected if the p-value of the TS is less than the nominal level.

To compute the p-value, we apply the wild bootstrap procedure as follows:

1. Under the null hypothesis, generate Y ∗i = Λ(X ′i γ̂ + e∗i ) for each i = 1, ...,n,

where e∗i is generated as follows:

• Estimate the residual êi =Λ−1(Y (ν)
i )−Xiγ̂ where Y (ν)

i = Yi+ν
1+2ν , and ν is a

small arbitrary value4.

• Obtain e∗i = (êi − 1
n

∑n
i=1 êi) · ηi where {ηi} is a sequence of independent

and identically distributed random variables drawn from N(0,1).

2. Use the dataset {(Y ∗i ,Xi) : i = 1, ...,n} to estimate the models under both

null and alternative hypotheses. Then, the test statistic is calculated as

T S∗ = RSS∗0−RSS
∗
1

RSS∗1
.

4This allows Λ−1(Y (ν)
i ) defines for all Y ∈ [0,1].

144



Non- and Semi-parametric Methods for Modelling Recovery Rates

3. Repeat Steps 1 and 2 B times to draw the empirical distribution for T S∗.

Then, the p-value is computed by 1
B

∑B
b=1 I(T S

∗
b ≥ T S), where I(·) is an indi-

cator function and T S∗b is calculated based on the b-th bootstrap sample.

5.5 Empirical results

The local logit model is applied to the RR dataset5 to uncover the nature of the

underlying unknown nonlinear RR covariate relationships, to conduct marginal

and interaction effects analysis, and to generate RR predictions. The results of this

empirical investigation will be utilised to “calibrate” the functional form of the

parametric QMLE-RFRV in order to mitigate the misspecification problem of the

linear model.

5.5.1 Bandwidth selection

We estimate the proposed model with the full dataset of 3,573 defaulted loans.

The local logit regression is specified as:

y = E(Y |X = x) =Λ
(
x′β(x)

)
=Λ

(
β0(x) + βDC(x) ·DC + βSI (x) · SI

+
6∑
d=2

βT ype(d)(x) · T ype(d) +
4∑
d=2

βRank(d)(x) ·Rank(d)

+ βCol(x) ·Col
)

(5.5.1)

where β(x) = (β0(x),βDC(x), ...,βCol(x))′ is a vector of the unknown parameters

associated with x, and T ype(d) and Rank(d) are dummy variables representing

each category of T ype and Rank, respectively (see Table 3.1 in chapter 3 for more

details). For the comparison purpose, we estimate the benchmark model, which

is the QMLE-RFRV, denoted as Λ(x′γ). The local logit parameters are estimated

5The data description and preliminary analysis are provided in Chapter 3
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with the kernel function (5.2.5) for the continuous variables DC and SI, and kernel

function (5.2.6) for the categorical variables Type, Rank, and Col. The bandwidth

is selected by the leave-one-out least-squares cross-validation method (5.2.7). Let

us define,

H = (h1,h2, `1),

where H is the 3× 1 vector of the bandwidths, h1 and h2 are associated with DC

and SI, respectively, and `1 is a single bandwidth for all three categorical variables:

Rank, Type and Col. H = (0.1121,1.2734,1.0000) is the set of selected optimal

bandwidths. We estimate the local logit model with the selected bandwidths for

the full dataset. We find that the MSE of the local logit model is 0.076, compared

0.089 for the benchmark model, indicating the better fit of local logit model for

the data than the benchmark parametric model.

5.5.2 Local logit analysis

The marginal effects of the continuous and discrete variables are analysed in the

local logit and the parametric QMLE-RFRV models. In this section, we provide

the marginal effects analysis of continuous and discrete variables, followed by a

discussion on the interaction effect between continuous and discrete variables

Local logit estimates of continuous variables

[————— Insert [Figure 5.8] here —————]

Figure 5.8a shows that the local logit estimate of DC is a nonlinear function

of itself, denoted as β̂DC(x), while the QMLE-RFRV estimate γ̂DC is represented

by the solid horizontal line. The local logit model estimates clearly show the

nonlinear marginal effect of DC, whereas it is constant in the parametric model in

figure 5.8a.
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In the local logit model, the effect of DC on RR increases with somewhat constant

rate for 0 < DC < 0.6, reaching the highest impact when DC = 0.6. This is followed

by a decreasing effect on the RR of the defaulted loans for 0.6 ≤DC < 0.8, which

reaches its minimum effect atDC = 0.8. Then, the positive effect with an increasing

rate is reappeared for DC > 0.8. These results imply that defaulted loans with

0 < DC < 0.6 tend to be more responsive to an increase in additional DC than loans

with higher DC. Figure 5.8a also shows that the estimated parametric coefficient

γ̂DC is 2.4, which is similar to the average local logit estimates β̂DC(x).

To analyse the effect of SI on RR, β̂SI (x) and γ̂SI are plotted (solid line) in

Figure 5.8b. To explain the marginal effect of SI on RR, we consider three

ranges of SI: the low SI as SI<0, the high SI as 0 ≤ SI < 1.5, and the crisis

SI6 as SI ≥ 1.5, indicating good, poor, and (global financial) crisis economic

conditions. The effect of SI on RR is negative and increasing with SI, and it then

becomes positive and increasing for SI > 1.5. The variation of the effect of SI

on RR is very high for low values of SI. This result indicates that RR is more

sensitive to changes in economic condition during a low-SI period, compared

to high-SI and the GFC crisis periods. The variation of the local logit estimate

shows that although SI has a nonlinear negative effect on RR, the magnitude

of the effects are different conditional on the characteristics of each loan. A

relatively small variation of the local estimate observed for high SI implies

that the effect of high SI is less dependent on the loan characteristics than

for the low SI and the crisis SI. In practice, these findings indicate changes

in the behaviour and expectations of both banks and borrowers during an

economic downturn (0 < SI ≤ 1.5). Lenders would have similarly adopted

more conservative financial strategies in preparation for a negative scenario.

This leads to the smaller negative effect of high SI on RR with lower variation.

[————— Insert [Figure 5.9] here —————]

6The data description and summary statistics in chapter 3, section 3.4.1, show that the stress
index is greater than 1.5 is observed only during the recent Global Financial crisis
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Furthermore, we consider SI = {−1,0,1} and examine the effect of DC on RR for

collateralised revolving loans with rank 1 (T ype = 2,Rank = 1,Col = 1) across

various economic conditions measured by SI. The plot in Figure 5.9 indicates that

the RR is a nonlinear function of DC. The marginal effect of DC on RR is zero for

DC < 0.3, and positive & increasing until DC = 0.6, and then nearly zero for DC >

0.6. On the other hand, SI has a negative impact on RR. For example, if we consider

a loan with DC = 0, then the RR is 0.63, 0.75, and 0.90 for high-stress periods

(SI = 1), neutral-stress periods (SI = 0), and low-stress period (SI = -1), respectively.

Local estimates of discrete variables

We now turn to an analysis of the local estimates of the discrete variables, including

type of loan, instrumental rank, and collateral status. The estimates indicate the

levels of riskiness of each category in comparison to the reference category7.

Specifically, a negative estimate means that the category of interest has a lower RR

(higher risk) than the reference category, when other variables are held constant.

Table 5.5 compares the median of the local logit estimates of all discrete variables

with the coefficients estimates of QMLE-RFRV. The results show that the medians

of the local estimates and the QMLE-RFRV estimates are more or less the same.

These results imply that the local logit and the parametric estimators for the

discrete variables contain somewhat similar information.

[————— Insert [Table 5.5 ] here —————]

The local logit estimates of all discrete variables are presented in Figure 5.10.

Their signs are mostly in line with expectations. However, there are some

unexpected positive estimates for the local estimates of senior secured bonds

(Type 3) and senior unsecured bond (Type 5) in Figure 5.10a, and unexpected

negative estimates for Col in Figure 5.10c. In general, both types of senior

bonds are expected to have lower RRs than term loans due to their priority in

7The reference categories of Type, Rank and Col are given in Table 3.1
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the credit capital structure. Hence, only a negative sign is expected. On the

other hand, collateralised loans are commonly expected to have a higher RR

than loans without collateral, in which case a positive effect is expected. As

shown earlier in the simulation study, the unexpected signs of the estimates

may be due to the presence of interaction effects. In what follows, we analyse

the potential interaction effect between the continuous and discrete covariates.

[————— Insert [Figure 5.10 ] here —————]

Interaction effects between continuous and discrete variables

We find that there are three significant relationships between DC and the

local estimates of both Type = {3,5} and Col = 1, which indicates interac-

tion effects among these variables resulting in the unexpected signs in the

previous analysis. Figure 5.11 shows that the effects of both senior bonds

are highly dependent on the levels of DC, which might indicate interactions

between DC and both senior bonds. First, for senior secured bonds, Fig-

ure 5.11a shows the unexpected positive estimates for defaulted loans with

0.2 < DC < 0.6. Second, for the senior unsecured bond, the expected nega-

tive signs are observed only for the loan with 0.1 < DC < 0.5 in Figure 5.11b.

[————— Insert [Figure 5.11] here —————]

An analysis of the remaining marginal effects of T ype = {2,4,5} and DC is also

provided, although the effects of these types are in line with expectations. We

find an interaction effect between revolving loans and DC, Figure 5.12a illustrates

how the marginal effect of revolving loan depends on DC. Although, a positive

marginal effect is found as expected, the figure shows that the strength of the

effect depends on the level of DC. The effect is stronger as the level of DC increases

from DC = 0.5, while it is relatively small effect for DC < 0.5. This implies that

revolving loans are expected to have substantially higher RR than the term loan, if

the level of DC is relatively high. The remaining Figures 5.12b and 5.12c represent

the dependency between the marginal effects of T ype = {4,6} and the level of
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DC, respectively. The interaction effects between these variables are not found.

[————— Insert [Figure 5.12 ] here —————]

To explain the unexpected negative estimates of Col, Figure 5.13 shows the rela-

tionship between the local estimates of Col and the levels of DC. A clear pattern is

observed in Figure 5.13a, the estimates are negative, when the defaulted loan has

a DC between 0.2 and 0.5.

[————— Insert [Figure 5.13 ] here —————]

In addition, we find that the interaction effects of Type and SI as well as Col and

SI cannot be identified. Figures 5.14a to 5.14e shows the marginal effect of each

type of loan conditional on the level of SI, where the effect varies substantially

across values of SI. It is only in Figures 5.14c and 5.14e that some relationships

are observed, which show that the negative marginal effects of T ype = {4,6} are

roughly the same across all macro-economic conditions. Also, Figure 5.15 shows

that the relationship between marginal effect of Col and the levels of SI cannot be

detected. Therefore, interaction effects are found among loan characteristic vari-

ables, rather than between the loan characteristic and macro-economic systematic

variables.

[————— Insert [Figures 5.14 and 5.15] here —————]

To verify the findings of the interaction effect analysis, in Table 5.6, we partition

the empirical RR data based on the analysis. The results confirm that the local

logit analysis can uncover the true interaction effects observed in the empirical

data, which is discussed as follows. We compare the average RRs of the senior

secured and unsecured bonds with those of the collateralised term loans (reference

category) with various ranges of DC in Panels A and B, respectively. We find that

the average RR of the bonds is lower than that of term loans, if we do not consider

bonds’ level of DC. On the other hand, as observed in the local logit estimates

analysis, the unexpected positive effects are found for the secured senior bond
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with 0.2 ≤DC ≤ 0.6, and the unsecured bond with DC ≤ 0.25 and DC ≥ 0.5. We

find that the results in table 5.6 is consistent to our previous analysis. For example,

although the term loans’ average RR are mostly higher than those of the senior

secured bonds, only bonds with 0.2 ≤DC < 0.6 have higher RRs than term loans.

In Panel C, the results show that collateralised loans mostly have substan-

tially higher RRs than uncollateralised loans. Only when we consider loans

with 0.2 ≤ DC < 0.5, the averages RR of both loans are somewhat similar,

which is in line with the analysis of the interaction between Col and DC.

[————— Insert [Table 5.6 ] here —————]

5.5.3 Calibrated QMLE regression for fractional response vari-

ables

In Section 5.5.2, we found nonlinear marginal effects of DC and SI, and also

determined how the level of DC interacted with the covariates Type and Col. In

this section, we improve the linear specification of the parametric conditional

mean regression, which may include sufficient numbers of interaction terms,

polynomials and discretised continuous variables, by exploiting the information

provided by the estimates of the local logit model.

This exercise has three main motivations: it will (i) simplify the finding of

the local logit estimates; (ii) ease the interpretation of the estimate, as most

practitioners are familiar with linear regression; and (iii) provide valid statistical

inferences as well as the analytical form of the marginal effects. Moreover, the

result in our simulation study shows that the local logit model estimate can

illustrate the correct functional form of the parametric QMLE-RFRV.

Table 5.7 reports the improved specification of the QMLE-RFRV model, where

the results in Panels A, B, C, and D are based on the local logit analysis. In

Panel A, we introduce an indicator function to control the range of DC, as a
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positive marginal effect of DC with an increasing rate was observed when DC

< 0.6 in Figure 5.8a. Therefore, a quadratic function is applied. On the other

hand, a simple linear function is applied to the other ranges of DC. The results are

consistent with the local logit analysis, as significant increasing positive marginal

effects are observed for DC < 0.6. Also, the marginal effect of DC ≥ 0.6 is not as

strong as in the former given range, as the estimated parameter γDC2
is significantly

smaller than γDC1
.

In Panel B, the parameter estimates of γSI1
, γSI2

, and γSI3
represent the effects

of SI for low SI, high SI, and crisis SI, respectively, as the negative effects of SI

weaken as SI increases. The results show that the negative effects are stronger for

low SI, followed by high SI and crisis SI, respectively, since γSI1
< γSI2

< γSI3
. In

addition, the effect of the crisis SI, γSI3
, is insignificant, which is in line with the

observed high variation of the local logit estimate of SI > 1.5 in Figure 5.8b.

Panels C and D take into account of the four interaction effects analysed in

Section 5.5.2, including T ype = {2,3,5} and Col = {1}, which interact with DC. The

results show that the signs of the parameter estimates are consistent with the local

logit analysis. For example, the interaction effects between DC and the senior

secured bonds are reported as γT31
, γT32

, and γT33
in Panel C. The results show that

only the γT32
estimate is significantly positive, which represents the interaction

effect between senior secured bonds and DC ∈ [0.2,0.6). This means that senior

secured bonds with 0.2 ≤DC < 0.6 are likely to have higher RRs than term loans,

which is consistent with our previous findings in the local logit model. For Panel

D, a negative marginal effect of Col is observed only when DC is between 0.2 and

0.5, γC2
, but the effect is insignificant. This result and together with the finding in

Table 5.6 might imply that the negative interaction effect of Col and DC found in

the local logit analysis would also be insignificant.

[————— Insert [Table 5.7 ] here —————]
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To indicate the statistical validity of the improved functional form, we apply a

wild bootstrap-based specification test with 1,000 iterations. The QMLE-RFRV

with improved specification in Table 5.7 is the null hypothesis against the local

logit model alternative. According to the p-value computed by the bootstrap

method, we cannot reject the null hypothesis at the 5% level of significance

with a p-value of 0.09. This offers statistical evidence that the calibrated model

specification fits the RR data well8.

5.5.4 Model selection based on in- and out-of-sample predic-

tive performance criteria

In this chapter, we employ two predictive performance criteria to evaluate the

predicted RR, which are point prediction evaluation, and quantile of simulated

RR portfolio predictive evaluation.

Point prediction evaluation

We use three methods to partition the full samples into in- and out-of-samples

and assess the sensitivity of the models’ predictions to these methods. The three

methods include:

(DF1) Partition the full sample randomly into a pre-specified 70:30 ratio of in-

sample and out-of-sample, for 1,000 iterations. According to our empiri-

cal RR data, one borrower could have several defaulted loans. Randomly

partitioning the full data allows overlapping information, as a borrower’s

information could be included in both the in- and out-of-sample data.

(DF2) Partition the full sample into, for example, an in-sample period 1994-2005,

and an out-of-sample period 2006-2012. This way of partitioning ensures

that there are no overlapping observations in the samples. This definition

8We also conduct the specification test on QMLE-RFRV with standard linear functional form.
As a result and we reject the null hypothesis with a p-value of 0.72
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also mimics the application of RR predictive models in practice, as banks

would want to use the full set of observed data to predict the RR in the forth-

coming years (see chapter 3, section 3.5.2 for the details and discussions).

(DF3) Select any particular year as the out-of-sample period, and the remaining

years as the in-sample period. For example, the out-of-sample period is

the start of the GFC, 2008, then the in-sample period is 1994-2007 and

2009-2012. This way of partitioning the in- and out-of-sample periods is

very useful to predict RR at the various phases of the economic cycle.

Quantile of RR portfolio prediction evaluation

In this method, we evaluate the predictive performance of the models at various

quantiles of the simulated RR portfolio distribution of the out-of-sample period

(Altman & Kalotay, 2014). The following re-sampling procedure is employed to

construct the RR portfolio distribution:

(Step 1) Define the in-sample data period as 1994-2004 and the out-of-sample period

as 2004-2012

(Step 2) Draw a random sample of 100 RRs from the out-of-sample data with replace-

ment. Assign each loan a $1.00 face value and construct an equally-weighted

portfolio of the selected RRs. This RR portfolio represents the money that is

recovered from a portfolio with a $100.00 face value.

(Step 3) Predict the selected out-of-sample RR using the benchmark QMLE-RFRV

model, the local logit model, and the calibrated QMLE-RFRV model. The

predicted RR portfolio is then constructed for each model.

(Step 4) Repeat (Step 2) and (Step 3) above 10,000 times and construct a simulated

RR portfolio distributions for the three models under investigation.
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The model performance is evaluated according to the predictive error of a

simulated RR portfolio at various quantiles of the distribution.

5.5.5 Empirical results of predictive performance evaluations

In what follows, the predictive performance criteria in previous section are

applied to compare the predictive power of the models included in this chapter.

Point prediction accuracy

We adopt the data partitioning method DF1. The out-of-sample MSE and MAE

of the local logit model are 0.0824 and 0.2750, respectively. For the calibrated

linear model, they are 0.0854 and 0.2880, respectively. On the other hand, the

benchmark model has the highest predictive errors, 0.0964 and 0.3246. These

results indicate that the local logit model outperforms the others.

The results of the out-of-sample evaluation of the models for DF2 are reported

in Table 5.8, which includes the predictive performances of 11 different out-of-

sample windows from 2001 to 2012. For the first window, we estimate the models

for the in-sample period 1994 to 2000, and evaluate the predictions of the out-of-

sample period 2001 to 2012. Then, the in-sample window is continually expanded

by each calendar year until the eleventh window in-sample period is 1994 to 2010

and the out-of-sample period is only 2011 to 2012. The MSE and MAE of the

predictions for each window are reported in Table 5.8.

[————— Insert [Table 5.8] here —————]

The results show that the proposed local logit model has the highest predictive

accuracy, followed by the calibrated model. The benchmark model outperforms

the proposed model only in the two out-of-sample windows of 2002-2012 and

2010-2012 under both the MSE and MAE criteria at the 5% level of significance
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(Table 5.8). The table also provides the averages and variances of MSE and MAE

over 11 windows. The MSE and MAE averages of the proposed local logit model as

well as their variances are consistently lower than those of the benchmark model.

Noticeably, the differences in MSE among the three models are large for the

out-of-sample predictions between 2004 and 2008 in Table 5.8. These years are

crucial, since they partially cover the global financial crisis period of 2007 to

2010. The benchmark model is highly sensitive to the crisis year compared to the

non-parametric and calibrated models. The MSE and MAE are very large during

the crisis period for the benchmark model. The benchmark model’s low accuracy

during the GFC could be due to the unexpected shock with a substantially high

level of SI. As a linear model, the constant negative effect of SI could lead to an

underprediction of RR during the crisis.

[————— Insert [Table 5.9] here —————]

The results of the point prediction evaluations of the three models for DF3

are presented in Table 5.9, where we predict RR for every year from 2000 to

2011. Table 5.9 shows that the local logit regression consistently outperforms the

benchmark regression. The MSE and MAE averages of the proposed model across

the 11 year-period are 0.087 and 0.224, compared to 0.096 and 0.235 for the

benchmark model. The benchmark model’s predictions outperform the proposed

model only in 2010 and 2011. The calibrated model mostly outperforms the

benchmark model and its performance is comparable to that of the local logit

model. As far as the economic cycle is concerned, the local logit model and the

calibrated QMLE-RFRV model have comparable performance and outperform the

benchmark model at all window sizes. In addition, the MSEs of the local logit and

calibrated models are substantially lower than those of the benchmark model

during the GFC period. On the other hand, we observe that the benchmark model

yields a relatively high MSE during the recent GFC periods (2007-2009) when SI
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level is at its peak.

Quantile of RR portfolio prediction accuracy

We evaluate the performances of the models at various quantiles of the simulated

portfolio distribution. The results in Table 5.10 compare RRs at the 0.05, 0.25, 0.5,

0.75, and 0.95 quantiles of the observed RR portfolio distribution with those of the

predicted portfolio distributions. The local logit model and the calibrated model

predict the RR portfolio at the five selected quantiles of the distribution more

precisely than the benchmark model does. For example, at the 0.5 quantile of the

portfolio distribution, the actual portfolio can recover $63.96 from a $100.00 face

value. The predictions of both the proposed model and the calibrated model are

approximately $61.30, compared to the benchmark model’s prediction of $67.71.

This implies that the benchmark model is more likely then the other two models to

overestimate the RR portfolio value. In addition, we find that the local logit model

outperforms the other models for the high-risk portfolios at the low quantiles

followed by the calibrated model.

[————— Insert [Table 5.10] here —————]

In summary, the proposed local logit model outperforms the other two models

as indicated by all predictive performance measure criteria in both the point

and quantile predictions. We also find that the calibrated model has slightly

lower predictive power than the proposed model, and outperforms the benchmark

model.

5.6 Conclusion

In this chapter, we propose a nonparametric local logit model for [0,1] bounded

response variables and assessed its finite sample properties relative to the QMLE

regression for fractional response variables (QMLE-RFRV), which we use as the
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benchmark model. These two models were then applied to empirical RR data and

covariates. The results of the marginal and interaction effect analyses of the local

logit model were utilised to calibrate the QMLE-RFRV model. The in-sample and

out-of sample predictive performances of the three models were assessed using

the MSE and MAE measures. The main findings of this study can be summarized

as follows.

First, an extensive simulation study establishes that the properties of local

logit model estimates are as good as those of the correctly specified parametric

model in moderate sample sizes, and they are robust to asymmetric and bimodal

error distributions. Second, our application of local logit regression to model RR

data uncovered the underlying nonlinear RR data and covariate relationships,

including interaction effects among covariates. Third, the results of the local logit

model were used to improve the parametric QMLE-RFRV model specification,

producing what we call the ”calibrated model”. The calibrated model is nonlinear

in variables, which includes some useful interaction terms. Fourth, we assessed

the in-sample and the out-of-sample RR predictability of the local logit model and

the calibrated model in comparison to the standard parametric model. The results

show that the local logit model outperforms the others. In addition, the calibrated

model is comparable to the local logit model in terms of predictive performance.

An attractive feature of the local logit and calibrated models is that they outper-

form the benchmark model in out-of-sample RR prediction, particularly during

the crisis period. Our findings are useful to applied researchers and practitioners

who are unfamiliar with the nonparametric machinery. They can also be used

by banks to design treatment programs for their borrowers. More importantly,

the effect of conditional marginal effects on loan characteristics can be locally

estimated for each defaulted loan recoveries.
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5.7 Appendix D: Additional results of the simulation

study

D1. Local logit model’s predictive performance

In this section, we compare the proposed model’s accuracy rate in predicting

the simulated response variables of A1 to A3 with that of the benchmark model

(see section 5.3.1 for details of data generating process).

D1.1 Univariate data-generation process A1

In terms of bandwidth, the least-squares cross-validation using U1 data suggests

that the selected bandwidth is a hundred9 in both sample sizes n = 200 and 500.

As the selected bandwidth is substantially large, both the in-sample and out-of-

sample predictive performances are identical for the proposed model and the

benchmark model. This result is in line with our expectation, as U1 has standard

linear specification. Then, the local logit model is expected to converge to the

benchmark model, causing the substantial large selected bandwidth.

The selected bandwidths of U2 and U3, on the other hand, are 0.2 and 0.3,

respectively, for n = 200. As the sample size increases to 500, these bandwidths

are reduced to 0.15 and 0.22, respectively. Figures5.16a - 5.16d and Figures 5.16e -

5.16f report the predictive performances of the models for U2 data using MSE and

MAE, respectively. These figures indicate that both in-sample and out-of-sample

accuracies are similar across the two models. However, the results indicate that

the proposed model’s in-sample predictions are slightly better than those of the

benchmark model in Figures 5.16a, 5.16b, 5.16e, and 5.16f. This is common for a

nonparametric regression, which can accurately fit in-sample data, especially with

9The size of 100 is restricted as the maximum size for our cross-validation algorithm. The
further increase in the size of the bandwidth has almost no effect in the estimation. The substantial
large bandwidth causes a converging in local parameters to a global parameter
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a small bandwidth. However, substantial differences between the in-sample and

out-of-sample predictions are observed. Nevertheless, our results show that the

MSE and MAE between the in-sample and out-of-sample data are not markedly

different. Moreover, not only the average MSE and MAE are similar, but also their

variations across a number of simulations.

The models’ predictabilities under the U3 assumption are shown in Figure 5.17,

which indicates results similar to those of U2. However, the results show that

the out-of-sample MSE and MAE are almost identical when a large sample size is

considered in Figures 5.17d and 5.17h.

[————— Insert [Figure 5.16 and 5.17] here —————]

D1.2 Bivariate data-generation process A2

Similar to U1, the relatively large bandwidth of 100 is selected for B1, as both X1

and X2 have linear effects. Since the proposed model is identical to the benchmark

model, the results of B1 are not discussed further. As B2 has a mixture of linear and

quadratic functions, our results suggest the bandwidths of 55.56 for X1 and 0.29

for X2. The bandwidths become 99.00 and 0.25, respectively, for n = 500. Thus,

relatively large bandwidths are selected for the linear effect of X1, while smaller

bandwidths are chosen for the nonlinear effect of X2. Figure 5.18 evaluates the in-

sample and out-of-sample predictabilities of the models in terms of MSE and MAE,

respectively. The results suggest that the proposed model and the benchmark

have largely similar behaviors in all cases. Figures 5.18a and 5.18b show that the

proposed model has lower in-sample MSEs than the benchmark, while the MAEs

are similar in Figures 5.18e and 5.18f. On the other hand, when the out-of-sample

prediction is considered, the benchmark model slightly outperforms the proposed

model based on both average MSE and MAE.

For B3, the bandwidths are 0.648 for X1 and 0.646 for X2, for n = 200. They

then decrease to 0.583 and 0.528 as n = 500. The bandwidths are relatively small,
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since both underlying effects are highly non-linear. We find that the out-of-sample

predictions of the proposed model have a lower accuracy rate than those of the

benchmark, especially for the small sample size as shown in Figures 5.19c and

5.19g. However, the differences are reduced when n increases, although the

benchmark model still consistently outperforms the proposed model. An increase

in the number of in-sample data points leads to an improvement in the local

estimation.

[————— Insert [Figures 5.18 and 5.19] here —————]

D1.3 Multivariate data-generation process A3

For the bandwidths, the kernel functions are assigned depending on the types of

the variables, where (5.2.5) is employed for X1 and X2 and (5.2.6) for D1 to D3. To

facilitate computational optimisation, we allow a single bandwidth for all three

discrete variables. As a result, the selected bandwidths are 3.68 for x1, 1.36 for x2,

and 0.79 for all discrete variables. The bandwidth of x1 is relatively large, which

is in line with expectations, as the true function is linear. However, the bandwidth

is not substantially large as before, which indicates that x1 also interacts with d2,

causing the change in slope, when d2 = 1.

The predictive performances of all models are reported in Figure 5.20, given n =

500. They show that the in-sample predictabilities of the proposed and benchmark

models are more or less the same, while the benchmark model’s accuracy slightly

outperforms that of the proposed model in the out-of-sample performance in

Figures 5.20b and 5.20d.

[————— Insert [Figure 5.20] here —————]

D2. Local logit marginal effect estimates

To illustrate the proposed model’s application for estimating marginal effects, a

local logit analysis is conducted to recover the underlying effects of the simulated

covariates through the model’s estimates. The analysis is then evaluated by
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comparing its results with those of the benchmark model. This section pro-

vides the analysis of univariate and bivariate data-generation process10 A1 and A2.

D2.1 Univariate data-generation process A1

As a two-sided censoring is assumed for U1, we plot the function yi =

max(1,min(2(xi1)) as the dark solid line in Figure 5.21. It shows a sharp turning

point at x1 = 0, as a linear function is observed when 0 ≤ x1 < 2. The results show

that the models have identical graphical outcomes in Figures 5.21a and 5.21b for

the proposed model with n = 200 and 500, respectively, compared to Figures 5.21c

and 5.21d for the benchmark model. All figures indicate good approximations of

the true underlying function. However, all results in Figure 5.21 show a smoother

transition at x1 = 0 than the true function. This could be due to the application

of the quasi-likelihood estimation, where the two-sided censoring assumption

remains unknown for both models.

As a quadratic functional form is assumed for U2, we observe nonlinear rela-

tionships only when −1 < x1 < 1 (see the solid line in Figure 5.22). The results

clearly show that the local logit estimates can capture the nonlinear behaviors of

the true shapes in Figures 5.22a and 5.22b. The estimates are also similar to the

parametric estimates in Figures 5.22c and 5.22d.

Figure 5.23 illustrates the true functional plot under U3, where the sine function

is employed as the true underlying relationship. A nonlinear shape is assumed

only when X ∈ [0,3]. Consistent with the previous results, the estimates from

the proposed model tend to fit the true function. However, high variations are

observed in the left tails of Figures 5.23a and 5.23b, where variation in the latter

tends to reduce as n increases .

[————— Insert [Figures 5.21, 5.22, and 5.23] here —————]

10The results for multivariate data-generation process A3 have been discussed in section 5.3.2
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D2.2 Bivariate data-generation process A2

Under assumptions B2 and B311, we denote the local logit regression estimate as:

ŷ =Λ(β̂0(x) + β̂1(x)x1 + β̂2(x)x2). (5.7.1)

The local logit analysis of each assumption is discussed in what follows.

Bivariate assumption B2

The correctly specified benchmark model estimate under assumption B2 is de-

noted as:

ŷ =Λ(γ̂0 + γ̂1x1 + γ̂2x
2
2). (5.7.2)

Figure 5.24 compares the local estimators β̂1(x) with the parametric estimator

γ̂1. The results show that the local estimators, in Figures 5.24a and 5.24b, are

constant for all values of X1. This is in line with the underlying linear effect in

assumption B2 as well as the parametric estimators in Figures 5.24c and 5.24d.

Furthermore, although the variations of the local estimators in Figures 5.24a

and 5.24b are higher than those of the parametric estimators in Figures 5.24c

and 5.24d, the local estimators’ variations decrease as the number of observation

increases. However, we find that the averages of both the local and parametric

estimators are similar at approximately 0.9.

[————— Insert [Figures 5.24 and 5.25] here —————]

To illustrate the estimators for a quadratic form on x2, we firstly provide the

local estimators β̂2(x) in Figures 5.25a and 5.25b for n = 200 and 500, respectively.

The estimators are negative for x2 ∈ [−2,0) with an increasing rate until they

become positive for x2 ∈ (0,2]. In addition, the local estimators are approximately

zero for x2 = 0. These results would imply a slope of the quadratic function with a

11See section 5.3.1 for details of data generating process. Also, we do not consider B1, as the
result of the local logit is identical to the benchmark model in section 5.3.2
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turning point at zero. Therefore, we then compare our local logit estimates with

the quadratic slope estimates based on the benchmark model, 2β̂2x2, in Figures

5.25c and 5.25d. The results indicate same effects of x2.

In conclusion, our results in Figures 5.24 and 5.25 demonstrate that the

local estimators β̂1(x) and β̂2(x) are good approximations of the benchmark

model’s estimators β̂1 and 2γ̂2x2, respectively, with no prior knowledge about the

functional form.

Bivariate assumption B3

The functional form in B3 is a combination of two nonlinear functions: sine and

quadratic forms. The local logit regression estimates are the same as B2 in (5.7.1),

while the correctly specified estimates for the benchmark model are:

ŷ =Λ(γ̂0 + γ̂1 sinx1 + γ̂2x2 + γ̂3x
2
2). (5.7.3)

First, Figures 5.26c and 5.26d reveal the slope estimates of x1 based on the

benchmark model in (5.7.3), which is defined as γ̂1 cos(x1). Comparing the bench-

mark model with the proposed model, Figures 5.26a and 5.26b are the local

estimators β̂1(x), which show nonlinear behaviours similar to those of γ̂1 cos(x1).

However, the local estimators corresponding to the relatively high values of x1 > 8

have noticeably high variations of the simulations (see Figure 5.26a). This could

be due to the low information in this range, as the data are generated from the

Chi-square distribution with three degrees of freedom, which has highly positive

skewness. As the sample increases to n = 500 in Figure 5.26b, the local estimates

show lower variation compared to Figure 5.26a, with similar shapes.

Second, a quadratic function is assumed for x2, hence slopes with a constant

increasing rate are expected. Figure 5.27c and 5.27d show the slope estimates of

x2 for the benchmark model defined as γ̂2 + 2γ̂3x2. These figures are compared
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with Figures 5.27a and 5.27b, which are the local estimators β̂2(x). The results

show that the local estimators have approximately linear shapes, reflecting the

slopes of the quadratic function.

[————— Insert [Figures 5.26 and 5.27] here —————]

Overall, the simulation experiments for the bivariate settings show that the

local estimators contain information about the slopes of the functions. The results

indicate that the estimators provide informative approximations of the correctly

specified parametric estimators. The approximations seem to improve in precision

as sample size increases.
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5.8 Appendix E: Tables and figures

n = 200
In-sample Out-of-sample

Benchmark LL Benchmark LL

Specification MSE MAE MSE MAE MSE MAE MSE MAE

U1 0.0156 0.0720 0.0156 0.0720 0.0161 0.0722 0.0161 0.0722

U2 0.0195 0.0825 0.0182 0.0811 0.0199 0.0825 0.0200 0.0831

U3 0.0325 0.1362 0.0312 0.1361 0.0331 0.1382 0.0333 0.1399

B1 0.0211 0.1022 0.0211 0.1022 0.0215 0.1028 0.0215 0.1028

B2 0.0312 0.1299 0.0298 0.1299 0.0314 0.1300 0.0322 0.1312

B3 0.0260 0.1109 0.0234 0.1102 0.0256 0.1129 0.035 0.1271

Table 5.1: In-sample and out-of-sample predictions of models in the simulation study
with small sample size

Note: The benchmark model is the standard QMLE-RFRV. The local logit regression is denoted as

LL

n = 500
In-sample Out-of-sample

Benchmark LL Benchmark LL

Specification MSE MAE MSE MAE MSE MAE MSE MAE

U1 0.0121 0.0682 0.0121 0.0682 0.0112 0.0691 0.0112 0.0691

U2 0.0191 0.0841 0.0187 0.0827 0.0181 0.0811 0.0182 0.0811

U3 0.0333 0.1355 0.0326 0.135 0.0325 0.1386 0.0326 0.1388

B1 0.2041 0.0958 0.2041 0.0958 0.0207 0.1005 0.0207 0.1005

B2 0.0309 0.1255 0.0301 0.1256 0.0313 0.1291 0.0314 0.1300

B3 0.0261 0.11 0.0241 0.1021 0.0252 0.1123 0.0259 0.1151

M1 0.1100 0.2731 0.109 0.2722 0.1154 0.2781 0.1162 0.2812

Table 5.2: In-sample and out-of-sample predictions of models in the simulation study
with moderate sample size

Note: The benchmark model is the standard QMLE-RFRV. The local logit regression is denoted as

LL
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Relative mean squared error

n = 200 n = 500 n= 1000

Error (U) distribution Benchmark LL Benchmark LL Benchmark LL

Panel (a): In-sample prediction

Specification: M1

Chi-square 1.9618 0.7603 1.8828 0.9218 1.8645 0.9773

Bimodal 1.0893 1.1003 1.0844 0.9592 1.0839 0.9838

Specification: M2

Chi-square 1.3811 0.9206 1.3685 0.8512 1.1466 0.9857

Bimodal 1.0615 1.0392 1.0600 1.0296 1.0569 0.9350

Panel (b): Out-of-sample prediction

Specification: M1

Chi-square 1.9178 1.4636 1.9816 1.2444 1.9005 1.1072

Bimodal 1.0854 1.1191 1.0800 1.0501 1.0750 1.0304

Specification: M2

Chi-square 1.3727 1.4701 1.3553 1.2094 1.3713 1.1466

Bimodal 1.0491 1.0835 1.0572 1.0503 1.0527 1.0464

Table 5.3: Mean square error of the local logit model relative to correctly specified
QMLE-RFRV model

Note: The benchmark model is the standard linear QMLE-RFRV model. LL is the proposed local

logit model. The relative MSE is the MSE of the given model relative to the correctly specified

QMLE-RFRV model. The error U (1) ∼ χ2
(1) - asymmetric distribution. The error U (2) generated

from the equally weighted mixture of N (−2,1) and N (2,1) - bimodal distribution.

167



Non- and Semi-parametric Methods for Modelling Recovery Rates

Relative mean absolute error
n = 200 n = 500 n= 1000

Error (U) distribution Benchmark LL Benchmark LL Benchmark LL
Panel (a): In-sample prediction
Specification: M1
Chi-square 1.5536 0.8819 1.5366 0.9959 1.5341 1.0272
Bimodal 1.0664 1.0524 1.0622 0.9962 1.0627 1.0131
Specification: M2
Chi-square 1.2464 0.9099 1.2410 0.9089 1.2370 1.0050
Bimodal 1.0408 1.0148 1.0413 1.0250 1.0380 0.9618
Panel (b): Out-of-sample prediction
Specification: M1
Chi-square 1.5434 1.1824 1.5612 1.1310 1.5219 1.0807
Bimodal 1.0627 1.0597 1.0594 1.0412 1.0563 1.0357
Specification: M2
Chi-square 1.2376 1.1679 1.2301 1.0880 1.2440 1.0859
Bimodal 1.0364 1.0404 1.0397 1.0356 1.0360 1.0219

Table 5.4: Mean absolute error of the local logit model relative to correctly specified
QMLE-RFRV model

Note: The benchmark model is the standard linear QMLE-RFRV model. LL is the proposed local
logit model. The relative MAE is the MAE of the given model relative to the correctly specified
QMLE-RFRV model. The error U (1) ∼ χ2

(1) - asymmetric distribution. The error U (2) generated
from the equally weighted mixture of N (−2,1) and N (2,1) - bimodal distribution.

Variables
Parametric

coefficients (γ)

Median of

local logit coefficients (β(x))

Type of loan

T ype(2) 0.4907*** 0.4376

(0.1358)

T ype(3) -0.0229 -0.0328

(0.1433)

T ype(4) -0.3771 -0.3857

(0.2331)

T ype(5) 0.2535 0.2899

(0.2010)

T ype(6) -0.4258 -0.4417

(0.2476)

Rank

Rank 2 -0.4512*** -0.5076

(0.1049)

Rank 3 -0.7900*** -0.8919

(0.1506)

Rank 4 -0.9300*** -1.0193

(0.1896)

Collateral

Collateralized loan 0.4420** 0.6127

(0.1842)

Table 5.5: Estimates of the QMLE-RFRV model and the local logit regression

Note: The median of the local estimates are calculated based on the results in Figure 5.10
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Variables LL estimates
Sample averages RR

Category of interest Reference category

Panel A Senior secured bond

DC ∈ [0,1] N/A 0.59 0.71

DC < 0.2 Negative 0.44 0.53

0.2 ≤DC < 0.6 Positive 0.82 0.71

DC ≥ 0.6 Negative 0.79 0.91

Panel B Senior unsecured bond

DC ∈ [0,1] N/A 0.43 0.71

DC < 0.2 Positive 0.41 0.34

0.2 ≤DC < 0.5 Negative 0.47 0.74

DC ≥ 0.5 Positive 0.77 0.36

Panel C Loans with collateral

DC ∈ [0,1] N/A 0.73 0.37

DC < 0.2 Positive 0.53 0.31

0.2 ≤DC < 0.5 Negative 0.68 0.63

DC ≥ 0.5 Positive 0.92 0.65

Table 5.6: Average recovery rates of senior bonds and collateralized loans for various
ranges of DC

Note: The empirical RR is partitioned based on the findings in the interaction analysis of local logit

model estimates of senior bonds and collateral status. Then RR of each sub-sample is compared

with the reference group. For Panels A and B, given the ranges of DC in the first column, the

categories of interest are the senior secured and unsecured bonds, respectively, and the reference

categories are collateralized and uncollateralized term loans, respectively. For Panel C, the the

category of interest is the collateralized loan, whereas the reference category is the uncollateralized

loan.
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Coefficients Variables Estimates (SE)

Panel A: Debt cushion

γDC1
I(DC < 0.6)DC2 5.5071 (0.5890) *

γDC2
I(DC ≥ 0.6)DC 2.4200 (0.2105) *

Panel B: Stress index

γSI1 I(SI < 0)SI -1.2283 (0.1436) *

γSI2 I(0 ≤ SI < 1.5)SI -0.4589 (0.0997) *

γSI3 I(SI ≥ 1.5)SI -0.0212 (0.0330)

Panel C: Types of loan

γT21
T ype(2) 0.0817 (0.1124)

γT22
I(DC > 0.8)T ype(2) 0.2770 (0.5021)

γT31
I(DC < 0.2)T ype(3) -0.4516 (0.1912) *

γT32
I(0.2 ≤DC < 0.6)T ype(3) 0.8757 (0.1883) *

γT33
I(DC ≥ 0.6)T ype(3) -1.5847 (0.4087) *

γT41
T ype(4) -0.3635 (0.1265) *

γT51
I(DC < 0.2)T ype(5) 0.2713 (0.0574) *

γT52
I(0.2 ≤DC < 0.5)T ype(5) -0.0456 (0.1806)

γT53
I(DC ≥ 0.5)T ype(5) 0.8014 (0.4795)

γT61
T ype(6) -0.3691 (0.1431) *

Panel D: Collateral status

γC1
I(DC < 0.2)Col 0.5802 (0.1733) *

γC2
I(0.2 ≤DC < 0.5)Col -0.1600 (0.1383)

γC3
I(DC ≥ 0.5)Col 1.2458 (0.3536) *

Panel E: Instrumental rank

γR2
Rank2 -1.0040 (0.0901) *

γR3
Rank3 -1.5447 (0.1204) *

γR4
Rank4 -1.6792 (0.1422) *

Table 5.7: Estimates of the calibrated parametric QMLE-RFRV model

Note: The calibrated model (CM) parameters and the corresponding variables are presented in

columns 1 & 2 respectively. Panels A, B, C, D and E list nonlinear, interactive, discretised DC and

discrete variables in the model
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Out-of-sample MSE MAE

Year Out-of-time obs. % Benchmark LL CM Benchmark LL CM

2001-2012 2,738 77% 0.1071 0.1048 0.1203 0.2449 0.2425 0.2505

2002-2012 2,168 61% 0.1035 0.1052 0.1229 0.2420 0.2445 0.2508

2003-2012 1,478 41% 0.1021 0.1007 0.1411 0.2608 0.2557 0.2672

2004-2012 1,141 32% 0.1131 0.0900 0.1017 0.2536 0.2238 0.2284

2005-2012 965 27% 0.1279 0.1182 0.1053 0.2689 0.2563 0.2410

2006-2012 779 22% 0.1439 0.1045 0.1179 0.2843 0.2464 0.2556

2007-2012 708 20% 0.1517 0.1145 0.1219 0.2932 0.2578 0.2613

2008-2012 660 18% 0.1592 0.1144 0.1245 0.3016 0.2570 0.2647

2009-2012 496 14% 0.0841 0.0825 0.0831 0.2288 0.2170 0.2273

2010-2012 121 3% 0.0643 0.0825 0.0746 0.2024 0.2065 0.2004

2011-2012 35 1% 0.0709 0.0819 0.0954 0.2092 0.2055 0.2234

Average 0.1116 0.0999 0.1099 0.2536 0.2375 0.2428

Var. 0.0009 0.0002 0.0004 0.0010 0.0004 0.0004

Table 5.8: Out-of-sample predictive performance of models

Note: The table employs the data partitioning (DF2). Columns 1-3 indicate the out-of-sample pe-

riod, the number of the observation in out-sample period, and the percentage of these observations

relative to total number. Benchmark, LL and CM represent the standard QMLE-RFRV model, local

logit model and the calibrated QMLE-RFRV model, respectively.

Out-of-sample

year

Sample size MSE MAE

Out-of-sample In-sample Benchmark LL CM Benchmark LL CM

2001 570 3003 0.1308 0.1235 0.1274 0.2878 0.2826 0.2860

2002 690 2883 0.0903 0.0861 0.0779 0.2088 0.2102 0.2175

2003 337 3236 0.1045 0.0987 0.1049 0.2814 0.2757 0.2533

2004 176 3397 0.0690 0.0555 0.0692 0.1828 0.1678 0.1786

2005 186 3387 0.1114 0.0815 0.0776 0.2245 0.2000 0.1959

2006 71 3502 0.0950 0.0708 0.0782 0.2067 0.1932 0.1947

2007 48 3525 0.0919 0.0739 0.0756 0.1959 0.1924 0.2078

2008 164 3409 0.1322 0.0937 0.1082 0.3454 0.2911 0.3127

2009 375 3198 0.0903 0.0860 0.0911 0.2373 0.2215 0.2365

2010 86 3487 0.0615 0.0728 0.0623 0.1996 0.2028 0.1901

2011 20 3553 0.0838 0.1183 0.1001 0.2210 0.2299 0.2510

Average 0.0964 0.0873 0.0884 0.2356 0.2243 0.2295

Var. 0.0018 0.0007 0.0011 0.0022 0.0015 0.0017

Table 5.9: Out-of-sample predictive performance of the models over the course of eco-
nomic cycle

Note: The table employs the data partitioning (DF3). The model is estimated for the in-sample

period, which excludes only one year - the out-of-sample year.
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Quantiles Actual Benchmark LL CM

0.05 57.71 59.68 56.93 56.11

(% different) (3.4%) (1.4%) (2.9%)

0.25 61.40 64.54 59.80 59.25

(% different) (5.1%) (2.7%) (3.6%)

0.5 63.69 67.91 61.35 61.28

(% different) (6.6%) (3.8%) (3.9%)

0.75 65.91 70.55 62.99 62.97

(% different) (7.0%) (4.6%) (4.7%)

0.95 69.19 74.94 65.55 65.99

(% different) (8.3%) (5.6%) (4.8%)

MSE 22.09 16.52 15.72

Table 5.10: Quantile predictive performance of the models

Note: Portfolio distributions were generated from the out-of-sample predictions of RR by the three

models.
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Figure 5.1: Densities of the generated dependent variables of the assumption A1
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Figure 5.2: Densities of the generated dependent variables of the assumption A2
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Figure 5.3: Density of the generated dependent variable of the assumption A3
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(a) Local logit regression, D2 = 0
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(b) Local logit regression, D2 = 1
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(c) QMLE-RFRV, D2 = 0
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(d) QMLE-RFRV, D2 = 1

Figure 5.4: Interaction effects estimates of x1 conditional on d2 under simulation M1

Note: These figures show the interaction effect estimates of x1 and d2 for the simulation assump-

tion M1. (a) and (b) illustrate the local logit marginal effect estimates β1(x) as a function of x1

conditional on d1 = 0 and 1, respectively, as specified in (5.3.2). On the other hand, (c) and (d)

represent the parametric QMLE-RFRV estimates γ1 and γ1 +γ6, respectively, as specified in (5.3.1).
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(b) QMLE-RFRV

Figure 5.5: Nonlinear marginal effect estimates of x2 under simulation M1

Note: (a) is the local logit marginal effect estimate β2(x) in (5.3.2) as a function of x2. (b) represents

the parametric QMLE-RFRV estimate γ2 cos(x2) as the marginal effect estimate of x2 in (5.3.1).
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Figure 5.6: Marginal effect estimates of D1 and D3 under simulation M1

Note: (a) and (b) compare the marginal effect estimates of QMLE-RFRV and the local logit model

for the discrete variables D1 and D3 under simulation assumption M1 in (5.3.1) and (5.3.2). (a)

represents the marginal effect estimates of D1, which compares γ̂3 and β̂3(x), on the left and right

hand sides of the figure, respectively. Similarly, (b) represents the comparison of the marginal

effect of D3 between γ̂5 and β̂5(x).
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(a) Local logit regression (b) QMLE-RFRV

Figure 5.7: Interaction effect estimates of D2 conditional on x1 under simulation M1

Note: These figures show the marginal effect estimate of d2 as a function of x1 as such interaction

effect is specified in the simulation assumption M1. (a) illustrates the local logit marginal effect

estimate β4(x) in (5.3.2) as a function of x1. (b) is represents the marginal effect estimate γ4 +γ6x1

in (5.3.1).
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Figure 5.8: Local logit marginal effect estimates of the debt cushion and the stress index

Note: (a) is the nonlinear local logit marginal effect estimate of DC, β̂DC(x), as a function of DC.

(b) illustrates the marginal effect estimate of SI, β̂SI (x), as a function of SI. In addition, the dark

solid lines in both figures are the parametric coefficients of QMLE-RFRV for DC and SI.
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Figure 5.9: Effect of debt cushion on the recovery rate of a specific defaulted loan

Note: The figure illustrates the effect of debt cushion on the recovery rate of a collateralised

revolving loan with rank 1 (Type = 2, Rank = 1, Col = 1) as a defined specific characteristics. We

also consider the effect in three different economic scenarios by specifying the levels of the stress

index. The dark solid line represents the effect of debt cushion on the recovery rate given SI = 0,

while the red dashed lines represent the effects during SI = -1 for the lower bound, and SI = 1 for

the upper bound.
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Figure 5.10: Local logit marginal effect estimates of Type, Rank, and Col categorical
variables

Note: The figures represent the marginal effect of each categorical covariate: (a) shows the

marginal effects of 5 types of loan, Type = {2,..,6}, where the term loan (Type = 1) is the reference

category; (b) shows the marginal effects of three instrumental ranks, Rank = {2,3,4}, where Rank

1 is the reference category; and (c) is the marginal effect of the collateral status, Col = 1, where

uncollateralized loan is the reference category.
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Figure 5.11: Local logit interaction effect estimates of the senior bonds conditional on
level of the debt cushion

Note: The figures illustrate the local logit marginal effect estimates of Type = {3,5}, which are

β̂T ype(3)(x) and β̂T ype(5)(x), respectively, as a function of the debt cushion
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Figure 5.12: Interaction effect estimates of Type = {2,4,6} conditional on the level of
debt cushion

Note: The figures illustrate local logit marginal effect estimates for given three types of loan as
a function of the level of debt cushion as specified in (5.5.1): (a) represents the marginal effect
estimate of revolving loan βT ype=2(x) interacted with DC; (b) and (c) represent the marginal effect
estimates of junior bonds βT ype=4(x) and βT ype=6(x), respectively, interacted with DC.
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Figure 5.13: Local logit interaction effect estimates of the collateral status conditional

on level of the debt cushion

Note: The figure illustrates the local logit marginal effect estimates of the collateralized loan,

which is β̂Col(x), as a function of the debt cushion
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Figure 5.14: Interaction effect estimates of Type conditional on the level of the stress
index

Note: The figures illustrate local logit marginal effect estimates of all five types of loan as a function
of the level of the stress index as specified in (5.5.1): (a) to (e) represent the marginal effect estimates
βT ype=2(x), βT ype=3(x), βT ype=4(x), βT ype=5(x), and βT ype=6(x), respectively, conditional on level of
SI.
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Figure 5.15: Interaction effect estimate of the collateral status conditional on the level
of the stress index

Note: The figure illustrates the local logit marginal effect estimates of the collateral status, which
is β̂Col(x), as a function of the stress index.
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(a) In-sample MSE, n = 200 (b) In-sample MSE, n = 500

(c) Out-of-sample MSE, n = 200 (d) Out-of-sample MSE, n = 500

(e) In-sample MAE, n = 200 (f) In-sample MAE, n = 500

(g) Out-of-sample MAE, n = 200 (h) Out-of-sample MAE, n = 500

Figure 5.16: Predictive performances under simulation U2

Note: The figures compare the in-sample and out-of-sample predictive performances of QMLE-
RFRV and local logit model for small (n = 200) and moderate (n = 500) sample sizes. Figures (a) to
(d) report MSE, while Figures (e) to (f) report MAE.
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(a) In-sample MSE, n = 200 (b) In-sample MSE, n = 500

(c) Out-of-sample MSE, n = 200 (d) Out-of-sample MSE, n = 500

(e) In-sample MAE, n = 200 (f) In-sample MAE, n = 500

(g) Out-of-sample MAE, n = 200 (h) Out-of-sample MAE, n = 500

Figure 5.17: Predictive performances under simulation U3

Note: The figures compare the in-sample and out-of-sample predictive performances of QMLE-
RFRV and local logit model for small (n = 200) and moderate (n = 500) sample sizes. Figures (a) to
(d) report MSE, while Figures (e) to (h) report MAE.
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(a) In-sample MSE, n = 200 (b) In-sample MSE, n = 500

(c) Out-of-sample MSE, n = 200 (d) Out-of-sample MSE, n = 500

(e) In-sample MAE, n = 200 (f) In-sample MAE, n = 500

(g) Out-of-sample MAE, n = 200 (h) Out-of-sample MAE, n = 500

Figure 5.18: Predictive performances under simulation B2

Note: The figures compare the in-sample and out-of-sample predictive performances of QMLE-
RFRV and local logit model for small (n = 200) and moderate (n = 500) sample sizes. Figures (a) to
(d) report MSE, while Figures (e) to (h) report MAE.
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(a) In-sample MSE, n = 200 (b) In-sample MSE, n = 500

(c) Out-of-sample MSE, n = 200 (d) Out-of-sample MSE, n = 500

(e) In-sample MAE, n = 200 (f) In-sample MAE, n = 500

(g) Out-of-sample MAE, n = 200 (h) Out-of-sample MAE, n = 500

Figure 5.19: Predictive performances under simulation B3

Note: The figures compare the in-sample and out-of-sample predictive performances of QMLE-
RFRV and local logit model for small (n = 200) and moderate (n = 500) sample sizes. Figures (a) to
(d) report MSE, while Figures (e) to (h) report MAE.
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(a) In-sample MSE, n = 500 (b) Out-of-sample MSE, n = 500

(c) In-sample MAE, n = 500 (d) Out-of-sample MAE, n = 500

Figure 5.20: Predictive performances under simulation M1

Note: The figures compare the in-sample and out-of-sample predictive performances of QMLE-
RFRV and local logit model for small (n = 200) and moderate (n = 500) sample sizes. Figures (a) to
(d) report MSE, while Figures (e) to (h) report MAE.
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(a) Local logit regression, n = 200
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(b) Local logit regression, n = 500
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(c) QMLE-RFRV, n = 200
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(d) QMLE-RFRV, n = 500

Figure 5.21: Nonlinear function estimates under simulation U1

Note: The figures illustrate the nonlinear function estimate of the simulated bounded response
variable under U1. The dark solid line is the true function, whereas the dotted plots are the
estimates with two sample sizes as described below the sub-figures. Figures (a) and (b) are the
estimates using the local logit model, and the remaining figures are those of the QMLE-RFRV with
the correct functional form.
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(a) Local logit regression, n = 200
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(b) Local logit regression, n = 500
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(c) QMLE-RFRV, n = 200
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(d) QMLE-RFRV, n = 500

Figure 5.22: Nonlinear function estimates under simulation U2

Note: Note: The figures illustrate the nonlinear function estimate of the simulated bounded
response variable under U2. The dark solid line is the true function, whereas the dotted plots are
the estimates with two sample sizes as described below the sub-figures. Figures (a) and (b) are the
estimates using the local logit model, and the remaining figures are those of the QMLE-RFRV with
the correct functional form.
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(a) Local logit regression, n = 200
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(b) Local logit regression, n = 500
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(c) QMLE-RFRV, n = 200
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(d) QMLE-RFRV, n = 500

Figure 5.23: Nonlinear function estimates under simulation U3

Note: The figures illustrate the nonlinear function estimate of the simulated bounded response
variable under U3. The dark solid line is the true function, whereas the dotted plots are the
estimates with two sample sizes as described below the sub-figures. Figures (a) and (b) are the
estimates using the local logit model, and the remaining figures are those of the QMLE-RFRV with
the correct functional form.
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(a) Local logit regression, n = 200 (b) Local logit regression, n = 500

(c) QMLE-RFRV, n = 200 (d) QMLE-RFRV, n = 500

Figure 5.24: Marginal effect estimate of x1 under simulation B2

Note: The figures compare the marginal effect estimates of the proposed local logit model and
QMLE-RFRV. (a) and (b) are the local logit marginal effect estimate β1(x) in (5.7.1) as a function
of x1 for small and moderate sample sizes, respectively. (c) and (d) represent the parametric
QMLE-RFRV estimate γ1 as the marginal effect estimate of x1 in (5.7.2).
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(a) Local logit regression, n = 200 (b) Local logit regression, n = 500

(c) Fractional regression, n = 200 (d) Fractional regression, n = 500

Figure 5.25: Marginal effect estimate of x2 under simulation B2

Note: The figures compare the marginal effect estimates of the proposed local logit model and
QMLE-RFRV. (a) and (b) are the local logit marginal effect estimate β2(x) in (5.7.1) as a function
of x2 for small and moderate sample sizes, respectively. (c) and (d) represent the parametric
QMLE-RFRV estimate 2γ2x2 as the marginal effect estimate of x2 in (5.7.2).
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(a) Local logit regression, n = 200 (b) Local logit regression, n = 500

(c) QMLE-RFRV, n = 200 (d) QMLE-RFRV, n = 500

Figure 5.26: Nonlinear marginal effect estimate of x1 under simulation B3

Note: The figures compare the marginal effect estimates of the proposed local logit model and
QMLE-RFRV. (a) and (b) are the local logit marginal effect estimate β1(x) in (5.7.1) as a function
of x1 for small and moderate sample sizes, respectively. (c) and (d) represent the parametric
QMLE-RFRV estimate γ1 cos(x1) as the marginal effect estimate of x1 in (5.7.3).
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(a) Local logit regression, n = 200 (b) Local logit regression, n = 500

(c) QMLE-RFRV, n = 200 (d) QMLE-RFRV, n = 500

Figure 5.27: Marginal effect estimate of x2 under simulation B3

Note: The figures compare the marginal effect estimates of the proposed local logit model and
QMLE-RFRV. (a) and (b) are the local logit marginal effect estimate β2(x) in (5.7.1) as a function
of x2 for small and moderate sample sizes, respectively. (c) and (d) represent the parametric
QMLE-RFRV estimate 2γ2x2 as the marginal effect estimate of x2 in (5.7.3).
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Chapter 6

Conclusion and future research di-

rection

6.1 Contributions of the thesis

Quantifying and understanding credit default exposures are fundamentals

of credit risk management. The RR is one of the key credit risk parameters. It

indicates the risk of losing the amount invested due to debtors having defaulted. In

recent decades, a number of studies have paid considerable attention to modelling

the RR, mostly for the purpose of generating accurate predictions. A wide range

of conventional to more sophisticated statistical models were proposed and are

available as predictive models in the literature. This was due to several key

empirical features of RRs that challenge applications of standard econometric

models. First, RR is continuous, fractional, and bounded in [0,1]. Second, its

empirical density is bimodal and asymmetric, with high proportions of recoveries

at the boundaries zero and one. Third, in the presence of observations at 0

and 1, trimming and transformation as well as back-transformation of recoveries

are needed for the use of valid statistical theory, despite such transformation
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introduces bias in the model estimates, resulting in unreliable statistical inference.

Lastly, although there are some existing evidences of the nonlinearity in the

recovery-covariate relationship, little attempt has been made in the literature to

improve the specification of the RR functional form. This thesis proposes non- and

semi-parametric regressions, which are data-driven approaches to accommodate

the aforementioned properties. Our research aims to offer alternative perspectives

and statistical models to analyse the RR-covariate relationship and to overcome

the limitations of RR modelling in the literature.

This study makes several significant contributions to the central areas in the

credit risk literature in its documentation of the merits of the applications of

non- and semi-parametric regressions in RR modelling. The first contribution is

that the proposed models do not rely on standard distribution assumptions or

prespecified functional form. Thus, they mitigate the misspecification problem

and inadequate parametric assumptions that arise in most parametric models.

Furthermore, we develop a nonparametric local logit regression specifically for

[0,1] RR data, which directly solves the boundary problem of this data.

The second contribution is that we provide a new direction for RR modelling by

identifying and uncovering not only the nonlinear marginal effects in chapter 3,

but also by showing how the effects vary across conditional quantiles in chapter

4. The third contribution is that, we improve the specification of RR modelling

by incorporating the outcomes of the marginal and interaction effects analysis

of nonparametric regression to improve and “calibrate” the functional form of

semiparametric and parametric regressions in chapters 3 and 5, respectively,

which have not been explored in the existing literature. Such an exploration leads

to an improvement in the out-of-sample predictive accuracies of these “calibrated”,

semiparametric and parametric models. Comparing with fully nonparametric

regression, these models are more convenient to estimate and interpret the results,

and their out-of-sample predictive performances are comparable. These will
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be useful to applied researchers and industry professionals working in the risk

management area who are unfamiliar with nonparametric machinery.

Chapter 2 provides a review of the literature in RR modelling. It began with

discussions of the general role and the importance of the RR in credit risk man-

agement and the Basel accord. The stylised facts as well as empirical findings

regarding specific features of the RR in practice were presented. This was followed

by a detailed discussion of the recent developments in RR modelling. Three main

approaches were presented: transformation regression, conventional regressions

for bounded [0,1] response regressions, and data-driven approaches. The limita-

tions of the methodology studied in the literature as well as a gap in it provided

the motivation for this thesis, in which we attempt to overcome the limitations

of existing approaches and address the practical applications of our proposed

models in credit risk modelling. To this end, the fundamental concepts of the

existing approaches and their limitations were discussed, which are mainly the

misspecification problems in parametric models and the black-box problems in

machine learning algorithms. In doing so, we identified several limitations of the

RR-covariate model specifications, and estimation methods, which provided us

motivations for the research endeavor of this thesis. In what follows, the outcomes

of our research will become apparent.

Chapter 3 proposes local constant and local linear kernel estimation methods for

nonparametric regressions as well as semiparametric partially linear regressions to

predict and analyse RRs. In terms of the effect of recovery covariates, we consider

both idiosyncratic and systematic variables, including debt cushion, type of loan,

instrumental rank, collateral status, and economic stress index. The local linear

method provides the marginal effect estimates of the covariates on RR, which

illustrate the nonlinear effect of debt cushion and the approximately linear effect

of the economic stress index. This information further enable us to specify the

improved functional form for the partially linear regression, in which only debt
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cushion is assigned to the nonparametric component to capture its nonlinear

effect. This study also compared the predictabilities of the proposed models and

the existing alternative models such as QMLE regression for fractional response

variable, two-sided censored Tobit model, inverse Gaussian linear regressions,

mixture distribution, and the regression tree algorithm. The results show that the

partially linear regression with the improved functional form outperforms others

in the out-of-sample predictions, followed by the nonparametric regression with a

local constant method. In addition, the nonparametric regression with local linear

methods shows a high proportion of the predictions exceeding the [0,1] boundary.

Hence, we proposed two-sided censoring regressions to ensure that the boundary

requirement is met, but its predictive performance is not what was expected.

In chapter 4, we analyse the effect of the recovery covariates at the conditional

quantiles of the RR distribution. To gain additional information, we applied a fully

nonparametic quantile regression and a partially linear additive regression and

estimated the marginal effects of the covariates on RR at the various conditional

quantiles. Our study indicated the presence of heterogeneous effects. At the 0.25

quantile, the RR is less responsive to an increase in debt cushion at the lower

levels compared with at the 0.5 and 0.75 quantiles, especially for unsecured bonds

with rank 4, which are high-risk characteristic loans. On the other hand, the RR

at the lower quantile decreases substantially with an increase in economic stress

in comparison to the higher quantiles. This negative effect is prominent for low-

and medium-risk characteristics loans. This result offers more complete picture

of the downturn RR at various quantiles. Furthermore, our results also indicate

that the proposed nonparametric quantile regression generates the most accurate

RR Value-at-Risk prediction at the lower 0.25, 0.20, 0.15, 0.10, and 0.05 quantiles,

followed the partially linear additive model. This suggests that the proposed

models would be appropriate for estimating distressed downturn RR. Overall,

the findings of this chapter could be used to enhance loan recovery strategies
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for defaulted loans depending on the quantile of the conditional RR distribution.

Thus, banks and regulators could manage the credit risk exposure more efficiently

by using this analytical framework.

Chapter 5 proposed a local logit regression for [0,1] bounded response variables

which integrates the binary nonparametric regression introduced by Frölich (2006)

with the parametric QMLE regression for fractional response variable (Papke

& Wooldridge, 1996). In doing so, we introduce the nonparametric regression

for fractional response variable, which, by its construction, fully addresses the

boundary property of RR data. We conducted an extensive simulation study

with various data-generating process such as complex nonlinear functions and

asymmetric error distributional assumptions. The results show that the model

is robust, and it can accurately estimate the nonlinear marginal and interaction

effects. The proposed model was then applied on the empirical RR data for

marginal effect analysis and prediction purposes.

The results show that the proposed model can capture the nonlinear effects of

both debt cushion and stress index on RR. Furthermore, we also find the interac-

tion effects between debt cushion and other loan characteristics, which include

the type of loan and collateral status. The functional forms of the models stud-

ied in the previous chapters do not include some key interaction effects among

covariates, which are essential ingredients for banks to design treatment pro-

grams for borrowers. These findings were later incorporated to calibrate the linear

parametric QMLE regression for fractional response variable. In particular, the

quadratic function and discretization of variables were employed to capture the

nonlinear effect of the debt cushion and the stress index. We also improve para-

metric functional form to capture the interaction effects. To test the superiority

of the “calibrated” model, we apply the specification testing as well as several

out-of-sample predictive criteria, which they confirm that the parametric model

with an improved functional form is comparable to the result of the proposed local
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logit model. Moreover, as far as the downturn RR is concerned, the out-of-sample

predictive evaluation highlights that our models significantly outperform the

conventional linear model in estimating RR during the recent financial crisis.

6.2 Future research direction

This thesis showed that applications of non- and semi-parametric regressions

were highly useful for RR modelling, as they overcame several challenges ad-

dressed in the existing literature and provide new directions for RR analysis.

Some aspects of the model can be further improved in the future research, which

are outlined below.

In chapter 3, we have extended the one-sided censored nonparametric regression

proposed by Lewbel and Linton (2002) to accommodate two-sided censoring,

conducted a small scale simulation study, and applied the model to RR modelling

with limited success. We will consider a further research investigation of the

extended model in the future, which will involve derivations of some analytical

properties, and a large scale simulation study of the model. The result of which

will improve the understanding and practical applicability of the model.

Moreover, the univariate RR models extensively studied in this thesis and

elsewhere can be further extended to panel data modelling. The empirical RR

data used in this thesis is in fact cross-sectional data, but the time dimension can

be added. The data has 3,742 defaulted loans over a 12-year window, where these

loans are from 20 different industries. Hence, the data can be aggregated based on

its industry, which will lead to a balanced RR panel data structure of 20 industries

over time. Papke and Wooldridge (2008) proposed estimation method for a panel

data with fractional response variables, which could be extended to the RR dataset.

A number of non- and semi- parametric panel data models are also proposed by

Henderson, Carroll, and Li (2008); Horowitz and Markatou (1996), although they
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are not specific to fractional response data. The outcomes of the RR panel data

anaylsis, which has not been explored in the literature, would be undoubtedly add

value to credit risk management analysis.
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