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Sow a thought, reap an action; sow an action, reap a habit; sow a habit, reap a

character; sow a character, reap a destiny.

- Stephen R. Covey, The 7 Habits of Highly Effective People
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Abstract

In this thesis, we investigate analogues of the Tutte polynomial for two types of di-

rected graphs, namely Tutte invariants for alternating dimaps and greedoid polynomials

for rooted digraphs.

Alternating dimaps were defined by Tutte (1948) as orientably embedded Eulerian di-

rected graphs where, for each vertex, the sequence of edges incident with it is directed

inwards and outwards alternately. Three reduction operations known as 1-reduction, ω-

reduction and ω2-reduction for alternating dimaps were introduced by Farr (2013). A

minor of an alternating dimap can be obtained by reducing some of its edges using these

reduction operations. Unlike classical minor operations for graphs, these reduction oper-

ations do not commute in general.

A Tutte invariant for alternating dimaps is a function P defined on every alternating

dimap and taking values in a field such that P is invariant under isomorphism and obeys a

certain linear recurrence relation involving reduction operations. This idea is motivated by

the deletion-contraction recurrence for the Tutte polynomial. A number of different invari-

ants including simple Tutte invariants, extended Tutte invariants and c-Tutte invariants,

were defined by Farr.

It is well known that if a graph G is planar and G∗ is the dual of G, then T (G;x, y) =

T (G∗; y, x). We prove an analogous relation for extended Tutte invariants for alternating

dimaps.

As a result of non-commutativity of the reduction operations, Tutte invariants are

not always well defined. We first determine necessary and sufficient conditions on their

parameters for extended Tutte invariants to be well defined for all alternating dimaps of

genus zero. We then determine the set of alternating dimaps of genus zero for which their

extended Tutte invariants are well defined when all the parameters are independent. We

also establish some excluded minor characterisations of those alternating dimaps of genus

zero whose Tutte invariants are well defined.

The c-Tutte invariant for alternating dimaps is a special type of extended Tutte in-

variant involving two variables, which is similar to the Tutte polynomial. We determine

the points at which the c-Tutte invariant is well defined for all alternating dimaps of genus

xi



zero. For any embedded graph G, its associated alternating dimap altc(G) (respectively,

alta(G)) is obtained by replacing each edge of G by a pair of directed edges forming a

clockwise face (respectively, anticlockwise face) of size two. Farr showed that the c-Tutte

invariant Tc(D;x, y) of an alternating dimap D is well defined for any alternating dimap

of the form altc(G) where G is a plane graph, when it equals the Tutte polynomial of G.

We extend this result and determine the class of alternating dimaps for which the c-Tutte

invariant is well defined. It properly contains alternating dimaps of the form altc(G),

where G is a plane graph. We then extend the relationship between Tutte polynomials of

plane graphs and c-Tutte invariants of alternating dimaps, and show that every c-Tutte

invariant of an alternating dimap in this class can be obtained from the Tutte polynomial

of a plane graph.

Gordon and McMahon (1989) defined a two-variable greedoid polynomial for any gree-

doid. We focus on greedoids associated with rooted digraphs. We compute the greedoid

polynomials for all rooted digraphs up to order six. We found that as the order of rooted

digraphs increases, the ratio of the number of unique greedoid polynomials of rooted di-

graphs to the number of rooted digraphs shows a decreasing trend. The trend of this ratio

contrasts with an analogous conjecture on the Tutte polynomial of graphs.

Gordon and McMahon proved that the greedoid polynomials of rooted digraphs have

the multiplicative direct sum property. In addition, these polynomials are divisible by 1+z

under certain conditions. A greedoid polynomial f(D) of a rooted digraph D of order n

GM-factorises if f(D) = f(G) · f(H) such that G and H are rooted digraphs of order

at most n and f(G), f(H) 6= 1. We study the GM-factorability of greedoid polynomials

of rooted digraphs, particularly those that are not divisible by 1 + z. Our computational

results for rooted digraphs up to order six reveal that as the order of rooted digraphs

increases, the ratio of the number of unique greedoid polynomials of rooted digraphs that

can be GM-factorised to the number of unique greedoid polynomials is increasing. We

also give some examples and an infinite family of rooted digraphs that are not direct sums

but their greedoid polynomials GM-factorise.
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CHAPTER 1

Introduction

Graph theory is a branch of combinatorics and one of the most popular areas in dis-

crete mathematics with countless applications. The idea of graph theory was initiated by

a mathematician from Switzerland, Leonhard Euler, in studying the Königsberg bridge

problem in the 18th century [32, 4, 52, 20]1.

Graph theory is widely used in many disciplines including mathematics, information

technology, engineering, biology and sociology [45, 9, 14, 68]. One of its famous applica-

tions in global human relationships is the so-called Six Degrees of Separation, a famous

theory stating that the distance between two people is at most six steps in a chain of social

connections. Graph theory also plays a crucial role in modelling many aspects of daily

life. For instance, transportation systems, financial markets, social networks, connectivity

of the World Wide Web and many other systems can be modelled by graphs [46].

A graph is a representation of a set of objects where certain pairs of the objects

are linked. The objects are represented by vertices and the links that connect the pairs

of vertices are called edges. For undirected graphs (graphs), two vertices are connected

without considering the direction of the edges. For directed graphs (digraphs)2, the edges

are directed from one vertex to another. Undirected graphs have been studied more

comprehensively than digraphs, as they are somewhat simpler. One of the foci of this

thesis, alternating dimaps, is a class of digraphs with some intriguing properties.

The Tutte polynomial is a two-variable polynomial that gives us a variety of infor-

mation about the enumeration of various substructures of undirected graphs. It has a

well developed theory and a considerable amount of literature has been published over

many years, see [88, 35, 27] for some recent surveys. The Tutte polynomial is defined

for every undirected graph. Some partial evaluations of the Tutte polynomial include the

chromatic polynomial, reliability polynomial and flow polynomial [13, 27]. In view of its

rich structure, researchers often explore the relations between the Tutte polynomial and

other graph polynomials. The Tutte polynomial is closely related to another two-variable

1The English translation of [32] is: The solution of a problem to the geometry of position.
2Prefix di- is used to indicate every edge in a graph is assigned with a direction.

1



2 Chapter 1. Introduction

polynomial, known as the Whitney rank generating function [89]. The Whitney rank gen-

erating function can be obtained by a slight modification of the two variables of the Tutte

polynomial, and vice versa. As a result, they are sometimes referred to as Tutte-Whitney

polynomials.

Over the years, several Tutte-like polynomials for directed graphs have been defined,

including the greedoid polynomial [39], cover polynomial [16] and drop polynomial [17].

Chung and Graham [16] once commented: “for directed graphs, no analogue of the Tutte

polynomial is known”. Knowing that the Tutte polynomial is so important for undirected

graphs, development of analogous polynomials for directed graphs is worth exploring. A

survey of such polynomials can be found in [15].

In this thesis, we investigate Tutte-like polynomials for two types of directed graphs,

namely (1) Tutte invariants for alternating dimaps and (2) the two-variable greedoid poly-

nomial for rooted digraphs. These two polynomials are both mentioned in [15].

An alternating dimap is an orientably embedded Eulerian directed graph where, for

each vertex, the sequence of edges incident with it is directed inwards and outwards alter-

nately [78, 3, 36, 37]. Alternating dimaps are at least as diverse and rich in structure as

orientably embedded undirected graphs, since any orientably embedded undirected graph

G can be converted into an alternating dimap altc(G) (respectively, alta(G)) by replacing

each edge by a clockwise 2-cycle (respectively, anticlockwise 2-cycle) [78, 3, 37]. It is also

worth noting that every orientably embedded Eulerian undirected graph with k compo-

nents can be converted into an alternating dimap in 2k ways: for each component, choose

a reference edge arbitrarily, choose one of the two possible directions of it, and let the

alternating property determine the direction of all other edges.

Farr [37] introduced three minor operations for alternating dimaps, namely 1-

reductions, ω-reductions and ω2-reductions. A minor of an alternating dimap is obtained

by reducing some of its edges using these operations. Unlike classical minor operations,

these operations do not always commute.

Given the breadth of the class of alternating dimaps, and the natural reduction oper-

ations for it, it is natural to ask whether a theory of Tutte polynomials may be developed

for it. The first steps in this direction were taken by Farr in [37]. In this thesis, we

develop the theory further, establishing when various types of Tutte invariant exist, with

both positive and negative results.

A Tutte invariant for alternating dimaps is a function P defined on every alternating

dimap and taking values in a field such that P is invariant under isomorphism and obeys a

certain linear recurrence relation involving reduction operations. Farr [37] defined several

Tutte invariants including extended Tutte invariants, the c-Tutte invariant and the a-Tutte

invariant. We characterise these invariants in this thesis.

It is well known that if G is a planar graph and G∗ is the dual graph of G, the

Tutte polynomial of G satisfies T (G;x, y) = T (G∗; y, x). We prove an analogous result for

extended Tutte invariants of alternating dimaps.

Since the reduction operations do not always commute, an invariant defined recursively

using reduction operations may not always be well defined. We investigate the properties

of alternating dimaps that are required to obtain a well defined extended Tutte invariant.
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First, we determine the form that an extended Tutte invariant must have, if it is to be

well defined for all alternating dimaps of genus zero. It turns out that such invariants

are of very restricted form. Then, we determine the structure of alternating dimaps of

genus zero for which the most general possible extended Tutte invariant is well defined.

We also establish some excluded minor characterisations for those alternating dimaps of

genus zero.

The c-Tutte invariant Tc(D;x, y) of an alternating dimap D was introduced in [37]

and shown to be well defined for any alternating dimap of the form altc(G) where G is a

plane graph, when it equals the Tutte polynomial of G. We show that it can be defined

for some other alternating dimaps too. We determine the class of alternating dimaps for

which the c-Tutte invariant is well defined. It properly contains alternating dimaps of the

form altc(G), where G is a plane graph. This shows that the c-Tutte invariant properly

extends the Tutte polynomial of a plane graph. Analogous results are established for

a-Tutte invariants and alta(G).

Gordon and McMahon [39] defined a two-variable greedoid polynomial for any greedoid

(see Section 2.3 for the definition of greedoids), which is an analogue of the Whitney rank

generating function. They studied greedoid polynomials for rooted graphs and rooted

digraphs. We compute the greedoid polynomials for all rooted digraphs up to order six.

Bollobás, Pebody and Riordan conjectured that almost all graphs are determined by their

chromatic or Tutte polynomials [6]. We found that greedoid polynomials of rooted digraphs

up to order six behave in a completely different way.

One of the most natural things to study for any polynomial is its factors. Factorisation

of some known graph polynomials reflects the structures of the respective graphs, e.g., the

Tutte polynomial of a graph G factorises if and only if G is a direct sum [63]. Sometimes,

the situation is more complex. One such example is the chromatic polynomial [65]. Gordon

and McMahon showed that the greedoid polynomials of rooted digraphs have 1+z among

their factors under certain conditions. We address more general types of factorisation for

these greedoid polynomials in this thesis.

A greedoid polynomial f(D) of a rooted digraph D of order n GM-factorises if f(D) =

f(G)·f(H) such that G and H are rooted digraphs of order at most n and f(G), f(H) 6= 1.

We study the GM-factorability of greedoid polynomials of rooted digraphs, particularly

those that are not divisible by 1 + z. The GM-factorisation of greedoid polynomials of

rooted digraphs is not as straightforward as the factorisation of the Tutte polynomial. We

give some examples and an infinite family of rooted digraphs that are not direct sums but

their greedoid polynomials GM-factorise.

1.1 Thesis Outline and Research Contributions

In this section, we give the outline of the rest of this thesis. The main contributions are

summarised in the outlines of Chapters 5–7.
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Chapter 2: Definitions and Notation

In Chapter 2, we give the definitions and notation used throughout this thesis.

Chapter 3: Alternating Dimaps

In Chapter 3, we give a survey of alternating dimaps, which is one of the foci of this

thesis. We cover the edge types, trial operations and minor operations of alternating

dimaps.

Chapter 4: Literature Review

In Chapter 4, we present an overview of the literature for topics including alternating

dimaps, the Tutte polynomial and some known polynomials for directed graphs.

Chapter 5: Characterisations of Extended Tutte Invariants (this chapter

is based on [92])

In Chapter 5, we describe the relationship between extended Tutte invariants for

alternating dimaps and its two trials (Theorem 5.1). We determine necessary and

sufficient conditions on the parameters of extended Tutte invariants, for them to be well

defined for all alternating dimaps of genus zero (Section 5.1). We determine the set

of alternating dimaps of genus zero for which their extended Tutte invariants are well

defined, when no restriction is imposed on the parameters of the invariants (Section 5.2).

We establish some excluded minor characterisations for alternating dimaps of genus zero

when their extended Tutte invariants are well defined (Sections 5.1 and 5.2).

Chapter 6: Tutte Invariants That Extend the Tutte Polynomial (this

chapter is based on [92])

In Chapter 6, we characterise the c-Tutte invariant3 and determine those points at

which it is well defined for all alternating dimaps of genus zero (Section 6.1). We show

that the c-Tutte invariant is multiplicative over non-loop blocks and some specific loops

for certain alternating dimaps (Theorem 6.17). We determine the class of alternating

dimaps for which the c-Tutte invariant is well-defined (Theorem 6.24). We extend the

relationship between the Tutte polynomial and the c-Tutte invariant, by showing that the

Tutte polynomial of certain graphs and the c-Tutte invariant of some alternating dimaps

are identical for a wider class of graphs (Theorem 6.25).

Chapter 7: Factorisation of Greedoid Polynomials of Rooted Digraphs

(this chapter is based on [93])

In Chapter 7, we compute the greedoid polynomials of all rooted digraphs up to

order six (Section 7.3 and Appendix A). We define more general types of factorisation

of greedoid polynomials of rooted digraphs, and determine the proportion of greedoid

polynomials of rooted digraphs up to order six that factorise (Section 7.2). We identify

various types of rooted digraphs (with examples) that are not direct sums but their

3The c-Tutte invariant and the a-Tutte invariant are closely related. Any result on the former should
have a corollary for the latter.



1.2. Publications 5

greedoid polynomials GM-factorise (Section 7.2). We give an infinite family of digraphs

where their greedoid polynomials GM-factorise, and characterise the greedoid polynomials

of rooted digraphs that belong to the family (Section 7.2.4).

Chapter 8: Conclusions and Future Work

In Chapter 8, we conclude our findings and suggest some topics for future research.

Appendix A

The appendix summarises commands and algorithms used to generate results in Chap-

ter 7.

1.2 Publications

Publications arising from this thesis include:

K. S. Yow, G. E. Farr and K. J. Morgan, Tutte invariants for alternating

dimaps. (submitted)

Chapter 5 and 6. See [92] for the version on arXiv.

K. S. Yow, K. J. Morgan and G. E. Farr, Factorisation of greedoid polyno-

mials of rooted digraphs. (submitted)

Chapter 7. See [93] for the version on arXiv.

https://arxiv.org/
https://arxiv.org/
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CHAPTER 2

Definitions and Notation

The terminology used in this thesis is mostly standard. All graphs are finite. Terminology

of graphs, matroids and greedoids are given in Sections 2.1, 2.2 and 2.3, respectively.

2.1 Graphs

We usually consider a graph to be a simple graph that contains no parallel edges and

loops, unless stated otherwise.

Let G = (V,E) be a graph. The vertex set and the edge set of G are denoted by V (G)

and E(G), respectively. The order of G is the number of vertices of G and the size of G

is the number of edges of G. The number of connected components of G is denoted by

k(G). Let u, v ∈ V (G). An edge (u, v) is usually written as uv, and the edge is incident

with both u and v. In the context of digraphs, we use uv to represent an edge directed

from u to v, hence uv 6= vu. We call v the head and u the tail of the edge.

The degree of a vertex v ∈ V (G), denoted by degG(v) (or deg(v) where no ambiguity

arises), is the number of edges that are incident with v.

The indegree (respectively, outdegree) of a vertex in a digraph is the number of incoming

edges (respectively, outgoing edges) that are incident with the vertex. A digraph is balanced

if for each vertex in the digraph, its indegree is equal to its outdegree.

Let G1 and G2 be two graphs. For i ∈ N ∪ {0}, an i-union of G1 and G2, denoted by

G1 ∪i G2, is obtained by identifying exactly i pairs of vertices uj , vj , 1 ≤ j ≤ i such that

{u1, u2, . . . , ui} ⊆ V (G1) and {v1, v2, . . . , vi} ⊆ V (G2).

Two graphs G1 and G2 are isomorphic, written as G1
∼= G2, if there exists a bijection

φ : V (G1) 7→ V (G2) such that uv ∈ E(G1) if and only if φ(u)φ(v) ∈ E(G2).

A walk (of length k) in a graph is a non-empty alternating sequence v0e0v1e1 . . . ek−1vk
of vertices and edges in the graph such that ei = vivi+1 for all 0 ≤ i < k. It is a closed

walk if v0 = vk. A trail is a walk in which no edge is repeated. If a trail begins and ends

at a same vertex, it is a closed trail. A path is a walk in which no vertex is repeated. If

P = v0 . . . vk is a path and k ≥ 2, then C := P + vkv0 is a cycle (or closed path).

7
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An edge is a coloop (or bridge, or isthmus) if it is not in any cycle. Removal of a coloop

increases the number of connected components of a graph.

An Eulerian circuit is a closed walk that visits every edge in a graph exactly once. A

graph is Eulerian if it contains an Eulerian circuit.

A graph H is a subgraph of G (or G is a supergraph of H), written as H ≤ G, if H

is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G). If V (H) = V (G), then H is a

spanning subgraph of G. Let X ⊆ V (G). The subgraph G[X] of G induced by X is the

subgraph with vertex set X and edge set containing precisely the edges of G which join

two vertices in X.

A cutvertex in a graph G is a vertex v such that k(G− v) > k(G). A connected graph

is biconnected (or 2-connected) if it contains at least three vertices and has no cutvertex.

Generally, if a graph G contains more than k ≥ 0 vertices and G − X is connected for

every set X ⊆ V (G) with |X| < k, then G is k-connected.

A cut is a partition of the vertex set of a graph into two disjoint subsets. A cutset

of a cut is the set of edges that have one endpoint in each of these subsets. A bond is

a minimal non-empty cut in a graph. A connected graph is disconnected by removing a

cutset.

A block of a graph is a maximal connected subgraph that contains no cutvertex. There-

fore, a subgraph H of a graph G is a block if H is a maximal biconnected subgraph, or H

is a bridge with its two endpoints, or H is an isolated vertex.

Let G be a graph. The rank r(X) of a set of edges X ⊆ E(G) is the number of vertices

it meets minus the number of connected components (isolated vertices are excluded) of

the subgraph.

An acyclic graph is a graph that contains no cycles. A forest is an acyclic graph. If

a forest is connected, then it is a tree. A spanning tree T of a graph G is a spanning

subgraph of G that is a tree. For every edge e ∈ E(G) \ E(T ), there is a unique cycle in

T + e. The unique cycle is the fundamental cycle of e with respect to T . For every edge

f ∈ E(T ), the forest T − f has exactly two components. The set of edges of G between

these components is a bond in G, which is the fundamental cutset of f with respect to T .

Let D be a digraph with a distingushed vertex v. We call v the root of D, and D a

digraph rooted at v.

An arborescence [81] is a directed tree rooted at a vertex v such that every edge that is

incident with v is an outgoing edge, and exactly one edge is directed into each of the other

vertices. For every non-root vertex in an arborescence, there exists a unique directed path

in the arborescence that leads from the root vertex to the non-root vertex. Occasionally,

to highlight this property, people describe the root vertex as Rome1 [81]. Some authors

define arborescences by reversing the direction of each edge in our definition, giving a set

of arborescences that is different to ours. In this scenario, each unique directed path in

the arborescence directs into rather than away from the root vertex. In both definitions,

for every pair of vertices there exists a one-to-one correspondence between the sets of

1From the proverb: All roads lead to Rome.
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arborescences of the same size rooted at each vertex. To change from one definition to the

other, simply reverse the direction for all the edges.

A spanning arborescence of a digraph D is a subdigraph of D that is an arborescence

which includes every vertex of D. The arborescence number av(D) of a digraph D with

respect to v ∈ V (D) is the number of spanning arborescences rooted at v in D.

Let D be a rooted digraph. A subdigraph F of D is feasible if F is an arborescence.

We call the edge set of F a feasbile set. If the edge set of F is maximal, then it is a basis.

The rank of a subset X ⊆ E(D) is defined as r(X) = max{|A| : A ⊆ X,A is feasible}.
Suppose D, D1 and D2 are rooted digraphs, and E(D1), E(D2) ⊆ E(D). The digraph

D is the direct sum of D1 and D2, written as D = D1 ⊕D2, if E(D1) ∪ E(D2) = E(D),

E(D1) ∩ E(D2) = ∅ and the feasible sets of D are precisely the unions of feasible sets of

D1 and D2.

A surface Σ is a topological space in which every point has a distinct neighbourhood

that is homeomorphic to the plane. An embedded graph (or map) G ⊂ Σ is a graph drawn

on a surface Σ such that edges do not intersect except at their endpoints. The connected

components of Σ \ G are called the faces of G [30]. A plane graph is a graph that is

embedded in the plane. A graph is planar if it has an embedding in the plane.

An embedded graph is 2-cell embedded (or cellularly embedded) if each of its faces is

homeomorphic to an open unit disc.

In any embedded graph, the boundary ∂g of a face g is the closed trail that bounds

g. A face is incident with every vertex and every edge that belongs to its boundary. Two

faces are adjacent if their boundaries share at least one common edge.

2.1.1 Duality

Duality is an involution operation, that is, a graph goes back to its original state by

applying the operation twice. In other words, duality is an operation of order two. It was

originally defined for maps and it is defined for matroids (see Section 2.2) as well. The

dual graph G∗ of a connected plane graph G is obtained by putting a vertex in each face of

the embedding of G. Two vertices in G∗ are adjacent if their corresponding faces shared a

common edge in G. Consequently, there exists a one-to-one correspondence between edges

in G and G∗. The dual of a plane graph is also a plane graph. It is routine to show that

(G∗)∗ = G.

One of the interesting aspects of plane duality is that it relates geometrically two types

of edge sets, namely cycles and bonds [20]. The edge sets of cycles of G correspond to the

edge sets of bonds of G∗, and vice versa.

2.1.2 Deletions and Contractions

Suppose G is a graph and e ∈ E(G). The deletion of e from G, denoted by G\e, is the

graph obtained from G by deleting e. The contraction of e in G, denoted by G/e, is the

graph obtained by removing e and identifying the two endvertices of e. Both of these

operations are used in evaluating the Tutte polynomial of a graph.
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Deletion and contraction operations are dual in planar graphs.

G∗\e = (G/e)∗,

G∗/e = (G\e)∗.

These two operations are commutative. Let e, f ∈ E(G) and e 6= f , then

G\e\f = G\f\e,

G/e/f = G/f/e,

G\e/f = G/f\e.

2.1.3 The Tutte Polynomial

The Tutte polynomial [79, 80, 82, 87, 88] is a two-variable polynomial that contains a

variety of information about other polynomials including the chromatic polynomial, reli-

ability polynomial, Jones polynomial, flow polynomial, and the partition functions of the

Ising model and Potts model. They are specialisations of the Tutte polynomial, and their

relationships with the Tutte polynomial can be visualised through the Tutte plane2.

There are three equivalent ways to define the Tutte polynomial of a graph G.

1. By the state sum expansion:

T (G;x, y) =
∑

X⊆E(G)

(x− 1)r(E)−r(X)(y − 1)|X|−r(X).

The state sum expansion depends only on the rank function of a graph. It relates

the Tutte polynomial to the Whitney rank generating function,

R(G;x, y) =
∑

X⊆E(G)

xr(E)−r(X)y|X|−r(X),

by coordinate transformation,

T (G;x, y) = R(G;x− 1, y − 1).

2. By the deletion-contraction recurrence:

T (G;x, y) =


1, if G is empty,

x · T (G/e;x, y), if e is a coloop,

y · T (G\e;x, y), if e is a loop,

T (G\e;x, y) + T (G/e;x, y), otherwise.

The variables x and y in the recurrence are independent. Since deletion and con-

traction commute, this recurrence gives a well defined polynomial.

2The figure can be found in Welsh’s book. Complexity: Knots, Colourings and Counting, page 140.
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Figure 2.1: A graph G and one of its spanning trees T (highlighted in red)

3. By the notion of basis activities, using the fact that every connected graph has a

spanning tree [53]3:

Let T be a spanning tree of G and < be a total order on E(G). An edge e ∈ E(T ) is

internally active if e has the maximum order by the ordering of < in the fundamental

cutset in T . The internal activity int(T ) of T is the number of edges that are

internally active in T . An edge e ∈ E(G) \ E(T ) is externally active if e has the

maximum order by the ordering of < in the fundamental cycle in T . The external

activity ext(T ) of T is the number of edges that are externally active in T . Suppose

T (G) be the set of spanning trees of G. Then,

T (G;x, y) =
∑

T∈T (G)

xint(T )yext(T ). (2.1)

It has been shown that (2.1) is independent of the choice of < [79]. In Figure 2.1,

the edge order of the graph G is assigned arbitrarily. It is routine to check that edges

5, 7 and 9 in E(T ) are internally active, and edge 6 is the only edge in E(G) \E(T )

that is externally active, with respect to T .

For a graph G that has k > 1 components G1, G2, . . . , Gk,

T (G;x, y) =

k∏
i=1

T (Gi;x, y).

Two graphs G and H are codichromatic (or Tutte equivalent) if T (G;x, y) = T (H;x, y).

The Tutte polynomial has made links between knot theory and statistical physics.

Binary functions extend graphs and also have notions of deletion and contraction [33, 34].

By substituting appropriate values for variables x and y, the Tutte polynomial gives

us a variety of information about a graph. For instance,

• T (G; 1, 1) counts the number of spanning trees of a connected graph G.

• T (G; 1, 2) counts the number of spanning subgraphs of G.

• T (G; 2, 1) counts the number of forests of G.

3The English translation of [53] is: Theory of Finite and Infinite Graph, translated by Richard McCoart
with commentary by W. T. Tutte.
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The evaluation of the Tutte polynomial of a graph at a point in the complex (x, y)-plane

is #P -hard except on one special curve (x−1)(y−1) = 1, and some special points (x, y) =

(1, 1), (−1,−1), (0,−1), (−1, 0), (i,−i), (−i, i), (j, j2), (j2, j) where j = e2πi/3 [35, 50].

The Tutte polynomial has been extended from graphs to matroids [77, 19, 12]. Welsh

and Oxley [67] described the Recipe Theorem, a more general formula for using the

deletion-contraction recurrence in matroids, extending earlier results of Tutte [76].

In this thesis, we study generalisations of the Tutte polynomial for some classes of

directed maps and rooted directed graphs.

2.1.4 Minors

The notion of a minor plays an essential role in graph theory, especially in structural graph

theory.

A graph H is a minor of a graph G, if a graph isomorphic to H can be obtained from

G by some sequence of deletions and contractions. It obeys the three axioms of partial

order, namely the reflexive, transitive and antisymmetric axioms.

A subdivision G′ of a graph G is a graph obtained by replacing each edge of G by a

new path whose internal vertices have degree exactly two in G′. A graph H is a topological

minor of a graph G if a subdivision of H is isomorphic to a subgraph of G. (Note: H can

be obtained from G by contracting some edges with at least one vertex of degree two, and

deletion.) A topological minor is more restricted compared to an ordinary minor where

the contraction operation is less restricted.

Some major results for graph minors include:

• Kuratowski’s Theorem [20, 59]: a forbidden minor characterisation of planar graphs.

It is a famous theorem which states that a finite graph is planar if and only if it

contains no subdivision of K5 or K3,3 as a subgraph.

• Wagner’s Theorem [85]: states that a finite graph is planar if and only if its minors

include neither K5 nor K3,3.

• Robertson-Seymour Theorem [20]: implies that an analogous forbidden minor char-

acterisation exists for every property of graphs that is preserved under deletion and

contraction. Equivalently, it says that for every minor-closed class of graphs, there

exists a finite set of forbidden minors. This is one of the most remarkable results

in graph theory in which Robertson and Seymour spent approximately two decades

(1983–2004) on more than 500 pages in 20 different papers to prove a conjecture of

Wagner.

2.1.5 Euler Genus and Euler Characteristic

Further details of definitions in this section can be found in [30].

Let Σ1 and Σ2 be two surfaces. The connected sum of Σ1 and Σ2 is obtained by

deleting the interior of a disc in each surface and identifying the two boundaries. For

instance, the connected sum of two tori is a 2-torus.
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The genus g(Σ) of a closed surface Σ is defined as follows:

g(Σ) :=


0, if Σ is homeomorphic to the sphere,

n, if Σ is homeomorphic to the connected sum of n tori,

n, if Σ is homeomorphic to the connected sum of n real projective planes.

If an embedded graph G is connected, the genus g(G) of G is the genus of its surface.

Otherwise, the genus of G is the sum of the genera of its components.

The Euler genus γ(G) of a connected embedded graph G is defined as follows:

γ(G) :=

2g(G), if G is orientable,

g(G), if G is non-orientable.

The Euler characteristic χ(G) of an embedded graph G is

χ(G) = |V (G)| − |E(G)|+ |f(G)|.

The relationship between the Euler characteristic and the Euler genus is as follows:

χ(G) = |V (G)| − |E(G)|+ |f(G)| = 2k(G)− γ(G).

2.1.6 Kirchhoff’s Matrix-Tree Theorem

The number of spanning trees of a connected graph G can be calculated by using Kirch-

hoff’s Matrix-Tree Theorem (also known as Kirchhoff-Trent Theorem in some recent lit-

erature) [10, 75, 83]. A square matrix L = L(G), namely the Laplacian matrix, is con-

structed in which the rows and columns of L are both indexed by the vertices of G, and

L(G) = (aij)n×n where

aij =


deg(i), if i = j,

−(the number of edges between i and j), if vertices i and j are adjacent,

0, otherwise.

Deleting the row and the column of an arbitrary vertex in L(G) gives a new matrix whose

determinant is the number of spanning trees of G.

2.1.7 Bicubic Graphs and Bicubic Maps

A graph is bipartite if its vertex set can be partitioned into two distinct subsets, such that

every edge has an endvertex in each part of the partition. A cubic graph (or trivalent

graph) is a 3-regular graph, in which every vertex has degree three. A bicubic graph [11]

is a 3-regular bipartite graph. Note that every bicubic graph contains no bridge [11].

A proper colouring of a graph is an assignment of colours to vertices such that every

pair of adjacent vertices receive different colours. A graph that can be coloured by using
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Figure 2.2: A bicubic map and its dual (in blue-dashed lines)

at most k colours is k-colourable. Since every cycle in a bipartite graph has even size, a

bipartite graph and therefore a bicubic graph are both 2-colourable.

Suppose α is the number of vertices in the same colour class (either one) in a bicubic

graph. The number of vertices and the number of edges in the bicubic graph are 2α and

3α, respectively. If a bicubic graph is embedded in the plane, it is a bicubic map [11] M .

A 3-regular map is bicubic if and only if the number of sides of each of its faces is even.

There are α+ k(M) + 1 faces (including the outer face) in M , where k(M) is the number

of connected components of M [11]. It can be seen easily that every face in the dual M∗

of M is triangular, and every vertex in M∗ has even degree.

An example of a bicubic map and its dual (in blue-dashed lines) is shown in Figure 2.2.

In this example, the vertices of the bicubic map are coloured red and green.

2.2 Matroids

Matroids were introduced by Whitney [91] in studying abstractions of linearly independent

and dependent subsets of the columns of matrices. Matroids can be defined using different

axiom sets, including independence axioms, circuit axioms, basis axioms and rank axioms.

They all are proved to be equivalent.

A matroid [86, 66] M over a finite ground set E is an ordered pair (E, I) where I ⊆ 2E

is a collection of subsets of E satisfying the following three properties:

(I1) ∅ ∈ I.

(I2) If X ∈ I and Y ⊆ X, then Y ∈ I.

(I3) If X,Y ∈ I and |X| < |Y |, then there is an element y ∈ Y −X such that X∪{y} ∈ I.
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The properties (I2) and (I3) are the hereditary and independence augmentation properties,

respectively. The members of I are the independent sets of M . A subset of E that is not

in I is dependent. If M is a matroid (E, I), then we say M is a matroid on E.

Let M be a matroid on E, and X ⊆ E. A base in M is a maximal independent set

of M . By contrast, a minimal dependent set of M is a circuit. The rank r(M) of M

is the size of the largest independent set. The rank r(X) of X is the size of the largest

independent subset of X.

Theorem 2.1. [66] A function r : 2E 7→ N ∪ 0 is the rank function of a matroid on E if

and only if r has the following properties:

(R1) If X ⊆ E, then 0 ≤ r(X) ≤ |X|.

(R2) If X ⊆ Y ⊆ E, then r(X) ≤ r(Y ).

(R3) If X,Y ⊆ E, then r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Let M be a matroid with rank function r and X ⊆ E(M). The subset X is independent

if and only if |X| = r(X). The subset X is a base if and only if |X| = r(X) = r(M). The

subset X is a circuit if and only if X is non-empty and r(X − x) = |X| − 1 = r(X) for all

x ∈ X.

Two matroids are isomorphic if there is a bijection between their underlying ground

sets that preserves the rank.

One natural approach in studying the Tutte polynomial is to extend from graphs to

matroids. Greedoids, which will be introduced in the following section, are a generalisation

of matroids. We study a two-variable polynomial, which is an analogue of the Tutte

polynomial, for an important class of greedoids in Chapter 7.

2.3 Greedoids

Greedoids were introduced by Korte and Lovász as collections of sets that generalise ma-

troids [54]. Korte and Lovász observed that the optimality of some “greedy” algorithms

including breadth-first search could be traced back to an underlying combinatorial struc-

ture that satisfies the greedoid, but not the matroid, framework. Björner and Ziegler [5]

used two algorithmic constructions of a minimum spanning tree of a connected graph, i.e.,

Kruskal’s and Prim’s algorithms, to distinguish between greedoids and matroids. For each

step in both algorithms, an edge with the minimum weight is added into the minimum

spanning tree. The edge sets of the trees/forests that are obtained in each step form the

feasible sets of a greedoid. Feasible sets obtained via Kruskal’s algorithm remain feasible

when removing any edge from the sets. However, this is not always true for feasible sets

that are obtained via Prim’s algorithm. Therefore, the greedoid that is obtained by using

Kruskal’s algorithm (but not Prim’s algorithm) is in fact a matroid.

There are two equivalent ways to define greedoids, using set systems or hereditary

languages [56, 57]. We define greedoids based on set systems. A greedoid over a finite

ground set E is a pair (E,F ) where F ⊆ 2E is a non-empty collection of subsets of E

(called the feasible sets) satisfying:
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(G1) For every non-empty X ∈ F , there is an element x ∈ X such that X − {x} ∈ F .

(G2) For X,Y ∈ F with |X| < |Y |, there is an element y ∈ Y −X such that X ∪{y} ∈ F .

The rank r(A) of a subset A ⊆ E in a greedoid (E,F ) is defined as r(A) = max{|X| :
X ⊆ A,X ∈ F}. Any greedoid is uniquely determined by its rank function.

Theorem 2.2. [55] A function r : 2E 7→ N∪{0} is the rank function of a greedoid (E,F )

if and only if for all X,Y ⊆ E and for all x, y ∈ E the following conditions hold:

(R1) r(X) ≤ |X|.

(R2) If X ⊆ Y , then r(X) ≤ r(Y ).

(R3’) If r(X) = r(X ∪ {x}) = r(X ∪ {y}), then r(X) = r(X ∪ {x} ∪ {y}).

Important classes of greedoids are those associated with rooted graphs and rooted

digraphs. These are called branching greedoids and directed branching greedoids, respec-

tively.

Let G be a rooted undirected graph and X ⊆ E(G). The rank r(X) of X is defined

as r(X) = max{|A| : A ⊆ X,A is a rooted subtree}. Let F be the set of subtrees of G

containing the root vertex. Korte and Lovász [55] showed that (G,F ) is a greedoid called

the branching greedoid of G.

A directed branching greedoid over a finite set E of directed edges of a rooted digraph

is a pair (E,F ) where F is the set of feasible subsets of E. This was defined and shown

to be a greedoid by Korte and Lovász [55].

In Chapter 7, we investigate a two-variable polynomial of directed branching greedoids.



CHAPTER 3

Alternating Dimaps

We adopt the terminology and notation of alternating dimaps in [78, 37].

A dimap is a directed graph that is drawn on an orientable surface such that edges do

not intersect except at their endpoints.

An alternating dimap D = (V,E) ⊂ Σ is a dimap that is 2-cell embedded in a disjoint

union of orientable surfaces Σ (or 2-manifolds) where, for each vertex, the sequence of

edges incident with it is directed inwards and outwards alternately in a cyclic order around

the vertex. All vertices have even degree. An alternating dimap may have loops and

multiple edges. If an alternating dimap contains no vertices, edges, or faces, it is the

empty alternating dimap. The set of vertices, edges, faces and the number of connected

components of D are denoted by V (D), E(D), F (D), and k(D), respectively. As D

embeds in orientable surfaces, the genus g(D) of D is given by the equation |V (D)| −
|E(D)| + |F (D)| = 2k(D) − 2g(D). As a consequence of the alternating property, every

edge in a face of D is oriented in the same direction, to form either a clockwise face or an

anticlockwise face. The number of clockwise faces and the number of anticlockwise faces

of D are denoted by cf(D) and af(D), respectively. For simplicity, sometimes the clockwise

faces are called c-faces, whereas the anticlockwise faces are called a-faces. An in-star is

the set of edges directed into a vertex. The in-star that is directed into a vertex v ∈ V (D)

is denoted by ID(v) (or I(v) when the context is clear). The number of in-stars of D is

denoted by is(D). Every edge e ∈ E(D) belongs to one clockwise face, one anticlockwise

face and one in-star, which are denoted by CD(e), AD(e) and ID(e), respectively. Where

no ambiguity arises, we may write C(e) for CD(e), A(e) for AD(e), and I(e) for ID(e).

The next edge after e going around C(e) (respectively, A(e)) in the direction indicated by

e is the right successor (respectively, left successor) of e.

An undirected embedded graph can be transformed into an alternating dimap by re-

placing each edge of the embedded graph by two oppositely-directed edges. These pairs of

directed edges must all form either clockwise 2-cycles or anticlockwise 2-cycles. Based on

this construction, the definition of alternating dimaps will be satisfied, even though the

undirected graph is not necessarily an Eulerian graph.

17
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D

C

D[C]

Figure 3.1: An alternating subdimap induced by a closed trail C (shown in blue) bounding
a face in D

Every alternating dimap D defines three permutations1, denoted by σD,1, σD,ω, σD,ω2 .

Let e ∈ E(D). The image of e under σD,1 is the next edge going around I(v) in the

clockwise direction. Correspondingly, the image of e under σD,ω (respectively, σD,ω2) is

the next edge going around A(e) (respectively, C(e)) in the clockwise direction. The left

successor of e is σ−1D,ω(e) in the permutation notation. Likewise, the right successor of e is

σD,ω2(e). Permutations are applied from right to left in the composition of permutations.

Note that σD,1σD,ωσD,ω2 gives the identity permutation on E(D).

Two alternating dimaps D1 and D2 are isomorphic, written as D1
∼= D2, if there exists

a bijection φ : V (D1) 7→ V (D2) such that (i) uv ∈ E(D1) if and only if φ(u)φ(v) ∈ E(D2),

and (ii) uv ∈ E(D1) has vw and vx as its right successor and left successor respectively,

if and only if φ(u)φ(v) ∈ E(D2) has φ(v)φ(w) and φ(v)φ(x) as its right successor and left

successor, respectively.

We say D′ is an alternating subdimap of D, written as D′ ≤ D, if D′ is an alternating

dimap where V (D′) ⊆ V (D) and E(D′) ⊆ E(D).

Suppose e ∈ E(D). We write D/e and D \ e for the alternating dimap, or dimap,

obtained from D by contracting e and by deleting e, respectively2.

By the alternating property, every face in D is bounded either by an embedding of a

clockwise closed trail or an anticlockwise closed trail. Let C be the closed trail bounding

a face in D. The alternating subdimap induced by C, written as D[C], is the alternating

subdimap of D with the vertex set V (C) and the edge set E(C) (see Figure 3.1).

A block of an alternating dimap is a maximal connected alternating subdimap that

contains no cutvertex.

The closure of a subset S of points in a topological space is the union of S and its

boundary.

1The indices 1, ω and ω2 are motivated by the cube roots of 1, namely 1, ω = − 1
2

+
√

3
2
i and ω2 =

− 1
2
−
√
3

2
i.

2A dimap (instead of an alternating dimap) D \ e is obtained by deleting a non-loop edge e from an
alternating dimap D. In this scenario, both of the endvertices of e have odd degree in D \ e, hence D \ e
is no longer an alternating dimap. See Section 3.2 for edge types in alternating dimaps.
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h′
B1

g′

B3

B2

(a) D

h

g

(b) B2

Figure 3.2: (a) Blocks within faces of the block B2 in an alternating dimap D where B2

is a directed cycle and other blocks are shown schematically using dashed lines, (b) The
block B2 in D

Suppose D contains blocks B1 and B2, and let g ∈ F (B2). The block B1 is within

the face g if the point set formed by the embeddings of V (B1) and E(B1) is a subset of

the closure of g. In Figure 3.2(a), the block B1 (highlighted in green) is within the face

g ∈ F (B2), whereas the block B3 (highlighted in blue) is within the face h ∈ F (B2) (and

not within g). The faces g, h ∈ F (B2) are shown in Figure 3.2(b).

Let D1 and D2 be two alternating dimaps, let a1 and a2 be anticlockwise faces of D1

and D2 respectively, and let v1 ∈ V (∂a1) and v2 ∈ V (∂a2) be vertices of the faces a1 and

a2. The c-union D of D1 and D2 with respect to a1, v1, a2 and v2, denoted by D1 ∪c D2,

is obtained by identifying v1 and v2 such that D1 is within the anticlockwise face a2 of

D2, and D2 is within the anticlockwise face a1 of D1, in D. When the context is clear,

we may just refer to the c-union D of D1 and D2. Note that the set of clockwise faces of

D is the union of the sets of clockwise faces of D1 and D2 (hence the term c-union), and

|E(D)| = |E(D1)|+ |E(D2)|. An example of a c-union of two alternating dimaps is shown

in Figure 3.3. The a-union is defined by appropriate modifications.

An ordered alternating dimap [37] is a pair (D,<) where D is an alternating dimap and

< is a linear order on E(D). An ordered alternating dimap can be obtained by assigning

a fixed edge-ordering to an alternating dimap.

Let G be the set of plane graphs. Then, altc(G) := {altc(G) | G ∈ G} and alta(G) :=

{alta(G) | G ∈ G}, where altc(G) and alta(G) of G are as defined in Chapter 1.

3.1 Outer Cycles

A plane alternating dimap Pl(D) of an alternating dimap D of genus zero is obtained

from D by converting its embedding in the sphere into an embedding in the plane, by

stereographic projection in the usual way [60].

The face-rooted alternating dimap Dg is an alternating dimap D in which the face

g is distinguished from the other faces. If Dg has genus zero, then the plane alternating

dimap Pl(Dg) of Dg is obtained according to the process described above such that g is the

outermost region of Pl(Dg). Conversely, given a plane alternating dimap P with outermost

region g, by reverse stereographic projection, we obtain a face-rooted alternating dimap

Dg = Pl−1(P ) that has genus zero.
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D2

v2

D1

v1

a1

a2

(a) Two alternating dimaps D1 and D2

v1 = v2

(b) D = D1 ∪c D2

Figure 3.3: A c-union of two alternating dimaps. For convenience, the anticlockwise faces
a1 ∈ F (D1) and a2 ∈ F (D2) are both shown as outer regions

h g

Figure 3.4: The plane alternating dimap Pl(Hg) of the face-rooted alternating dimap Hg

where H is induced by the closed trail bounding h

Suppose C is the closed trail forming the boundary of a face h in an alternating dimap

D, and H = D[C] (see Figure 3.1). It is routine to show that H can be embedded on a

sphere. The closed trail C can be partitioned into cycles, and each of these cycles encloses

a face of opposite type to h. For any face g ∈ F (H) \ {h}, the face-rooted alternating

dimap Hg can be used to obtain the plane alternating dimap Pl(Hg) (see Figure 3.4).

In this scenario, the outer cycle of h in D with respect to g is the cycle formed by

the common edges between h and g in H. In Figure 3.4, the outer cycle of h in D with

respect to g is coloured red. When the choice of g is clear from the context, we may refer

just to the outer cycle of h in D. If an alternating subdimap H = D[C] of genus zero is

converted into a plane alternating dimap P = Pl(Hg), we use the outermost region g of

P to determine the outer cycle of the face bounded by C in D.
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An ultraloop

A 1-loop An ω-loop An ω2-loop

Figure 3.5: Loops

A 1-semiloop

e

An ω-semiloop

e

An ω2-semiloop

e

Figure 3.6: Semiloops

3.2 Triloops, Semiloops and Multiloops

There are a number of different types of special edges that have been defined in alternating

dimaps including 1-loops, ω-loops and ω2-loops [37]. An edge whose head has degree two

is a 1-loop. A single edge forming an a-face is an ω-loop whereas a single edge forming a

c-face is an ω2-loop. An ultraloop is concurrently a 1-loop, an ω-loop and an ω2-loop. It

is the only possible single-edge component in any alternating dimap. An illustration of

these loops is given in Figure 3.5.

An edge is a triloop if it is a 1-loop, an ω-loop or an ω2-loop. In other words, it is a

µ-loop for some µ ∈ {1, ω, ω2}. If a µ-loop is not an ultraloop, then it is a proper µ-loop.

A proper µ-loop is a proper triloop.

A 1-semiloop is a standard loop. We consider two scenarios in defining ω-semiloops

and ω2-semiloops. If a loop e is its own right successor, e is an ω-semiloop. It is also

an ω2-loop under this circumstance. Note also that every ω2-loop is an ω-semiloop. On

the other hand, if e and its right successor are distinct, and they form a cutset of D or

removal of them decreases the genus of D, then e is also an ω-semiloop. An ω-loop e is

also an ω2-semiloop if e is its own left successor. Note also that every ω-loop is an ω2-

semiloop. If e and its left successor are distinct, and they form a cutset of D or removal of

them decreases the genus of D, then e is an ω2-semiloop. In both cases, by removing the

cutsets, the number of components of D is increased, or the genus of D is decreased. For

µ ∈ {1, ω, ω2}, a µ-semiloop is a proper µ-semiloop if it is not a triloop. An illustration of

the three different types of semiloop is given in Figure 3.6.

An edge is proper if it is not a semiloop (and hence not a triloop or an ultraloop).
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Figure 3.7: A c-multiloop within an anticlockwise face of an alternating dimap (the edges
of the c-multiloop are coloured red and blue, and the alternating dimap is shown in dashed
line)

Suppose e and f are two loops in an alternating dimap D. We can use our earlier

definition (see page 19) of one block being within a face of another, and the fact that

every loop is a block. The loop e is within a face g of f if the point set formed by the

embedding of e is a subset of the closure of g.

Let D1 be an alternating dimap of genus zero with a single vertex v1 and |E(D1)| =

m ≥ 1. Since every edge in D1 is a loop, there exists a clockwise face or an anticlockwise

face of size one in D1. Suppose D1 has an ω-loop e and let f1 be the anticlockwise face of

size one that is incident with e. Let D2 be an alternating dimap of genus zero, f2 ∈ F (D2)

be an anticlockwise face and v2 ∈ V (∂f2). Suppose D = D1∪cD2 with respect to f1, v1, f2

and v2. Then, D1 is a c-multiloop of size m within the anticlockwise face f2 of D2, in

D. An example of a c-multiloop is shown in Figure 3.7. An a-multiloop is defined by

appropriate modifications.

A c-multiloop of size m within an anticlockwise face f1 of an alternating dimap D of

genus zero can also be constructed as follows. Add in one proper ω2-loop e that is incident

with a vertex v ∈ V (∂f1). Denote by f2 the clockwise face of size one incident with e.

Then, m − 1 proper ω-loops or ω2-loops that are incident with v are added within the

face f2 such that these m − 1 loops only intersect at v, and edges incident with v are

directed inwards and outwards alternately in a cyclic order around v. The m edges that

are added into D form a c-multiloop within f1 of D. Note that at the time each of the

m − 1 loops h is added within f2, if h is a proper ω-loop (respectively, ω2-loop), it has

an anticlockwise face (respectively, a clockwise face) of size one. If some other loops are

added within the anticlockwise face (respectively, clockwise face) of size one of h, then h

is no longer a proper ω-loop (respectively, ω2-loop).
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Figure 3.8: Construction of a trial map

3.3 Trial Operations

The concept of triality (or trinity) was introduced by Tutte when he studied the dissec-

tions of equilateral triangles [78]. We discuss trial operations in this section. See, for

example [78, 81, 3, 37] for full details.

Given an alternating dimap D, we define the trial Dω of D as follows.

• Vertices of Dω correspond to the clockwise faces of D. We first place a vertex in

each clockwise face of D.

• We construct edges of Dω as follows. For all the clockwise faces that are incident

with a common vertex v ∈ V (D), let the vertices of Dω assigned to these clockwise

faces be v1, v2, . . . , vn, n ∈ Z+, in an anticlockwise order around v. Then, draw a

directed edge from v1 to v2, from v2 to v3, and eventually from vn to vn+1 = v1

(see Figure 3.8), in such a way that each of these directed edges in Dω first crosses

an outgoing edge, followed by an incoming edge, of v (the outgoing edge and the

incoming edge need not be distinct). Edges in Dω are labelled as follows. Suppose vi

and vj represent clockwise faces incident with v in D where j ≡ i+1 (mod indeg(v)).

If an edge in Dω that joins vertices vi and vj of Dω crosses an incoming edge f of v

in D, the edge will be denoted by fω.

Based on this construction, it is also clear that the map e 7→ eω is a bijection from

E(G) to E(Gω).

We usually write Dω2
for (Dω)ω.

Note that the clockwise faces, anticlockwise faces and in-stars in D correspond to the

in-stars, clockwise faces and anticlockwise faces in Dω, respectively. In exponents of edge

labels, the symbols ω multiply, and ω3 = 1, so e.g. ((eω)ω)ω = eω
3

= e. Hence, we have

Dω3
= D.

Suppose e is an edge in an alternating dimap. The edge types of eω and eω
2

are shown

in Table 3.1.
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e eω eω
2

ultraloop ultraloop ultraloop

proper 1-loop proper ω-loop proper ω2-loop

proper 1-semiloop proper ω-semiloop proper ω2-semiloop

proper edge proper edge proper edge

Table 3.1: The edge type of an edge e after trial operations on e (see Figures 3.5 and 3.6
for different edge types)

3.4 Reduction Operations

In this section, we give the definitions of three minor operations for alternating dimaps,

namely 1-reductions, ω-reductions and ω2-reductions [37].

Let D be an alternating dimap. Suppose u, v ∈ V (D) and e = uv ∈ E(D).

For µ ∈ {1, ω, ω2}, the alternating dimap that is obtained by reducing e in D using

µ-reduction is denoted by D[µ]e.

For the 1-reduction, if e is an ω-loop or an ω2-loop, the edge e is deleted to obtain

D[1]e. If e is not a loop (see Figure 3.9(a),(b)), then D[1]e is obtained by contracting

the edge e. Note that contracting an edge in an alternating dimap always preserves

the alternating property of the alternating dimap. If e is a 1-semiloop that is incident

with a vertex v, the alternating dimap D[1]e is formed as follows (see Figure 3.10). Let

e, a1, b1, . . . , as, bs, e, c1, d1, . . . , ct, dt be the cyclic order of the edges that are incident with

v, starting from some edge e that is directed out from v. Observe that each ai and each

di is an incoming edge of v, and each bi and each ci is an outgoing edge of v. In D[1]e,

the edge e is removed and the vertex v is split into two new vertices v1 and v2. Each

ai and each bi is incident with v2, while each ci and each di is incident with v1. The

cyclic orderings of edges incident with v1 and v2 are induced by the cyclic ordering around

v. Note that this reduction will either increase the number of components or reduce the

genus.

Let ` = vn and r = vm be the left successor and the right successor of e = uv in D,

respectively.

For the ω-reduction, if e is an ω-loop or an ω2-loop, the edge e is deleted to obtain

D[ω]e. Otherwise, the alternating dimap D[ω]e is obtained by first deleting both of the

edges e and `, and a new edge `′ = un is created such that the position of the tail

(respectively, head) of `′ in the cyclic ordering of edges incident with u (respectively, n)

in D[ω]e is the same as the position of the tail (respectively, head) of e (respectively, `) in

the cyclic ordering of edges incident with u (respectively, n) in D (see Figure 3.9(a),(c)).

If deg(v) = 2, the vertex v is also removed from D[ω]e.

For the ω2-reduction, if e is an ω-loop or an ω2-loop, the edge e is deleted to obtain

D[ω2]e. Otherwise, the alternating dimap D[ω2]e is obtained by first deleting both of

the edges e and r, and a new edge r′ = um is created such that the position of the tail

(respectively, head) of r′ in the cyclic ordering of edges incident with u (respectively, m)

in D[ω2]e is the same as the position of the tail (respectively, head) of e (respectively, r) in
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Figure 3.9: The three minor operations for alternating dimaps and their trials (in blue) [37]
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Figure 3.10: A 1-semiloop e in D is reduced by using the 1-reduction

the cyclic ordering of edges incident with u (respectively, m) in D (see Figure 3.9(a),(d)).

If deg(v) = 2, the vertex v is also removed from D[ω2]e.

We call these three operations the reduction operations or the minor operations for

alternating dimaps.

A minor of an alternating dimap D is obtained by reducing some of its edges using a

sequence of reduction operations.

For the reduction of a triloop e ∈ E(D), we have D[1]e = D[ω]e = D[ω2]e. Since the

type of reduction operation is insignificant, we sometimes write D[∗]e when a triloop e is

reduced.

For µ ∈ {1, ω, ω2}, if (D,<) is an ordered alternating dimap, then the µ-reduction

(D,<)[µ] of (D,<) is the ordered alternating dimap (D[µ]e0, <
′) where e0 is the first edge

in E(D) under < and the order <′ on E(D)\{e0} is obtained by simply removing e0 from

the order <.



CHAPTER 4

Literature Review

In this chapter, we give an overview of certain topics, particularly alternating dimaps, the

Tutte polynomial and some known polynomials for directed digraphs.

Alternating dimaps were introduced by Brooks, Smith, Stone and Tutte in 1940, when

they studied the dissection of equilateral triangles into equilateral triangles. They found

that each dissection of equilateral triangles can be represented using three directed graphs.

As a result, they extended the concept of duality to a higher order, namely triality. Details

are given in Sections 4.1 and 4.2.

Tutte introduced a two-variable polynomial for graphs, which plays an essential role

in graph theory. The polynomial is now known as the Tutte polynomial. We give the

background and some of the generalisations of the Tutte polynomial in Section 4.3.

To obtain minors of alternating dimaps, Farr introduced three reduction operations

and showed that these operations do not commute in general. He also studied invari-

ants of alternating dimaps, by establishing several recurrence formulae that involve these

reduction operations. We present some of his results in Section 4.4.

A brief overview of arborescences is given in Section 4.5. Tutte justified further that

triality is a generalisation of duality by showing that every alternating dimap has the same

arborescence number as both of its trials.

Lastly, we discuss some polynomials for directed graphs. Our focus is the two-variable

greedoid polynomial introduced by Gordon and McMahon [39]. This is an analogue of

the Whitney rank generating function, which has a close relationship with the Tutte

polynomial.

4.1 Squaring Squares

Plane alternating dimaps were introduced by Tutte [78] in 1948 as a tool for studying the

dissection of equilateral triangles into equilateral triangles. This followed his collaboration

with Brooks, Smith and Stone—known as the Trinity Four1—on dissecting rectangles

into squares [10]. Their aim was to divide a rectangle into n squares of different sizes with

1They were members of the Trinity Mathematical Society at Cambridge University in the 1930s.

27
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Figure 4.1: A 32× 33 squared rectangle [83]

Figure 4.2: A 176× 177 squared rectangle [1]

none of them overlapping any other. The rectangle has order n and is perfect if such a

dissection exists. The process is known as squaring the rectangle.

The idea was initially raised by Stone based on a problem in the book “The Canterbury

Puzzles” [22], written by H. E. Dudeney. In this problem, a square lid of a casket was

subdivided into a rectangle and several squares of different sizes. Dudeney claimed that

the solution is unique without any proof or reference. The Trinity Four discovered Lusin’s

Conjecture [61] which stated that a perfect square is infeasible. However, they stumbled

across the fact that Moroń, a Polish mathematician, had given a perfect rectangle on the

dissection of a 32× 33 rectangle (see Figure 4.1) in Rouse Ball’s book [71].

The Trinity Four found that all perfect rectangles have order of at least nine and there

exist exactly two order-9 perfect rectangles. The first new perfect rectangle was found

by Stone (see Figure 4.2). It has order 11 and dimension of 176 × 177. See [83, 1] for

the method used. Most of their findings were of order 9, 10 and 11. Some simple perfect

rectangles are available in Table 5.3 in their 1940s article [10, pp. 324–325].

The Trinity Four modelled a squared rectangle using a graph that is identical to an

electrical network (see Figure 4.3). Each maximal horizontal line segment and each square

of the squared rectangle were represented by a vertex and a directed edge, respectively.

Another graph that represents the same squared rectangle was also constructed, by using

the maximal vertical line segments of the squared rectangle (see Figure 4.4). The dotted

lines in Figures 4.3 and 4.4 were added to complete the two networks. They named these

networks completed nets (or c-nets) of the squared rectangle. The two c-nets of a squared
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Figure 4.3: A horizontal electrical network [83]

Figure 4.4: A vertical electrical network [83]

rectangle were used to describe the concept of duality. By putting both c-nets together in

the plane, each vertex of a c-net lies in a face of another, as shown in Figure 4.5.

The first perfect square, which has order 55, was constructed by combining two perfect

rectangles [73]. Duijvestijn [23] proved that the lowest order of a simple perfect square is

21 (see Figure 4.6), with the aid of the DEC-10 computer at the University of Twente,

The Netherlands, in 1978. It is now known to be the unique perfect square of lowest

order [24, 51].

4.2 Triangulating Triangles

The Trinity Four proposed several problems in [10] including dissections of equilateral

triangles, which they studied in [78, 11]. In triangulating triangles, each dissection of a

triangle was represented by a directed graph.

A triangulation of order n of any polygon (particularly equilateral triangles) is a dis-

section of the polygon into n > 1 equilateral triangles. The equilateral triangles obtained
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Figure 4.5: Dual c-nets [83]

Figure 4.6: The lowest-order simple perfect squared square [23]

after the dissection are the elements of the triangulation. They do not overlap with each

other and completely fill the original polygon. Tutte showed that it is not possible to

dissect a triangle into equilateral triangles of unequal sizes [78]. However, it is possible

to dissect a triangle into triangles and rhombuses where none of them are equal in size.

There are two types of elements in a dissection of an equilateral triangle, namely positive

elements and negative elements. Each positive element has an identical orientation to the

original equilateral triangle whereas each negative element is rotated through an angle

of 180◦ compared with the orientation of positive elements. The size of an element is

determined by the side length of the element together with a sign. The size has a positive

sign if the element is a positive element, and a negative sign otherwise. The triangulation

is perfect if no two elements have the same size. It follows that each perfect triangulation

has at most two elements of the same side length, and these two elements have different

orientations.

Theorem 4.1. [78] In any triangulation of an equialteral triangle some two elements have

a side in common.
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Figure 4.7: The simplest perfect parallelogram [83]

(a) (b)

Figure 4.8: The smallest perfect equilateral triangle of size 15 in two different dissections

Through the triangulations of triangles, triality was shown to be a generalisation of

duality. Networks constructed based on the dissection of equilateral triangles are found

to appear in triples (more details will be given later). Tutte defined triality or trinity as

the relationship among the three members.

Tutte found that the triangulations of parallelograms that have angles of 60◦ and 120◦

can be obtained easily through the triangulations of equilateral triangles, and vice versa.

The simplest perfect parallelogram is shown in Figure 4.7. This parallelogram gives the

two simplest perfect triangulations of equilateral triangles as shown in Figure 4.8, by using

a transformation described in [78].

Drápal and Hämäläinen [21] proved by computer enumeration that the order of the

smallest perfect equilateral triangle is 15 with two different dissections (see Figure 4.8).

Their findings verified Tutte’s Conjecture [78, 21] that the smallest perfect equilateral

triangle has order 15.

Dissections of parallelograms into equilateral triangles are somehow analogous to dis-

sections of rectangles into squares [78, 83]. Every square in a squared rectangle is first

transformed into a rhombus that has angles of 60◦ and 120◦, by shearing the upper side

of the rectangle horizontally to the right (or left) with respect to the lower side. Each

rhombus is dissected into two equilateral triangles by cutting along its short diagonal.

Then, a triangulated parallelogram is obtained (see Figure 4.9). Each element in a dis-

sected parallelogram is assigned a positive or a negative sign according to its orientation

(the method is the same as the one in the triangulations of equilateral triangles). Using
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Figure 4.9: A sheared perfect rectangle [83]

Figure 4.10: An unsymmetric triangulated parallelogram [83]

the differences of signs, Tutte said that the triangulation is actually perfect and concluded

that every perfect rectangle shears into a perfect parallelogram. Note that there exist

perfect triangulations of parallelograms that are not generated by perfect rectangles. One

such example is shown in Figure 4.7.

The Trinity Four represented triangulated parallelograms by using electrical networks.

The mechanism is similar to the electrical networks generated by perfect rectangles. Each

horizontal line of a triangulated parallelogram is represented by a vertex. Each triangle

is bounded by two horizontal lines, containing the apex and base, respectively. For each

triangle, a directed edge is used to join the two vertices from its apex to base. The

side length of each triangle, either positive or negative, is assigned as the weight of the

corresponding directed edge (see Figure 4.9 and Figure 4.102). The upper and lower

sides of the parallelogram correspond to the positive and negative poles of a network,

respectively. They observed that every vertex in the network has even degree and there

is no crossing between edges. In addition, each triangle meets a given horizontal line

either at its base or its apex, in an anticlockwise cyclic order. This implies that directed

edges incident with each vertex in the network appear in the opposite direction to their

neighbours. They called this planar map an alternating dimap, to highlight the alternation

of the edge directions at each vertex [11, 83]. Note that the triangulated parallelogram in

Figure 4.9 can be obtained by shearing the perfect rectangle in Figure 4.3. By comparing

the two electrical networks in these two figures, Tutte found that an alternating dimap

can be obtained from a graph by replacing each edge in the graph by two directed edges

2The figure is obtained from [83, p. 36] with a minor error. Both edges that have weight 2 and -2 should
be directed to the opposite direction.
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Figure 4.11: A comparison between two electrical networks [83]

Figure 4.12: A triangulated triangle with one of its three networks [83]

that form either a clockwise face or an anticlockwise face (see Figure 4.11), as described

in Chapter 3.

The Trinity Four found that every triangulated equilateral triangle gives three electri-

cal networks (by rotating the triangle 120◦ twice). The constructions of these networks

followed the one for parallelograms, except for one extra vertex A which was added to

represent the apex of the triangle (see Figure 4.12). By identifying the two poles of each

of these networks, followed by a minor modification on the weight of the outgoing edge

of A, three alternating dimaps were obtained (see one of them in Figure 4.13, where the

modified edge is indicated by a cross). Since the two electrical networks that were obtained

through the dissection of a rectangle were called dual c-nets, they referred these three al-

ternating dimaps as trine alternating dimaps. The relationship between trine alternating

dimaps was called triality (or trinity), which is a generalisation of duality.
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Figure 4.13: From triangle to parallelogram [83]

Figure 4.14: A 3-colourable Eulerian triangulation [81]

The Trinity Four referred to the electric flows in a network obtained from a triangulated

triangle as leaky3. They showed that in a balanced directed graph, the number of spanning

arborescences rooted at each vertex is the same [11]. Subsequently, they constructed three

plane alternating dimaps, called a triad, by using a coloured bicubic map [11], using the fact

that a cubic map can be face-coloured in three colours if and only if it is bicubic [47, 48, 49].

Tutte [81] introduced the concept of derived maps, which is then used to construct

alternating dimaps. By using a finite connected graph M of size at least one that is drawn

on the sphere, he constructed a derived map M ′ that has the following properties: (i)

every face in M ′ is a triangle, (ii) it is 3-colourable, and (iii) the degree of each vertex

is even. In other words, M ′ is an Eulerian triangulation (see the dual of the bicubic map

in Figure 2.2). He also explained a way to convert from M ′ to M , and to generate the

dual map M∗ by swapping the vertices in M ′. The dual map was studied by Smith and

Tutte [72] in 1950. Tutte constructed alternating dimaps by considering a 3-colourable

Eulerian triangulation map (shown in part in Figure 4.14) [81]. Tutte showed that trinity

is a true generalisation of duality.

3Leaky electricity was named by Smith. In [83], Tutte proposed to rename it as unsymmetrical elec-
tricity.
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Berman [3] studied the two derived alternating dimaps of an alternating dimap. He

called the three alternating dimaps a trinity of alternating dimaps. He showed that duality

is a special case of trinity.

4.3 Tutte-Whitney Polynomials

The Four-Colour Theorem states that no more than four colours are required to colour the

regions of a map such that no two adjacent regions receive the same colour. Whitney [89]

extended the notion of colouring and studied the vertex-colouring of the dual graph of

a map. By using the inclusion-exclusion principle, he deduced the following formula to

determine the number of ways to colour a graph G:

χ(G;λ) =
∑
p,s

(−1)sGp,sλ
p, (4.1)

where Gp,s is the number of subgraphs of G that have p components and s edges. Let

X be a subgraph of G with r vertices, s edges and p components. He defined the rank

and nullity of X as i = r − p and j = s − i = s − r + p, respectively. By putting

Gp,s = mr−p,s−r+p = mi,j where mi,j is the number of subgraphs of G that have rank i

and nullity j, and by appropriate substitutions into (4.1), he obtained

χ(G;λ) =
∑
i,j

(−1)i+jmi,jλ
r−i =

∑
i

miλ
r−i, (4.2)

where mi = (−1)i+jmi,j . The polynomial (4.2) is known as the chromatic polynomial.

The chromatic polynomial was generalised to the Whitney rank generating function [90],

or equivalently the Tutte polynomial.

Tutte [79] generalised the chromatic polynomial by introducing a two-variable poly-

nomial χ(G;x, y) for a graph G. He called this polynomial the dichromate of G. (The

polynomial is now known as the Tutte polynomial T (G;x, y). Tutte commented that:

“This may be unfair to Hassler Whitney who knew and used analogous coefficients with-

out bothering to affix them to two variables”. We will refer this polynomial as the Tutte

polynomial from now onwards.) The Tutte polynomial of a graph is defined in terms of

the spanning trees and a fixed enumeration of the edges of the graph. He introduced

internal and external activities (see Section 2.1.3 for definitions) of a spanning tree S of

a connected graph G, which were denoted by int(S) and ext(S), respectively. The Tutte

polynomial of G is defined as follows:

T (G;x, y) =
∑

S∈T (G)

xint(S)yext(S), (4.3)

where T (G) is the set of spanning trees of G. Tutte also proved that (4.3) is independent

of the choice of ordering of the edges.

Tutte introduced a recurrence relation, which is now known as the deletion-contraction

recurrence. Note that the idea of this recurrence relation is an analogue of the W -function
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and V -function that he defined in [76]. He then showed that the Tutte polynomial is

multiplicative over blocks.

Theorem 4.2. [79] If a graph G consists of two connected graphs H1 and H2 having just

one vertex in common, then

T (G;x, y) = T (H1;x, y) · T (H2;x, y). (4.4)

Note that an analogous result to Theorem 4.2 holds for matroids. Let M,M1 and M2

be matroids. Brylawski [12] conjectured that if T (M ;x, y) = T (M1;x, y) · T (M2;x, y),

then M is the direct sum of M1 and M2. Merino, de Mier and Noy [63] proved Brylawski’s

conjecture. This implies that the Tutte polynomial of a matroid (respectively, a graph)

factorises if and only if the matroid (respectively, graph) is a direct sum. In Chapter 7,

we investigate the factorisation of a two-variable analogue of the Whitney rank generating

function of one class of greedoids.

Tutte [80] defined the dichromatic polynomial of a graph G as

Q(G;x, y) =
∑
S⊆E

xk(S)y|E|−|A|+k(S), (4.5)

and studied its combinatorial properties. He found that Q(G;x, y) was completely deter-

mined by the properties of the Tutte polynomial, with the following relation:

T (G;x, y) = (x− 1)−k(G)Q(G;x− 1, y − 1).

Crapo [19] and Brylawski [12] generalised the Tutte polynomial from graphs to ma-

troids. Crapo defined a two-variable rank generating function R(M ;x, y) for a matroid M

and established its algebraic properties. Let M∗ be the dual of a matroid M . Crapo proved

that R(M ;x, y) = R(M∗; y, x). He also showed that R(M ;x, y) = T (M ;x+1, y+1), where

T (M) is the Tutte polynomial of M . The result is an analogue of the relationship between

the Tutte polynomial and the Whitney rank generating function of graphs. His results

further imply that T (M ;x, y) = T (M∗; y, x). Brylawski studied invariants that can be

obtained from the Tutte polynomial of a matroid. Several invariants including numbers of

subsets, bases, spanning sets and independent sets of a matroid, as well as Möbius function

were found.

Farr [33] extended the Whitney rank generating function by defining the Whitney

quasi-rank generating function of an arbitrary function f : 2E → R as

R(f ;x, y) =
∑
X⊆E

xQf(E)−Qf(X)y(Qf)
∗(E)−(Qf)∗(E\X),

where Qf is a quasi-rank function and (Qf)∗ is its dual, defined as follows:

Qf(S) = log2

( ∑
T⊆E f(T )∑
T⊆E\S f(T )

)
,
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(Qf)∗(S) = |S|+ log2 f(∅)− log2
∑
T⊆S

f(T ).

He developed a relationship between the Hadamard transform and duality for quasi-rank

functions. He also introduced operations of deletion and contraction, and minors of binary

functions. He gave three specialisations of R(f ;x, y), namely the weight enumerator of a

code, the percolation probability of a clutter and Kung’s generalisation of the chromatic

polynomial [58]. Farr [34] showed that a generalisation of the partition function of the

Potts model to binary functions is also a partial evaluation of the Whitney quasi-rank

generating function.

The Tutte polynomial has also been extended to graphs embedded on surfaces. How-

ever, information that is encoded by topological Tutte polynomials is not as rich as in the

Tutte polynomial. One example of a topological Tutte polynomial is the ribbon graph

polynomial introduced by Bollobás and Riordan [7, 8]. The ribbon graph polynomial (or

Bollobás-Riordan polynomial) R(G) of an embedded graph G is a four-variable polyno-

mial, which is defined by adding two extra variables in the state sum expansion of the

Tutte polynomial, as follows:

R(G;x, y, z, w) =
∑

A⊆E(G)

(x− 1)r(G)−r(A)yn(A)zk(A)−f(A)+n(A)wt(A)

where k(A), r(A) = |V (A)| − k(A), n(A) = |E(A)| − r(A), f(A) and t(A) are the

number of connected components, rank, nullity, number of components of the boundary

and orientability of A, respectively. If A is orientable, t(A) = 0. Otherwise, t(A) = 1.

Bollobás and Riordan developed relationships between the ribbon graph polynomial and

the Tutte polynomial. They also introduced a deletion-contraction recurrence for the

ribbon graph polynomial, which was extended by Ellis-Monaghan and Moffatt using more

specific edge types [30].

Another example of topological Tutte polynomials is the Penrose polynomial which

was originally defined implicitly for plane graphs [69]. Ellis-Monaghan and Moffatt [29]

extended the Penrose polynomial to graphs embedded in arbitrary surfaces. They also

showed that the Penrose polynomial satisfies a deletion-contraction relation.

Ellis-Monaghan and Sarmiento [31] constructed a one-variable polynomial, the gener-

alised transition polynomial for all Eulerian graphs using a weight system. Ellis-Monaghan

and Moffatt [28] extended the generalised transition polynomial to the topological tran-

sition polynomial. They gave a linear recurrence relation to compute the topological

transition polynomial, and showed that the polynomial has the duality property. Ellis-

Monaghan and Moffatt [30] proved that the Penrose polynomial of an embedded graph is

an evaluation of the topological transition polynomial.

The topochromatic polynomial of an embedded graph G is given by

Z(G; a, b, c, w) =
∑

A⊆E(G)

ak(A)

(∏
e∈A

be

)
cf(A)wt(A),
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where a, c, w are indeterminates and b is a set of indeterminates indexed by E(G), was

defined by Moffatt [64] as an extension of the ribbon graph polynomial. Ellis-Monaghan

and Moffatt [30] found a relation between the topological transition polynomial and the

topochromatic polynomial.

4.4 Tutte Invariants for Alternating Dimaps

The reduction operations for alternating dimaps (see Section 3.4) were introduced by

Farr [37]. These operations are used to obtain minors of alternating dimaps D. Through

reduction operations, Farr established a relationship between triality and minors.

Theorem 4.3. [37] If e ∈ E(D) and µ, ν ∈ {1, ω, ω2} then

Dµ[ν]eµ = (D[µν]e)µ.

It is well known that deletion and contraction operations always commute. A natural

question arises here is whether the reduction operations obey the commutative rule. Farr

proved that if one of the two edges in any reduction is a triloop, then the reduction

operations commute.

Theorem 4.4. [37] If f is a triloop and µ, ν ∈ {1, ω, ω2}, then

D[µ]e[ν]f = D[ν]f [µ]e.

Some examples reveal that reduction operations do not always commute, unless certain

conditions are imposed. Farr [37] proved the following theorems.

Theorem 4.5. Let D be an alternating dimap and e, f ∈ E(D).

a) If f 6= σD,ω(e), then

D[1]e[ω]f = D[ω]f [1]e.

b) If f 6= σD,1(e), then

D[ω]e[ω2]f = D[ω2]f [ω]e.

c) If f 6= σD,ω2(e), then

D[ω2]e[1]f = D[1]f [ω2]e.

A set of k reductions is k-commutative on an alternating dimap D if applying these

reductions on D in any order preserves the same result. If every set of k reductions is

k-commutative, D is k-reduction-commutative. If D is k-reduction-commutative for every

k, then D is totally reduction-commutative. Farr showed that if D is totally reduction-

commutative, then any minor of D has the same property.

An alternating dimap with a single vertex, 2k+1 loops and exactly two faces is known

as a k-posy and has genus k. For instance, a 1-posy is a toroidal alternating dimap with

one vertex, three loops and two faces. (For the 1-posy, it may seem like there are “six
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different faces” incident with the vertex, formed by three anticlockwise faces and three

clockwise faces alternately. In fact, there is only one anticlockwise face and one clockwise

face, where each meets the vertex three times.) Farr proved that the genus of a non-empty

alternating dimap is less than k if and only if none of its minors is a disjoint union of posies

with total genus of k.

Farr extended the notion of Tutte invariants to alternating dimaps. He introduced

recurrence formulae that involve reduction operations, including simple Tutte invariants

and extended Tutte invariants [37]. In the former, the study was mainly focusing on

ultraloops, proper 1-loops, proper ω-loops and proper ω2-loops treating as special cases.

In the latter, proper 1-semiloops, proper ω-semiloops and proper ω2-semiloops were also

treated as special cases. Farr gave a characterisation of simple Tutte invariants.

Theorem 4.6. [37] The only simple Tutte invariants of alternating dimaps are:

• F (D) = 0;

• F (D) = 3|E(D)|;

• F (D) = (−1)|V (D)|;

• F (D) = (−1)af(D);

• F (D) = (−1)cf(D).

Farr showed that extended Tutte invariants are much richer than the simple Tutte

invariant. He introduced the c-Tutte invariant Tc(D;x, y) and the a-Tutte invariant

Ta(D;x, y) for any alternating dimap D [37]. He proved that Tc(D;x, y) and Ta(D;x, y)

are well defined for certain alternating dimaps, when these polynomials are equal to the

Tutte polynomial of plane graphs.

Theorem 4.7. [37] For any plane graph G,

T (G;x, y) = Tc(altc(G);x, y) = Ta(alta(G);x, y).

Farr suggested some problems for further research in [37], including: (1) identify other

excluded minor characterisations for alternating dimaps, (2) characterise extended Tutte

invariants and (3) investigate Tutte invariants for ordered alternating dimaps. We address

the first two problems in this thesis.

4.5 Arborescences

The tree number t(G) of a graph G is the number of spanning trees of G. By the Tree-

Duality Theorem, it is known that the tree number of G is equal to the tree number of its

dual G∗,

t(G) = t(G∗).

Tutte showed that if a digraph H is balanced, then the number of spanning arbores-

cences of H is independent of the root node [78, 81]. Where no ambiguity arises, he
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referred to this as the arborescence number of H. He found that the arborescence number

of a balanced digraph remains unchanged by reversing the direction of each edge in the

digraph.

To justify further that triality is a true generalisation of duality, Tutte [81] proved the

Tree-Trinity Theorem (or Tutte’s trinity theorem) which asserted that trine alternating

dimaps M1,M2 and M3 have the same arborescence number,

t(M1) = t(M2) = t(M3).

Note that trine alternating dimaps are all balanced, as digraphs.

Recall that Kirchhoff’s Matrix Tree Theorem (see Section 2.1.6) can be used to compute

the tree number of a graph G. It can be modified to count the number of spanning

arborescences in digraphs (not necessarily balanced). The Kirchhoff matrix for digraphs

is constructed as follows. Let H be a digraph. A square matrix L = L(H) is constructed

in which the rows and columns of L are both indexed by the vertices of H, and L(H) =

(aij)n×n where

aij =

(indegree of i) − (number of loops incident with i), if i = j,

− (number of directed edges from j to i), if i 6= j.

Deleting the row and the column of an arbitrary vertex v in L(H) gives a new matrix whose

determinant is the number of spanning arborescences rooted at v in H. This method was

used in studying the relation between circuits and trees in oriented graphs [84].

Berman used determinants to prove Tutte’s trinity theorem. He introduced a new

determinant formula to compute the number of spanning arborescences of a digraph [3].

4.6 Polynomials for Directed Graphs

Polynomials for directed graphs are less common than polynomials for undirected graphs.

In this section, we review polynomials for directed graphs, emphasising the two-variable

greedoid polynomial introduced by Gordon and McMahon.

Let G be a greedoid. Gordon and McMahon [39] defined a two-variable greedoid

polynomial of G by

f(G; t, z) =
∑

A⊆E(G)

tr(G)−r(A)z|A|−r(A)

which generalises the one-variable greedoid polynomial λ(G; t) given by Björner and Ziegler

in [5]. We call the two-variable greedoid polynomial f(G; t, z) the greedoid polynomial.

The greedoid polynomial is motivated by the Tutte polynomial of a matroid [79], and is

an analogue of the Whitney rank generating function [89, 90]. Gordon and McMahon

studied greedoid polynomials for branching greedoids and directed branching greedoids.

They showed that f(D; t, z) can be used to determine if a rooted digraph D is a rooted

arborescence [39]. However, this result does not extend to unrooted trees [26].
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Gordon and McMahon proved that the greedoid polynomials of rooted digraphs D

have the multiplicative direct sum property, that is, if D = D1 ⊕ D2, then f(D; t, z) =

f(D1; t, z) · f(D2; t, z). They also proved that if f(T1; t, z) = f(T2; t, z) where T1 and T2

are both rooted arborescences, then T1 ∼= T2.

Gordon and McMahon gave a recurrence formula to compute f(D; t, z) where D is

a rooted digraph. The following proposition gives the formula, which involves the usual

deletion-contraction operations.

Proposition 4.8. [39] Let D be a digraph rooted at a vertex v, and e be an outgoing edge

of v. Then

f(D; t, z) = f(D/e; t, z) + tr(D)−r(D\e)f(D \ e; t, z).

A greedoid loop [62] in a rooted graph, or a rooted digraph, is an edge that is in

no feasible set. It is either an ordinary (directed) loop, or an edge that belongs to no

(directed) path from the root node.

The factorisation of greedoid polynomials of greedoids, rooted graphs and rooted di-

graphs were investigated. Let D be a rooted digraph and D be the greedoid with ground

set E(D) whose feasible sets are the edge sets of rooted arborescences. McMahon proved

the following results:

Proposition 4.9. [62] If G is a greedoid with k loops, then (1 + z)k divides f(G).

Theorem 4.10. [62] Let G be a rooted graph with f(G) = (1 + z)ah(t, z), where 1 + z

does not divide h(t, z). Then a is the number of greedoid loops in G.

Theorem 4.11. [62] Let D be a rooted digraph with no greedoid loops. Then D has a

directed cycle if and only if 1 + z divides f(D).

Gordon and McMahon introduced another method to define the greedoid polynomial.

They defined the greedoid polynomial based on external activities [41]. A computation

tree T (G) of a greedoid G is a rooted binary tree such that

• if G has no feasible element, then T (G) is the trivial labelled rooted tree with a

single vertex that is labelled by G.

• if e is feasible in G, then obtain T (G) by forming the rooted labelled trees with two

children G/e and G \ e, respectively.

Let m be the number of leaves of a computation tree T (G). Suppose {Gk : 1 ≤ k ≤ m} is

the set of greedoid minors of G which label the leaves of T (G). For each k, let Fk be the

elements of G which are contracted in the unique path from the root to the leaf labelled

by Gk, and extT (Fk) be the elements of G which correspond to loops in Gk. Note that

Fk is a feasible set of G. Gordon and McMahon called x ∈ extT (Fk) externally active for

Fk with respect to T (G) (see [41] for examples of T (G) and extT (Fk) ). They proved the

following theorem.

Theorem 4.12. [41] Let G be a greedoid, T (G) be any computation tree and F be all

feasible sets. Then,

f(G; t, z) =
∑
F

tr(G)−|F |(1 + z)|extT (F )|.



42 Chapter 4. Literature Review

A subset S ⊆ E(G) is spanning if S contains a basis. They also gave a graph-theoretic

interpretation for the highest power of 1 + z which divides f(G), in the following theorem.

Theorem 4.13. [41] Let G be the directed branching greedoid associated with a rooted

digraph D with no greedoid loops or isolated vertices. If f(G; t, z) = (1 + z)kh(t, z), where

1 + z does not divide h(t, z), then k is the minimum number of edges that need to be

removed from D to leave an acyclic directed graph D′ such that E(D′) spans G.

Tedford [74] defined a three-variable greedoid polynomial f(G; t, p, q) for any rooted

graph G, which generalises the two-variable greedoid polynomial. He showed that

f(G; t, p, q) obeys a recursive formula. He also proved that f(G; t, p, q) determines the

number of greedoid loops in any rooted graph G. His main result shows that f(G; t, p, q)

distinguishes connected rooted graphs G that are loopless and have at most one cycle.

He extended f(G; t, p, q) from rooted graphs to general greedoids, and proved that the

polynomial determines the number of loops for a larger class of greedoids.

Clouse defined three fundamental types of greedoid invariants and the greedoid Tutte

polynomial h(G; t, z) = f(G; t−1, z−1) in [18]. Clouse characterised each of these greedoid

invariants in terms of the greedoid Tutte polynomial.

Gordon and McMahon defined a characteristic polynomial p(G) for a greedoid G based

on an evaluation of the two-variable greedoid polynomial f(G; t, z) [40].

Definition 4.1. Let G be a greedoid on the ground set E. The characteristic polynomial

p(G;λ) is defined by

p(G;λ) = (−1)r(G)f(G;−λ,−1).

They showed that the characteristic polynomial of a greedoid G can also be defined by

using a Boolean expansion, a feasible set expansion and a deletion-contraction recursion,

as follows.

Proposition 4.14 (Boolean expansion).

p(G;λ) =
∑

A⊆E(G)

(−1)|A|λr(G)−r(S).

Proposition 4.15 (Feasible set expansion). Let TG be a computation tree for G and FT
denote the set of all feasible sets of G having no external activity. Then

p(G;λ) =
∑
F∈FT

(−1)|F |λr(G)−|F |.

Proposition 4.16 (Deletion-contraction recursion). Let e be a feasible set in G. Then

p(G;λ) = λr(G)−r(G\e)p(G \ e;λ)− p(G/e;λ).

They also proved that the greedoid characteristic polynomial has the multiplicative direct

sum property.
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Gordon and McMahon then studied the characteristic polynomial for rooted graphs

and rooted digraphs [42]. They completely determined the characteristic polynomial for

rooted digraphs with the following results.

Lemma 4.17. Suppose D is a rooted digraph with a directed cycle. Then p(D;λ) = 0.

Lemma 4.18. Let D be a rooted digraph consisting of a single feasible edge. Then

p(D;λ) = λ− 1.

They improved the efficiency of the deletion-contraction recursion for rooted digraphs.

Proposition 4.19. Suppose e is a feasible edge of an acyclic rooted digraph D, where e

is not a leaf.

• If e is in every basis, then p(D;λ) = −p(D/e;λ).

• If e is not in every basis, then p(D;λ) = p(D \ e;λ).

Their main result counts the number of sinks in rooted digraphs.

Theorem 4.20. Let D be a rooted digraph. If D contains no greedoid loops and no directed

cycles, then p(D;λ) = (−1)r(D)(1− λ)s, where s is the number of sinks in D.

Eaton and Tedford [25] defined multiply-rooted (directed) branching greedoids that

have a set of root nodes. They studied the characteristic polynomial of multiply-rooted

directed trees. They gave a combinatorial interpretation for this polynomial.

Gordon and Traldi [43] attempted to generalise the Tutte polynomial of undirected

graphs to a polynomial invariant of directed graphs. They found that there exist more

than one such generalisation, by using different definitions of the Tutte polynomial. They

defined polynomials for rooted digraphs using three rank functions based on the Whitney

rank generating function f(G; t, z) =
∑

A⊆E(G) t
r(E)−r(A)z|A|−r(A). Suppose D is a digraph

rooted at v and A ⊆ E(D). The three rank functions were defined as follows:

• r1(A) ≡ max{|T | : T ⊆ A is a rooted arborescence},

• r2(A) ≡ max{|T ∩A| : T ⊆ E(D) is a rooted arborescence},

• r3(A) ≡ max{|F | : F ⊆ A is a rooted forest of arborescences}.

They associated the Whitney rank generating function to these rank functions. Several

evaluations at certain coordinates for each of these rank functions were given, including

the number of arborescences rooted at v in D.

Chung and Graham [16] commented that, for directed graphs, no analogue of the

Tutte polynomial is known. They introduced the cover polynomial for directed graphs and

studied its relationships to other graph polynomials [16]. The cover polynomial C(D;x, y)

of a directed graph D is a polynomial in two indeterminates x and y, that can be obtained

using the following recursive formula:

C(D;x, y) =


1, if D is empty,

xn, if D contains n vertices and no edges,

C(D \ e;x, y) + C(D/e;x, y), if e is a non-loop edge,

C(D \ e;x, y) + y · C(D/e;x, y), if e is a loop.
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Figure 4.15: Deleting and contracting a non-loop edge from a digraph
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Figure 4.16: Deleting and contracting a loop from a digraph

Let e ∈ E(D). In the recursive formula, the deletion operation is exactly the same as the

usual deletion operation for undirected graphs, regardless of whether e is a loop or a non-

loop edge. For e = uv such that u 6= v, the contraction operation is obtained by replacing

the two endpoints u and v by a new vertex w, and all edges of the form ux and yv in D

are then removed. For e = uu (a loop), the contraction operation is obtained by removing

u and all the edges incident with u. These operations are illustrated in Figure 4.15 and

Figure 4.16. They showed that C(D;x, y) is a well defined invariant. They also gave

some evaluations of C(D;x, y) for specific values of x and y. One of their results that is

analogous to a result on the Tutte polynomial is as follows:

Theorem 4.21. [16] Suppose D = (V,E) is formed by joining the disjoint digraphs D1 =

(V1, E1) and D2 = (V2, E2) with all edges v1v2, v1 ∈ V1 and v2 ∈ V2. Then

C(D) = C(D1)C(D2).

Awan and Bernardi [2] defined a trivariate polynomial, the B-polynomial, as a gener-

alisation of the Tutte polynomial for directed graphs. Their goal is to extend the theory

of the Tutte polynomial to digraphs. Let D = (V,A) be a directed graph and q be any

positive integer. For any function from V to Z, suppose f>A (respectively, f<A ) is the set of

arcs (u, v) ∈ A such that f(u) > f(v) (respectively, f(u) < f(v)). Then, the B-polynomial
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of D

B(D; q, y, z) =
∑

f :V→{1,...,q}
y|f

>
A |z|f

<
A |.

For any digraph D, several properties of B(D; q, y, z) are given. One of these proper-

ties is that if D is the disjoint union of two digraphs D1 and D2, then B(D; q, y, z) =

B(D1; q, y, z)B(D2; q, y, z). They described a relation between the partition function of

the Potts model of a graph G and the B-polynomial of the corresponding digraph that

is obtained by replacing each edge uv of G by two arcs uv and vu. They proved that

when D is acyclic, there exists a simple relation between B(D;−q, y, 1) and B(D; q, y, 1).

They also defined the dual D∗ of a connected planar digraph D and showed that there is

a simple relation between B(D;−1, y, z) and B(D∗;−1, y, z).
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CHAPTER 5

Characterisations of Extended Tutte Invariants

Farr introduced simple and extended Tutte invariants, and characterised simple Tutte

invariants [37]. He commented that extended Tutte invariants are much richer than the

simple Tutte invariant, as there exists a connection between extended Tutte invariants of

certain alternating dimaps and the Tutte polynomial of planar graphs.

In this chapter, we extend Farr’s work and investigate extended Tutte invariants for

alternating dimaps of genus zero in two main directions. First, we characterise extended

Tutte invariants that are well defined for all alternating dimaps of genus zero. We deter-

mine the restrictions that need to be imposed on the parameters of extended Tutte in-

variants, so that these invariants are well defined for all alternating dimaps of genus zero.

Second, we assume that all the parameters of extended Tutte invariants are independent,

and determine the set of alternating dimaps of genus zero for which their extended Tutte

invariants are well defined. We also establish some excluded minor characterisations for

these alternating dimaps of genus zero.

5.1 Arbitrary Alternating Dimaps, Dependent Parameters

The definition of extended Tutte invariants is given in Definition 5.2. For brevity, we use

P (D) as a shorthand for

P (D;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

where D is an alternating dimap, throughout this chapter.

Throughout, A denotes a class of alternating dimaps.

Definition 5.1. Let F be a field. A multiplicative invariant (over F) for alternating dimaps

in A is a function P :A → F, such that P is invariant under isomorphism, P (∅) = 1 and

for the disjoint union of two alternating dimaps, G and H, P (G ∪H) = P (G) · P (H).

Definition 5.2. An extended Tutte invariant for alternating dimaps in A with respect

to a parameter sequence (w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) of elements of a field F is a

47
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multiplicative invariant P over F such that for any alternating dimap D ∈ A and r ∈
E(D),

1. if r is an ultraloop,

P (D) = w · P (D \ r), (ETI1)

2. if r is a proper 1-loop,

P (D) = x · P (D[1]r), (ETI2)

3. if r is a proper ω-loop,

P (D) = y · P (D[ω]r), (ETI3)

4. if r is a proper ω2-loop,

P (D) = z · P (D[ω2]r), (ETI4)

5. if r is a proper 1-semiloop,

P (D) = a · P (D[1]r) + b · P (D[ω]r) + c · P (D[ω2]r), (ETI5)

6. if r is a proper ω-semiloop,

P (D) = d · P (D[1]r) + e · P (D[ω]r) + f · P (D[ω2]r), (ETI6)

7. if r is a proper ω2-semiloop,

P (D) = g · P (D[1]r) + h · P (D[ω]r) + i · P (D[ω2]r), (ETI7)

8. otherwise,

P (D) = j · P (D[1]r) + k · P (D[ω]r) + l · P (D[ω2]r). (ETI8)

To define extended Tutte invariants for ordered alternating dimaps (D,<), we have

the following modifications:

1. For µ ∈ {1, ω, ω2}, each µ-reduction is replaced by (D,<)[µ].

2. The edge to be reduced is always the first edge e0 in the linear order < on E(D), so

the reference to edges is omitted for each reduction operation.

In this chapter, we require A to be the set of all alternating dimaps of genus zero. In

Chapter 6, we will consider extended Tutte invariants that are only well defined for certain

alternating dimaps.

It is well known that if a graph G is planar and G∗ is the dual graph of G, then

T (G;x, y) = T (G∗; y, x).

We give an analogous relation for extended Tutte invariants, by using Theorem 4.3.
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Theorem 5.1. For any extended Tutte invariant P of an alternating dimap D,

P (D;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

= P (Dω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

= P (Dω2
;w, y, z, x, f, d, e, i, g, h, c, a, b, l, j, k)

Proof. Suppose P is an extended Tutte invariant and D is an alternating dimap. We now

prove the first equality,

P (D;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) = P (Dω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j),

by induction on |E(D)| = m. There exist eight different cases corresponding to the eight

categories ((ETI1) to (ETI8)) in Definition 5.2. For the base case, suppose m = 0. Clearly,

the result follows.

Assume that m > 0 and the result holds for every alternating dimap of size less than

m. Let r ∈ E(D) and r is first reduced.

i) r is an ultraloop.

P (D;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

= w · P (D \ r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) (by (ETI1))

= w · P ((D \ r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by the inductive hypothesis)

= w · P (Dω \ rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

= P (Dω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j) (by (ETI1), since rω is an ultraloop .)

ii) r is a proper 1-loop.

P (D;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

= x · P (D[1]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) (by (ETI2))

= x · P ((D[1]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by the inductive hypothesis)

= x · P (Dω[ω2]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j) (by Theorem 4.3)

= x · P (Dω[ω]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(since rω is a proper ω-loop, Dω[ω2]rω = Dω[ω]rω)

= P (Dω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j) (by (ETI3) applied to Dω .)

iii) r is a proper ω-loop.

P (D;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

= y · P (D[ω]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) (by (ETI3))
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= y · P ((D[ω]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by the inductive hypothesis)

= y · P (Dω[1]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j) (by Theorem 4.3)

= y · P (Dω[ω2]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(since rω is a proper ω2-loop, Dω[1]rω = Dω[ω2]rω)

= P (Dω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j) (by (ETI4) applied to Dω .)

iv) r is a proper ω2-loop.

P (D;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

= z · P (D[ω2]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) (by (ETI4))

= z · P ((D[ω2]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by the inductive hypothesis)

= z · P (Dω[ω]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j) (by Theorem 4.3)

= z · P (Dω[1]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(since rω is a proper 1-loop, Dω[ω]rω = Dω[1]rω)

= P (Dω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j) (by (ETI2) applied to Dω .)

v) r is a proper 1-semiloop.

P (D;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

= a · P (D[1]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

+ b · P (D[ω]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

+ c · P (D[ω2]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) (by (ETI5))

= a · P ((D[1]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ b · P ((D[ω]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ c · P ((D[ω2]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by the inductive hypothesis)

= a · P (Dω[ω2]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ b · P (Dω[1]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ c · P (Dω[ω]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by Theorem 4.3 applied to each term)

= P (Dω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by (ETI6) applied to Dω, since rω is a proper ω-semiloop .)

vi) r is a proper ω-semiloop.

P (D;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

= d · P (D[1]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)
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+ e · P (D[ω]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

+ f · P (D[ω2]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) (by (ETI6))

= d · P ((D[1]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ e · P ((D[ω]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ f · P ((D[ω2]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by the inductive hypothesis)

= d · P (Dω[ω2]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ e · P (Dω[1]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ f · P (Dω[ω]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by Theorem 4.3 applied to each term)

= P (Dω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by (ETI7) applied to Dω, since rω is a proper ω2-semiloop .)

vii) r is a proper ω2-semiloop.

P (D;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

= g · P (D[1]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

+ h · P (D[ω]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

+ i · P (D[ω2]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) (by (ETI7))

= g · P ((D[1]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ h · P ((D[ω]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ i · P ((D[ω2]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by the inductive hypothesis)

= g · P (Dω[ω2]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ h · P (Dω[1]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ i · P (Dω[ω]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by Theorem 4.3 applied to each term)

= P (Dω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by (ETI5) applied to Dω, since rω is a proper 1-semiloop .)

viii) r is a proper edge.

P (D;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

= j · P (D[1]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

+ k · P (D[ω]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l)

+ l · P (D[ω2]r;w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) (by (ETI8))

= j · P ((D[1]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ k · P ((D[ω]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)
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+ l · P ((D[ω2]r)ω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by the inductive hypothesis)

= j · P (Dω[ω2]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ k · P (Dω[1]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

+ l · P (Dω[ω]rω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by Theorem 4.3 applied to each term)

= P (Dω;w, z, x, y, h, i, g, b, c, a, e, f, d, k, l, j)

(by (ETI8) applied to Dω, since rω is a proper edge .)

The second equality of the theorem follows immediately, by applying the first equality

to Dω.

We proceed to characterise the extended Tutte invariant.

We first show that every alternating dimap of genus zero that has size two or three

contains a triloop.

Lemma 5.2. Let D be an alternating dimap of genus zero that has size m and 0 ≤ r ≤ m.

If r = 2 or 3, the reduced alternating dimap D[µ1]e1[µ2]e2 . . . [µm−r]em−r has a triloop.

Proof. Every alternating dimap D of genus zero that has size two or three contains a

triloop (the triloop is proper if D is connected). There are r edges remaining in the

reduced alternating dimap after m− r reductions.

We extend the result and prove that some sequence of reductions on a connected

alternating dimap of genus zero gives a proper triloop in a reduced alternating dimap that

has size at least three. Observe that not all alternating dimaps of genus zero that have

size three contain a proper triloop.

Lemma 5.3. If D is a connected alternating dimap of genus zero that has size at least

three, then some minor of D with at least three edges contains a proper triloop.

v
fe1 = e2

i) e1 = e2

v
f

e2

e1

ii) e1 6= e2

Figure 5.1: The anticlockwise face f that has C as its outer cycle in the proof of Lemma 5.3
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Proof. Let D be as stated. By inspection, |E(D)| = 3 implies that D contains a proper

triloop, so no reduction operation is needed in this case. Now, suppose |E(D)| > 3 and

there is no proper triloop in D.

Note that every non-empty alternating dimap contains at least two faces. Pick an

arbitrary closed trail C that forms an anticlockwise face f (or a clockwise face with ap-

propriate modifications in the following steps) in D. Let H = D[C]. Suppose R is the

outer cycle of f and v ∈ V (R). Let e1, e2 ∈ E(R) be the edges that are directed into and

out from the vertex v, respectively, and they partition T = I(v) \ e1 in D into two sets

(based on the cyclic order of T ), (i) Sc that contains every edge directed into v that lies

between e1 and e2 as we go from e1 to e2 in clockwise order around v, and (ii) Sa = T \Sc
(see Figure 5.1, where edges in Sc and Sa are highlighted in green and red, respectively).

First, suppose e1 = e2 (as shown in Figure 5.1(i)). Since there exists no proper triloop

in D, both the sets Sc and Sa are not empty. (Sc and Sa being non-empty implies that each

of them has size of at least two, by the definition of alternating dimaps and using the fact

that there exists no proper triloop in D.) By reducing every edge in Sc by ω2-reductions,

e1 is now a proper ω-loop and there are at least three edges in the reduced alternating

dimap.

Second, suppose e1 6= e2 (as shown in Figure 5.1(ii)). By performing ω2-reductions on

every edge in Sc, and ω-reductions on every edge in Sa, the edge e1 is then a proper 1-loop.

Since there exists no proper triloop in D, the edge e2 is not a proper 1-loop. Hence, there

are at least three edges in the reduced alternating dimap.

Therefore, the result follows.

A derived polynomial for an alternating dimap D is a polynomial in variables

w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l obtained as an extended Tutte invariant for (D,<)

where < is a fixed edge-ordering on E(D). The m! permutations of the edge set of

an alternating dimap of size m give m! derived polynomials, where some of them may be

identical.

We write Gn,m for an alternating dimap G that consists of n vertices and m edges such

that there exists at least one edge that is not a triloop.

Since there are two non-isomorphic alternating dimaps that may be denoted by G2,3,

we write Ga2,3 and Gc2,3 for the alternating dimap G2,3 that consists of one anticlockwise

face of size three and one clockwise face of size three, respectively. The possibilities for

G1,3 and G2,3 are shown in Figure 5.2.

G1,3 Ga2,3 Gc2,3

Figure 5.2: Alternating dimaps G1,3 and G2,3

We give the derived polynomials for an alternating dimap G2,4 in the following lemma.
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Lemma 5.4. Let P be an extended Tutte invariant. There exist exactly 12 distinct derived

polynomials for the alternating dimap G2,4 as shown in Figure 5.3, namely

E1. P (D) = (jwyz or j(aww + bwy + cwz))

+ (kwxy or k(gwy + hww + iwx))

+ (lwxz or l(dwz + ewx+ fww)),

E2. P (D) = wxyz or awwx+ bwxy + cwxz,

E3. P (D) = wxyz or dwyz + ewxy + fwwy,

E4. P (D) = wxyz or gwyz + hwwz + iwxz.

u v

n

o

q p

Figure 5.3: The alternating dimap G2,4 in Lemma 5.4

Remark: We use “or” in (E1)–(E4) to show all the possible derived polynomials when

the respective edge is first reduced. For instance, (E1) gives eight derived polynomials in

total.

Proof. Since the alternating dimap D ∼= G2,4 has four edges, there exist 4! = 24 possible

edge-orderings. To obtain the derived polynomials as in (E1)–(E4), the first edge to be

reduced in D is n, o, p and q, respectively.

Lemma 5.5. Let P be an extended Tutte invariant.

a) The only distinct derived polynomials for the alternating dimap G1,3 are

P (D) = wyz and P (D) = aww + bwy + cwz.

b) The only distinct derived polynomials for the alternating dimap Ga2,3 are

P (D) = wxz and P (D) = dwz + ewx+ fww.

c) The only distinct derived polynomials for the alternating dimap Gc2,3 are

P (D) = wxy and P (D) = gwy + hww + iwx.

Proof. Let P be an extended Tutte invariant. We first prove Lemma 5.5(a). Suppose

D ∼= G1,3 (see Figure 5.2). Since D has three edges, there exist 3! = 6 possible edge-

orderings. By reducing D using all the possible edge-orderings, there exist two distinct

derived polynomials P (D) = wyz and P (D) = aww + bwy + cwz.

The proofs for two other cases follow a similar approach.
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Since the final edge to be reduced in each component of any non-empty alternating

dimap D is always an ultraloop, we have P (D) ≡ 0 if w = 0. Hence, we assume that

w 6= 0 hereinafter.

As shown in Lemma 5.3, every connected alternating dimap D of genus zero that has

size at least three contains a proper triloop. By Definition 5.2, one variable x, y or z is

produced if the proper triloop in D is reduced first. If that variable equals zero, a trivial

solution will then be obtained. Hence, we first characterise extended Tutte invariants for

alternating dimaps of genus zero under the assumption that x, y, z 6= 0.

Theorem 5.6. Let S = (w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) be a parameter sequence such

that w, x, y, z 6= 0. A function P is an extended Tutte invariant with respect to S for every

alternating dimap D of genus zero if and only if

P (D) = wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D) (5.1)

with

xyz = jyz + kxy + lxz, (5.2)

yz = aw + by + cz, (5.3)

xz = dz + ex+ fw, (5.4)

xy = gy + hw + ix. (5.5)

Proof. Let S be as stated and D be an alternating dimap of genus zero. We first prove

the forward implication. Note that all the derived polynomials must be equal for P (D)

to be an extended Tutte invariant. By (E1)–(E4) in Lemma 5.4 and as w, x, y, z 6= 0, we

obtain (5.2)–(5.5) as desired.

We next show

P (D) = wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D),

using induction on |E(D)| = m. There exist eight cases corresponding to the eight cate-

gories ((ETI1) to (ETI8)) in Definition 5.2. For the base case, suppose m = 0. Clearly,

P (D) = 1 and the result follows. Assume that m > 0 and the result holds for every

alternating dimap of genus zero that has size less than m. Let r ∈ E(D).

i) r is an ultraloop. In D \r, the number of components, in-stars, a-faces and c-faces

are all reduced by 1. Thus,

P (D) = w · P (D \ r)
= w · wk(D\r) · xis(D\r)−k(D\r) · yaf(D\r)−k(D\r) · zcf(D\r)−k(D\r)

(by the inductive hypothesis)

= w · wk(D)−1 · xis(D)−1−(k(D)−1) · yaf(D)−1−(k(D)−1) · zcf(D)−1−(k(D)−1)

= wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D).
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ii) r is a proper 1-loop. The number of in-stars is reduced by 1 in D[1]r. Then,

P (D) = x · P (D[1]r)

= x · wk(D[1]r) · xis(D[1]r)−k(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r)

(by the inductive hypothesis)

= x · wk(D) · xis(D)−1−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

= wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D).

iii) r is a proper ω-loop. The number of a-faces is reduced by 1 in D[ω]r. Then,

P (D) = y · P (D[ω]r)

= y · wk(D[ω]r) · xis(D[ω]r)−k(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r)

(by the inductive hypothesis)

= y · wk(D) · xis(D)−k(D) · yaf(D)−1−k(D) · zcf(D)−k(D)

= wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D).

iv) r is a proper ω2-loop. The number of c-faces is reduced by 1 in D[ω2]r. Then,

P (D) = z · P (D[ω2]r)

= z · wk(D[ω2]r) · xis(D[ω2]r)−k(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)

(by the inductive hypothesis)

= z · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−1−k(D)

= wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D).

v) r is a proper 1-semiloop. In D[1]r, the number of components and in-stars are

both increased by 1. In D[ω]r and D[ω2]r, the number of c-faces and a-faces are

reduced by 1, respectively. Hence,

yz · P (D) = yz ·
(
a · P (D[1]r) + b · P (D[ω]r) + c · P (D[ω2]r)

)
= yz ·

(
a · wk(D[1]r) · xis(D[1]r)−k(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r)

+ b · wk(D[ω]r) · xis(D[ω]r)−k(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r)

+ c · wk(D[ω2]r) · xis(D[ω2]r)−k(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)
)

(by the inductive hypothesis)

= yz ·
(
a · wk(D)+1 · xis(D)+1−(k(D)+1) · yaf(D)−(k(D)+1) · zcf(D)−(k(D)+1)

+ b · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−1−k(D)

+ c · wk(D) · xis(D)−k(D) · yaf(D)−1−k(D) · zcf(D)−k(D)
)

= (aw + by + cz) · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

P (D) = wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D) (by (5.3) .)
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vi) r is a proper ω-semiloop. In D[ω2]r, the number of components and a-faces are

both increased by 1. In D[1]r and D[ω]r, the number of in-stars and c-faces are

reduced by 1, respectively. Hence,

xz · P (D) = xz ·
(
d · P (D[1]r) + e · P (D[ω]r) + f · P (D[ω2]r)

)
= xz ·

(
d · wk(D[1]r) · xis(D[1]r)−k(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r)

+ e · wk(D[ω]r) · xis(D[ω]r)−k(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r)

+ f · wk(D[ω2]r) · xis(D[ω2]r)−k(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)
)

(by the inductive hypothesis)

= xz ·
(
d · wk(D) · xis(D)−1−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

+ e · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−1−k(D)

+ f · wk(D)+1 · xis(D)−(k(D)+1) · yaf(D)+1−(k(D)+1) · zcf(D)−(k(D)+1)
)

= (dz + ex+ fw) · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

P (D) = wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D) (by (5.4) .)

vii) r is a proper ω2-semiloop. In D[ω]r, the number of components and c-faces are

both increased by 1. In D[1]r and D[ω2]r, the number of in-stars and a-faces are

reduced by 1, respectively. Hence,

xy · P (D) = xy ·
(
g · P (D[1]r) + h · P (D[ω]r) + i · P (D[ω2]r)

)
= xy ·

(
g · wk(D[1]r) · xis(D[1]r)−k(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r)

+ h · wk(D[ω]r) · xis(D[ω]r)−k(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r)

+ i · wk(D[ω2]r) · xis(D[ω2]r)−k(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)
)

(by the inductive hypothesis)

= xy ·
(
g · wk(D) · xis(D)−1−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

+ h · wk(D)+1 · xis(D)−(k(D)+1) · yaf(D)−(k(D)+1) · zcf(D)+1−(k(D)+1)

+ i · wk(D) · xis(D)−k(D) · yaf(D)−1−k(D) · zcf(D)−k(D)
)

= (gy + hw + ix) · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

P (D) = wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D) (by (5.5) .)

viii) r is a proper edge. Observe that the number of in-stars, c-faces and a-faces, are

all reduced by 1 in D[1]r, D[ω]r and D[ω2]r, respectively. Therefore, we have,

xyz · P (D) = xyz ·
(
j · P (D[1]r) + k · P (D[ω]r) + l · P (D[ω2]r)

)
= xyz ·

(
j · wk(D[1]r) · xis(D[1]r)−k(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r)

+ k · wk(D[ω]r) · xis(D[ω]r)−k(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r)
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+ l · wk(D[ω2]r) · xis(D[ω2]r)−k(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)
)

(by the inductive hypothesis)

= xyz ·
(
j · wk(D) · xis(D)−1−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

+ k · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−1−k(D)

+ l · wk(D) · xis(D)−k(D) · yaf(D)−1−k(D) · zcf(D)−k(D)
)

= (jyz + kxy + lxz) · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

P (D) = wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D) (by (5.2) .)

Conversely, we prove that

P (D) = wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

with (5.2)–(5.5) is an extended Tutte invariant with respect to S for every alternating

dimap D, as in Definition 5.2. We first show that P (D) is a multiplicative invariant.

Suppose G and H are two alternating dimaps. For the union of G and H, we have

P (G ∪H)

= wk(G∪H) · xis(G∪H)−k(G∪H) · yaf(G∪H)−k(G∪H) · zcf(G∪H)−k(G∪H)

= wk(G)+k(H) · xis(G)+is(H)−k(G)−k(H) · yaf(G)+af(H)−k(G)−k(H) · zcf(G)+cf(H)−k(G)−k(H)

= wk(G) · xis(G)−k(G) · yaf(G)−k(G) · zcf(G)−k(G) · wk(H) · xis(H)−k(H) · yaf(H)−k(H) · zcf(H)−k(H)

= P (G) · P (H).

Then, we show that P (D) satisfies (ETI1) to (ETI8) by using induction on |E(D)| = m.

When m = 0, we have P (D) = 1 and the result for m = 0 follows. So, suppose m > 0 and

the result holds for every alternating dimap of genus zero that has size less than m. Let

r ∈ E(D).

i) r is an ultraloop.

P (D) = wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

= w · wk(D)−1 · xis(D)−1−(k(D)−1) · yaf(D)−1−(k(D)−1) · zcf(D)−1−(k(D)−1)

= w · wk(D\r) · xis(D\r)−k(D\r) · yaf(D\r)−k(D\r) · zcf(D\r)−k(D\r)

= w · P (D \ r) (by the inductive hypothesis .)

ii) r is a proper 1-loop.

P (D) = x · wk(D) · xis(D)−1−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

= x · wk(D[1]r) · xis(D[1]r)−k(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r)

= x · P (D[1]r) (by the inductive hypothesis .)
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iii) r is a proper ω-loop.

P (D) = y · wk(D) · xis(D)−k(D) · yaf(D)−1−k(D) · zcf(D)−k(D)

= y · wk(D[ω]r) · xis(D[ω]r)−k(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r)

= y · P (D[ω]r) (by the inductive hypothesis .)

iv) r is a proper ω2-loop.

P (D) = z · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−1−k(D)

= z · wk(D[ω2]r) · xis(D[ω2]r)−k(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)

= z · P (D[ω2]r) (by the inductive hypothesis .)

v) r is a proper 1-semiloop.

yz · P (D) = (aw + by + cz) · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

(by (5.3))

= yz ·
(
a · wk(D)+1 · xis(D)+1−(k(D)+1) · yaf(D)−(k(D)+1) · zcf(D)−(k(D)+1)

+ b · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−1−k(D)

+ c · wk(D) · xis(D)−k(D) · yaf(D)−1−k(D) · zcf(D)−k(D)
)

= yz ·
(
a · wk(D[1]r) · xis(D[1]r)−k(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r)

+ b · wk(D[ω]r) · xis(D[ω]r)−k(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r)

+ c · wk(D[ω2]r) · xis(D[ω2]r)−k(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)
)

P (D) = a · P (D[1]r) + b · P (D[ω]r) + c · P (D[ω2]r)

(by the inductive hypothesis .)

vi) r is a proper ω-semiloop.

xz · P (D) = (dz + ex+ fw) · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

(by (5.4))

= xz ·
(
d · wk(D) · xis(D)−1−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

+ e · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−1−k(D)

+ f · wk(D)+1 · xis(D)−(k(D)+1) · yaf(D)+1−(k(D)+1) · zcf(D)−(k(D)+1)
)

= xz ·
(
d · wk(D[1]r) · xis(D[1]r)−k(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r)

+ e · wk(D[ω]r) · xis(D[ω]r)−k(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r)

+ f · wk(D[ω2]r) · xis(D[ω2]r)−k(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)
)

P (D) = d · P (D[1]r) + e · P (D[ω]r) + f · P (D[ω2]r)

(by the inductive hypothesis .)
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vii) r is a proper ω2-semiloop.

xy · P (D) = (gy + hw + ix) · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

(by (5.5))

= xy ·
(
g · wk(D) · xis(D)−1−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

+ h · wk(D)+1 · xis(D)−(k(D)+1) · yaf(D)−(k(D)+1) · zcf(D)+1−(k(D)+1)

+ i · wk(D) · xis(D)−k(D) · yaf(D)−1−k(D) · zcf(D)−k(D)
)

= xy ·
(
g · wk(D[1]r) · xis(D[1]r)−k(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r)

+ h · wk(D[ω]r) · xis(D[ω]r)−k(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r)

+ i · wk(D[ω2]r) · xis(D[ω2]r)−k(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)
)

P (D) = g · P (D[1]r) + h · P (D[ω]r) + i · P (D[ω2]r)

(by the inductive hypothesis .)

viii) Otherwise, we have

xyz · P (D) = (jyz + kxy + lxz) · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

(by (5.2))

= xyz ·
(
j · wk(D) · xis(D)−1−k(D) · yaf(D)−k(D) · zcf(D)−k(D)

+ k · wk(D) · xis(D)−k(D) · yaf(D)−k(D) · zcf(D)−1−k(D)

+ l · wk(D) · xis(D)−k(D) · yaf(D)−1−k(D) · zcf(D)−k(D)
)

= xyz ·
(
j · wk(D[1]r) · xis(D[1]r)−k(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r)

+ k · wk(D[ω]r) · xis(D[ω]r)−k(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r)

+ l · wk(D[ω2]r) · xis(D[ω2]r)−k(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)
)

P (D) = j · P (D[1]r) + k · P (D[ω]r) + l · P (D[ω2]r)

(by the inductive hypothesis .)

This completes the backward implication, by induction.

As seen in the proof of Theorem 5.6, variables x, y and z must be non-zero in order to

complete the characterisation. We next consider cases where at least one of these three

variables is zero, using different arguments. We shall first establish some excluded minor

characterisations of alternating dimaps of genus zero.

We first show that every clockwise face of size greater than two in an alternating dimap

can be reduced to a clockwise face of size exactly two, by a series of contractions.

Lemma 5.7. Let D be an alternating dimap and put k = cf(D). If every clockwise face

of D has size at least two, then D can be reduced to an alternating dimap that contains k

clockwise faces of size exactly two, using a sequence of contraction operations.
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Proof. Let D be as stated. We proceed by induction on |E(D)| = m. For the base case,

suppose m = 2. Since there is a clockwise face of size exactly two, the result for m = 2

follows.

For the inductive step, assume that m > 2 and the result holds for every alternating

dimap of size less than m.

Suppose k = cf(D), and g ∈ F (D) is a clockwise face of size greater than two. Let

e ∈ E(∂g). By contracting the edge e, the size of g will be reduced by one. As every edge

in an alternating dimap belongs to one clockwise face and one anticlockwise face, we have

cf(D/e) = k. By the inductive hypothesis, the alternating dimap D/e can be reduced to an

alternating dimap that contains k clockwise faces of size exactly two, using a sequence of

contraction operations. Therefore, alternating dimap D can be reduced to an alternating

dimap that contains k clockwise faces of size exactly two by a sequence of contraction

operations, namely, contraction of e followed by the aforementioned contraction sequence

for D/e.

Lemma 5.8. Let D be an alternating dimap and put k = af(D). If every anticlockwise

face of D has size at least two, then D can be reduced to an alternating dimap that contains

k anticlockwise faces of size exactly two, using a sequence of contraction operations.

Proof. The result follows by some appropriate modifications to the proof of Lemma 5.7.

We show that G1,3, G
a
2,3 or Gc2,3 (see Figure 5.2) is a minor for certain alternating

dimaps, in the following lemmas.

Lemma 5.9. Every alternating dimap of genus zero that contains a proper 1-semiloop has

G1,3 as a minor.

Proof. Let D be an alternating dimap of genus zero that contains a proper 1-semiloop

e. We proceed by induction on |V (D)| = n. For the base case, suppose n = 1. The

alternating dimap G1,3 can be obtained by repeatedly reducing some proper triloops.

For the inductive step, assume that n > 1 and the result holds for every D that has

less than n vertices. If e belongs to a component that has exactly one vertex in D, from

the base case, the alternating dimap D contains G1,3 as a minor. So, suppose e belongs to

a component P that has at least two vertices in D. This implies that there exists at least

one non-loop edge f in P . By contracting f , we have |V (D/f)| = n− 1. By the inductive

hypothesis, the alternating dimap D/f contains G1,3 as a minor. Since D/f is a minor of

D, the result follows.

Since G1,3 contains a proper ω-loop and a proper ω2-loop, the following corollary

follows from Definition 5.2.

Corollary 5.10. If y = 0 or z = 0, and there exists a proper 1-semiloop in an alternating

dimap D of genus zero, then P (D) = 0.

Proof. Let P and D be as stated. By Lemma 5.9, D has G1,3 as a minor. Since G1,3

contains a proper ω-loop and a proper ω2-loop and P is an extended Tutte invariant, by

Definition 5.2, we complete the proof.
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Lemma 5.11. Every alternating dimap of genus zero that contains a proper ω-semiloop

has Ga2,3 as a minor.

Proof. From Table 3.1, we can see that a proper ω-semiloop can be obtained from a proper

1-semiloop e by applying the trial operation on e once. Likewise, we have (G1,3)
ω = Ga2,3.

Therefore, by triality and Lemma 5.9, we complete the proof.

Since Ga2,3 contains a proper 1-loop and a proper ω2-loop, the following corollary follows

from Definition 5.2.

Corollary 5.12. If x = 0 or z = 0, and there exists a proper ω-semiloop in an alternating

dimap D of genus zero, then P (D) = 0.

Lemma 5.13. Every alternating dimap of genus zero that contains a proper ω2-semiloop

has Gc2,3 as a minor.

Proof. By triality and Lemma 5.11 (or Lemma 5.9).

Since Gc2,3 contains a proper 1-loop and a proper ω-loop, the following corollary follows

from Definition 5.2.

Corollary 5.14. If x = 0 or y = 0, and there exists a proper ω2-semiloop in an alternating

dimap D of genus zero, then P (D) = 0.

Lemma 5.15. Every alternating dimap of genus zero that contains a proper edge has G1,3,

Ga2,3 and Gc2,3 as minors.

f

C

e

u

f
e

uv

(a) (b)

p1

p2
g

`

r

Figure 5.4: The alternating dimap D in the proof of Lemma 5.15

Proof. Suppose D is an alternating dimap of genus zero. Let e ∈ E(D) be a proper edge

that has u ∈ V (D) as its head. Suppose f is a clockwise face (or an anticlockwise face

with appropriate modifications) that contains e, and C is the outer cycle of f in D. We

consider two cases as follows:

i) There exists exactly one directed path between u and v, for all u, v ∈ V (C)

(see Figure 5.4(a)).
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• Let ` and r be the left successor and the right successor of e, respectively.

Suppose ` ∈ E(C). Given that there is exactly one directed path between

every pair of vertices in V (C), if ` ∈ E(C), the edge ` must be the next edge

after e in C. This implies that e is a proper ω2-semiloop instead of a proper

edge. Hence, ` /∈ E(C). Similar arguments show that r /∈ E(C). The fact that

`, r /∈ E(C) implies that deg(u) ≥ 6. By contracting every edge in E(C) \ e in

D, the edge e becomes a proper 1-semiloop. By Lemma 5.9, we have G1,3 as a

minor of D.

• Let g ∈ E(C) be the edge directed out from u. Suppose e and g partition

T = I(u) \ e in D into two sets (based on the cyclic order of T ), (i) Sc that

contains every edge directed into u that lies betwen g and e as we go from g to e

in clockwise order around u, and (ii) Sa = T \Sc. If we ω-reduce (respectively,

ω2-reduce) every edge in Sc (respectively, Sa), the edge e is now a proper

ω-semiloop (respectively, proper ω2-semiloop). By Lemma 5.11 (respectively,

Lemma 5.13), we have Ga2,3 (respectively, Gc2,3) as a minor of D.

ii) There exists more than one directed path between u and v, for some

u, v ∈ V (C) (see Figure 5.4(b)). Let p1 and p2 be two of the paths that are directed

from u to v, respectively.

• Contract every edge in p1, and all but one edge in p2; the remaining edge in p2

is a proper 1-semiloop. By Lemma 5.9, we have G1,3 as a minor of D.

• Recall that e ∈ E(∂f). Suppose v ∈ V (∂f) and E(p1) ⊂ E(∂f). Let h ∈ E(p1)

and h has v as its head. By Lemma 5.7, a face f ′ of size exactly two can be

obtained from f , by a sequence of contraction operations. So, let V (∂f ′) =

{u, v} and E(∂f ′) = {e, h}. By ω2-reducing every edge in I(u) \ e, we have

deg(u) = 2, and h is now a proper ω-semiloop. By Lemma 5.11, we have Ga2,3
as a minor of D.

• Let g be an anticlockwise face in D, the proper edge e ∈ E(∂g) and E(p2) ⊂
E(∂g). Suppose h ∈ E(p2) and h has v as its head. By Lemma 5.8, an

anticlockwise face g′ of size exactly two can be obtained from g. So, let V (∂g′) =

{u, v} and E(∂g′) = {e, h}. By ω-reducing every edge in I(u) \ e, we have

deg(u) = 2, and e is now a proper ω2-semiloop. By Lemma 5.13, we have Gc2,3
as a minor of D.

Corollary 5.16. If x = 0, y = 0 or z = 0, and there exists a proper edge in an alternating

dimap D of genus zero, then P (D) = 0.

Proof. By Lemma 5.15, if there exists a proper edge in an alternating dimap D of genus

zero, then D contains G1,3, G
a
2,3 and Gc2,3 as minors. Since a proper 1-loop, a proper ω-loop

and a proper ω2-loop may each be found in at least one of these minors, by Definition 5.2,

we have P (D) = 0 when at least one of x, y, z is zero.
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By Lemmas 5.9, 5.11, 5.13 and 5.15, we obtain the following corollary.

Corollary 5.17. Every alternating dimap of genus zero that contains a non-triloop edge

has G1,3 or G2,3 as a minor.

Further from Theorem 5.6, we now discuss the the properties of alternating dimaps of

genus zero that are required, in order to obtain a non-trivial invariant, when at least one

of x, y, z is zero.

Theorem 5.18. Let S = (w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) be a parameter sequence

such that w 6= 0 and x = y = z = 0. A function P is an extended Tutte invariant with

respect to S for every alternating dimap D of genus zero if and only if

P (D) =

{
wk(D), if is(D)=af(D)=cf(D)=k(D),

0, otherwise,

with a = f = h = 0.

Proof. Let S be as stated and D be an alternating dimap of genus zero. We first prove

the forward implication. Note that all the derived polynomials must be equal for P (D)

to be an extended Tutte invariant. By using Lemma 5.5 and the fact that w 6= 0 and

x = y = z = 0, we obtain a = f = h = 0 as desired.

If is(D) = af(D) = cf(D) = k(D), then D is a disjoint union of ultraloops. By

Definition 5.2, we have P (D) = wk(D).

We next show P (D) = 0 in the following cases.

i) is(D) 6= k(D) = af(D) = cf(D). Since k(D) = af(D) = cf(D), each component of

D has exactly one anticlockwise face and exactly one clockwise face. This implies

that each componet of D is a directed cycle. The fact that is(D) 6= k(D) implies

that at least one of the components A of D has order greater than one. Hence, A

is a directed cycle of size greater than one. Since A is a component of D, there is a

proper 1-loop in D. By (ETI2) and using x = 0, we have P (D) = 0.

ii) af(D) 6= k(D) = is(D) = cf(D). Since k(D) = is(D) = cf(D), each component of D

has exactly one vertex and exactly one clockwise face. The fact that af(D) 6= k(D)

implies that at least one of the components of D has more than one anticlockwise

face, and hence has a proper ω-loop. By (ETI3) and using y = 0, we have P (D) = 0.

iii) cf(D) 6= k(D) = is(D) = af(D). There is a proper ω2-loop in D. By (ETI4) and

using z = 0, we have P (D) = 0.

iv) af(D) 6= k(D), cf(D) 6= k(D) = is(D). If every edge in D is a triloop, the result is

trivial. Otherwise, k(D) = is(D) implies that each component of D has exactly one

vertex. Since af(D) 6= k(D), cf(D) 6= k(D) and there is a non-triloop in D, there

exists a proper 1-semiloop in D. By Corollary 5.10, we have P (D) = 0.

v) is(D) 6= k(D), cf(D) 6= k(D) = af(D). If every edge in D is a triloop, the result

is trivial. Otherwise, there exists a proper ω-semiloop in D. By Corollary 5.12, we

have P (D) = 0.
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vi) is(D) 6= k(D), af(D) 6= k(D) = cf(D). If every edge in D is a triloop, the result is

trivial. Otherwise, there exists a proper ω2-semiloop in D. By Corollary 5.14, we

have P (D) = 0.

vii) is(D) 6= k(D), af(D) 6= k(D) and cf(D) 6= k(D). If every edge in D is a triloop, the

result is trivial. Otherwise, Corollaries 5.10, 5.12, 5.14 or 5.16 gives P (D) = 0.

Conversely, we show that

P (D) =

{
wk(D), if is(D)=af(D)=cf(D)=k(D),

0, otherwise,

with a = f = h = 0 is an extended Tutte invariant with respect to S for every alternating

dimap D, as in Definition 5.2. Based on the proof in Theorem 5.6, it is clear that P (D)

is a multiplicative invariant.

We now show that P (D) satisfies (ETI1) to (ETI8) by using induction on |E(D)| = m.

When m = 0, we have P (D) = 1 and the result for m = 0 follows. So, suppose m > 0 and

the result holds for every alternating dimap of genus zero that has size less than m.

Suppose is(D) = af(D) = cf(D) = k(D). We have D as a disjoint union of ultraloops.

Deletion of an ultraloop r from D reduces the number of components of D by 1. Thus,

P (D) = wk(D)

= w · wk(D)−1

= w · wk(D\r)

= w · P (D \ r) (by the inductive hypothesis .)

Note that for µ ∈ {1, ω, ω2}, it is possible to have is(D[µ]r) = af(D[µ]r) = cf(D[µ]r) =

k(D[µ]r) by µ-reducing r. Hence, we may have to consider more than one scenario for the

remaining cases. Let r ∈ E(D).

i) r is a proper 1-loop.

(a) is(D[1]r) = af(D[1]r) = cf(D[1]r) = k(D[1]r).

P (D) = 0

= x · wk(D[1]r) (since x = 0)

= x · P (D[1]r) (by the inductive hypothesis .)

(b) Otherwise,

P (D) = 0

= x · 0
= x · P (D[1]r) (by the inductive hypothesis .)

ii) r is a proper ω-loop.
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(a) is(D[ω]r) = af(D[ω]r) = cf(D[ω]r) = k(D[ω]r).

P (D) = 0

= y · wk(D[ω]r) (since y = 0)

= y · P (D[ω]r) (by the inductive hypothesis .)

(b) Otherwise,

P (D) = 0

= y · 0
= y · P (D[ω]r) (by the inductive hypothesis .)

iii) r is a proper ω2-loop.

(a) is(D[ω2]r) = af(D[ω2]r) = cf(D[ω2]r) = k(D[ω2]r).

P (D) = 0

= z · wk(D[ω2]r) (since z = 0)

= z · P (D[ω2]r) (by the inductive hypothesis .)

(b) Otherwise,

P (D) = 0

= z · 0
= z · P (D[ω2]r) (by the inductive hypothesis .)

iv) r is a proper 1-semiloop. In D[1]r, the number of components and in-stars are both

increased by 1. In D[ω]r and D[ω2]r, the number of c-faces and a-faces are reduced

by 1, respectively.

(a) is(D[1]r) = af(D[1]r) = cf(D[1]r) = k(D[1]r).

P (D) = 0

= a · wk(D[1]r) + b · 0 + c · 0 (since a = 0)

= a · P (D[1]r) + b · P (D[ω]r) + c · P (D[ω2]r)

(by the inductive hypothesis .)

(b) Otherwise,

P (D) = 0

= a · 0 + b · 0 + c · 0
= a · P (D[1]r) + b · P (D[ω]r) + c · P (D[ω2]r)

(by the inductive hypothesis .)
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v) r is a proper ω-semiloop. In D[ω2]r, the number of components and a-faces are both

increased by 1. In D[1]r and D[ω]r, the number of in-stars and c-faces are reduced

by 1, respectively.

(a) is(D[ω2]r) = af(D[ω2]r) = cf(D[ω2]r) = k(D[ω2]r).

P (D) = 0

= d · 0 + e · 0 + f · wk(D[ω2]r) (since f = 0)

= d · P (D[1]r) + e · P (D[ω]r) + f · P (D[ω2]r)

(by the inductive hypothesis .)

(b) Otherwise,

P (D) = 0

= d · 0 + e · 0 + f · 0
= d · P (D[1]r) + e · P (D[ω]r) + f · P (D[ω2]r)

(by the inductive hypothesis .)

vi) r is a proper ω2-semiloop. In D[ω]r, the number of components and c-faces are both

increased by 1. In D[1]r and D[ω2]r, the number of in-stars and a-faces are reduced

by 1, respectively.

(a) is(D[ω]r) = af(D[ω]r) = cf(D[ω]r) = k(D[ω]r).

P (D) = 0

= g · 0 + h · wk(D[ω]r) + i · 0 (since h = 0)

= g · P (D[1]r) + h · P (D[ω]r) + i · P (D[ω2]r)

(by the inductive hypothesis .)

(b) Otherwise,

P (D) = 0

= g · 0 + h · 0 + i · 0
= g · P (D[1]r) + h · P (D[ω]r) + i · P (D[ω2]r)

(by the inductive hypothesis .)

vii) r is a proper edge.

P (D) = 0

= j · 0 + k · 0 + l · 0
= j · P (D[1]r) + k · P (D[ω]r) + l · P (D[ω2]r) (by the inductive hypothesis .)

This completes the backward implication, by induction.
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Next, we have the following three results in which two of x, y, z are zero.

Theorem 5.19. Let S = (w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) be a parameter sequence

such that w, z 6= 0 and x = y = 0. A function P is an extended Tutte invariant with

respect to S for every alternating dimap D of genus zero if and only if

P (D) =

{
wk(D) · zcf(D)−k(D), if is(D)=af(D)=k(D),

0, otherwise,

with a = c = d = f = h = 0.

Proof. Let S be as stated and D be an alternating dimap of genus zero. We first prove

the forward implication. Note that all the derived polynomials must be equal for P (D)

to be an extended Tutte invariant. By using Lemma 5.5 and the fact that w, z 6= 0 and

x = y = 0, we obtain a = c = d = f = h = 0 as desired.

If is(D) = af(D) = k(D), every edge in D is either an ultraloop or a proper ω2-loop.

We proceed by induction on the number m of edges of D. For the base case, suppose

m = 0. This implies that D is empty. Therefore, we have P (D) = w0 · z0−0 = 1, and the

result for m = 0 follows.

For the inductive step, assume that m > 0 and the result holds for every alternating

dimap of genus zero that has size less than m. We consider two cases where an ultraloop

or a proper ω2-loop is first reduced in D. Let r ∈ E(D).

i) r is an ultraloop. In D\r, the number of components and c-faces are both reduced

by 1. Thus,

P (D) = w · P (D \ r)
= w · wk(D\r) · zcf(D\r)−k(D\r) (by the inductive hypothesis)

= w · wk(D)−1 · zcf(D)−1−(k(D)−1)

= wk(D) · zcf(D)−k(D).

ii) r is a proper ω2-loop. The number of c-faces is reduced by 1 in D[ω2]r. Thus,

P (D) = z · P (D[ω2]r)

= z · wk(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r) (by the inductive hypothesis)

= z · wk(D) · zcf(D)−1−k(D)

= wk(D) · zcf(D)−k(D).

We next show P (D) = 0 in the following cases.

i) is(D) 6= k(D) = af(D) = cf(D). There is a proper 1-loop in D. By (ETI2) and using

x = 0, we have P (D) = 0.

ii) af(D) 6= k(D) = is(D) = cf(D). There is a proper ω-loop in D. By (ETI3) and

using y = 0, we have P (D) = 0.
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iii) af(D) 6= k(D), cf(D) 6= k(D) = is(D). If every edge in D is a triloop, there exist

proper ω-loops and proper ω2-loops in D. By (ETI3) and using y = 0, the result

follows. Otherwise, there exists a proper 1-semiloop in D. By Corollary 5.10, we

have P (D) = 0.

iv) is(D) 6= k(D), cf(D) 6= k(D) and af(D) = k(D). If every edge in D is a triloop,

there exist proper 1-loops and proper ω2-loops in D. By (ETI2) and using x = 0, the

result follows. Otherwise, there exists a proper ω-semiloop in D. By Corollary 5.12,

we have P (D) = 0.

v) is(D) 6= k(D), af(D) 6= k(D) and cf(D) = k(D). If every edge in D is a triloop, there

exist proper 1-loops and proper ω-loops in D. By (ETI2) (respectively, (ETI3)) and

using x = 0 (respectively, y = 0), the result follows. Otherwise, there exists a proper

ω2-semiloop in D. By Corollary 5.14, we have P (D) = 0.

vi) is(D) 6= k(D), af(D) 6= k(D) and cf(D) 6= k(D). If every edge in D is a triloop,

there exist proper 1-loops, proper ω-loops and proper ω2-loops in D. By (ETI2)

(respectively, (ETI3)) and using x = 0 (respectively, y = 0), the result follows.

Otherwise, Corollaries 5.10, 5.12, 5.14 or 5.16 gives P (D) = 0.

Conversely, we show that

P (D) =

{
wk(D) · zcf(D)−k(D), if is(D)=af(D)=k(D),

0, otherwise,

with a = c = d = f = h = 0 is an extended Tutte invariant with respect to S for every

alternating dimap D, as in Definition 5.2. Based on the proof in Theorem 5.6, it is clear

that P (D) is a multiplicative invariant.

We now show that P (D) satisfies (ETI1) to (ETI8) by using induction on |E(D)| = m.

When m = 0, we have P (D) = 1 and the result for m = 0 follows. So, suppose m > 0 and

the result holds for every alternating dimap of genus zero that has size less than m.

Suppose is(D) = af(D) = k(D). Every edge in D is either an ultraloop or a proper

ω2-loop. Let r ∈ E(D).

i) r is an ultraloop.

P (D) = wk(D) · zcf(D)−k(D)

= w · wk(D)−1 · zcf(D)−1−(k(D)−1)

= w · wk(D\r) · zcf(D\r)−k(D\r)

= w · P (D \ r) (by the inductive hypothesis .)

ii) r is a proper ω2-loop.

P (D) = wk(D) · zcf(D)−k(D)

= z · wk(D) · zcf(D)−1−k(D)
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= z · wk(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)

= z · P (D[ω2]r) (by the inductive hypothesis .)

Note that for µ ∈ {1, ω, ω2}, it is possible to have is(D[µ]r) = af(D[µ]r) = k(D[µ]r) by

µ-reducing r. Hence, we may have to consider more than one scenario for the remaining

cases. Let r ∈ E(D).

i) r is a proper 1-loop.

(a) is(D[1]r) = af(D[1]r) = k(D[1]r).

P (D) = 0

= x · wk(D[1]r) · zcf(D[1]r)−k(D[1]r) (since x = 0)

= x · P (D[1]r) (by the inductive hypothesis .)

(b) Otherwise,

P (D) = 0

= x · 0
= x · P (D[1]r) (by the inductive hypothesis .)

ii) r is a proper ω-loop.

(a) is(D[ω]r) = af(D[ω]r) = k(D[ω]r).

P (D) = 0

= y · wk(D[ω]r) · zcf(D[ω]r)−k(D[ω]r) (since y = 0)

= y · P (D[ω]r) (by the inductive hypothesis .)

(b) Otherwise,

P (D) = 0

= y · 0
= y · P (D[ω]r) (by the inductive hypothesis .)

iii) r is a proper 1-semiloop. In D[1]r, the number of components and in-stars are both

increased by 1. In D[ω]r and D[ω2]r, the number of c-faces and a-faces are reduced

by 1, respectively.

(a) is(D[1]r) = af(D[1]r) = k(D[1]r) and is(D[ω2]r) = af(D[ω2]r) = k(D[ω2]r).

P (D) = 0

= a · wk(D[1]r) · zcf(D[1]r)−k(D[1]r) + b · 0 + c · wk(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)

(since a = c = 0)
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= a · P (D[1]r) + b · P (D[ω]r) + c · P (D[ω2]r)

(by the inductive hypothesis .)

(b) Otherwise,

P (D) = 0

= a · 0 + b · 0 + c · 0
= a · P (D[1]r) + b · P (D[ω]r) + c · P (D[ω2]r)

(by the inductive hypothesis .)

iv) r is a proper ω-semiloop. In D[ω2]r, the number of components and a-faces are both

increased by 1. In D[1]r and D[ω]r, the number of in-stars and c-faces are reduced

by 1, respectively.

(a) is(D[1]r) = af(D[1]r) = k(D[1]r) and is(D[ω2]r) = af(D[ω2]r) = k(D[ω2]r).

P (D) = 0

= d · wk(D[1]r) · zcf(D[1]r)−k(D[1]r) + e · 0 + f · wk(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)

(since d = f = 0)

= d · P (D[1]r) + e · P (D[ω]r) + f · P (D[ω2]r)

(by the inductive hypothesis .)

(b) Otherwise,

P (D) = 0

= d · 0 + e · 0 + f · 0
= d · P (D[1]r) + e · P (D[ω]r) + f · P (D[ω2]r)

(by the inductive hypothesis .)

v) r is a proper ω2-semiloop. In D[ω]r, the number of components and c-faces are both

increased by 1. In D[1]r and D[ω2]r, the number of in-stars and a-faces are reduced

by 1, respectively.

(a) is(D[ω]r) = af(D[ω]r) = k(D[ω]r).

P (D) = 0

= g · 0 + h · wk(D[ω]r) · zcf(D[ω]r)−k(D[ω]r) + i · 0 (since h = 0)

= g · P (D[1]r) + h · P (D[ω]r) + i · P (D[ω2]r)

(by the inductive hypothesis .)

(b) Otherwise,

P (D) = 0

= g · 0 + h · 0 + i · 0
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= g · P (D[1]r) + h · P (D[ω]r) + i · P (D[ω2]r)

(by the inductive hypothesis .)

vi) r is a proper edge.

P (D) = 0

= j · 0 + k · 0 + l · 0
= j · P (D[1]r) + k · P (D[ω]r) + l · P (D[ω2]r) (by the inductive hypothesis .)

This completes the backward implication, by induction.

Triality leads to the following two corollaries, for x = z = 0 and y = z = 0, respectively.

Corollary 5.20. Let S = (w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) be a parameter sequence

such that w, y 6= 0 and x = z = 0. A function P is an extended Tutte invariant with

respect to S for every alternating dimap D of genus zero if and only if

P (D) =

{
wk(D) · yaf(D)−k(D), if is(D)=cf(D)=k(D),

0, otherwise,

with a = b = f = g = h = 0.

Corollary 5.21. Let S = (w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) be a parameter sequence

such that w, x 6= 0 and y = z = 0. A function P is an extended Tutte invariant with

respect to S for every alternating dimap D of genus zero if and only if

P (D) =

{
wk(D) · xis(D)−k(D), if af(D)=cf(D)=k(D),

0, otherwise,

with a = e = f = h = i = 0.

Lastly, we investigate cases where exactly one of the three variables is zero.

Theorem 5.22. Let S = (w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) be a parameter sequence

such that w, y, z 6= 0 and x = 0. A function P is an extended Tutte invariant with respect

to S for every alternating dimap D of genus zero if and only if

P (D) =

{
wk(D) · yaf(D)−k(D) · zcf(D)−k(D), if is(D)=k(D),

0, otherwise,

with d = f = g = h = j = 0 and yz = aw + by + cz.

Proof. Let S be as stated and D be an alternating dimap of genus zero. We first prove

the forward implication. Note that all the derived polynomials must be equal for P (D)

to be an extended Tutte invariant. By using (E1)–(E4) in Lemma 5.4, and the fact that

w, y, z 6= 0 and x = 0, we obtain d = f = g = h = j = 0 and yz = aw+ by+ cz as desired.

If is(D) = k(D), then each component of D has a single vertex and every edge in D is

either an ultraloop, a proper ω-loop, a proper ω2-loop or a proper 1-semiloop. We proceed
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by induction on the number m of edges of D. For the base case, suppose m = 0. Clearly,

P (D) = 1 and the result for m = 0 follows.

For the inductive step, assume that m > 0 and the result holds for every alternating

dimap of genus zero that has size less than m. We consider four cases corresponding to

the four possible edge types in D. Let r ∈ E(D).

i) r is an ultraloop. In D \ r, the number of components, a-faces and c-faces, are all

reduced by 1. Thus,

P (D) = w · P (D \ r)
= w · wk(D\r) · yaf(D\r)−k(D\r) · zcf(D\r)−k(D\r) (by the inductive hypothesis)

= w · wk(D)−1 · yaf(D)−1−(k(D)−1) · zcf(D)−1−(k(D)−1)

= wk(D) · yaf(D)−k(D) · zcf(D)−k(D).

ii) r is a proper ω-loop. The number of a-faces is reduced by 1 in D[ω]r. Thus,

P (D) = y · P (D[ω]r)

= y · wk(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r)

(by the inductive hypothesis)

= y · wk(D) · yaf(D)−1−k(D) · zcf(D)−k(D)

= wk(D) · yaf(D)−k(D) · zcf(D)−k(D).

iii) r is a proper ω2-loop. The number of c-faces is reduced by 1 in D[ω2]r. Thus,

P (D) = z · P (D[ω2]r)

= z · wk(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)

(by the inductive hypothesis)

= z · wk(D) · yaf(D)−k(D) · zcf(D)−1−k(D)

= wk(D) · yaf(D)−k(D) · zcf(D)−k(D).

iv) r is a proper 1-semiloop. In D[1]r, the number of components and in-stars are

both increased by 1. In D[ω]r and D[ω2]r, the number of c-faces and a-faces are

reduced by 1, respectively. Hence,

yz · P (D) = yz ·
(
a · P (D[1]r) + b · P (D[ω]r) + c · P (D[ω2]r)

)
= yz ·

(
a · wk(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r)

+ b · wk(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r)

+ c · wk(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)
)

(by the inductive hypothesis)

= yz ·
(
a · wk(D)+1 · yaf(D)−(k(D)+1) · zcf(D)−(k(D)+1)
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+ b · wk(D) · yaf(D)−k(D) · zcf(D)−1−k(D)

+ c · wk(D) · yaf(D)−1−k(D) · zcf(D)−k(D)
)

= (aw + by + cz) · wk(D) · yaf(D)−k(D) · zcf(D)−k(D)

P (D) = wk(D) · yaf(D)−k(D) · zcf(D)−k(D) (since yz 6= 0 and yz = aw + by + cz .)

We next show P (D) = 0 when is(D) 6= k(D).

i) is(D) 6= k(D) = af(D) = cf(D). There is a proper 1-loop in D. By (ETI2) and using

x = 0, we have P (D) = 0.

ii) is(D) 6= k(D), cf(D) 6= k(D) = af(D). If every edge in D is a triloop, there exist

proper 1-loops and proper ω2-loops in D. By (ETI2) and using x = 0, the result

follows. Otherwise, there exists a proper ω-semiloop in D. By Corollary 5.12, we

have P (D) = 0.

iii) is(D) 6= k(D), af(D) 6= k(D) = cf(D). If every edge in D is a triloop, there exist

proper 1-loops and proper ω-loops in D. By (ETI2) and using x = 0, the result

follows. Otherwise, there exists a proper ω2-semiloop in D. By Corollary 5.14, we

have P (D) = 0.

iv) is(D) 6= k(D), af(D) 6= k(D) and cf(D) 6= k(D). If every edge in D is a triloop, there

exist proper 1-loops, proper ω-loops and proper ω2-loops in D. By (ETI2) and using

x = 0, the result follows. Otherwise, Corollaries 5.12, 5.14 or 5.16 gives P (D) = 0.

Conversely, we show that

P (D) =

{
wk(D) · yaf(D)−k(D) · zcf(D)−k(D), if is(D)=k(D),

0, otherwise,

with d = f = g = h = j = 0 and yz = aw + by + cz is an extended Tutte invariant with

respect to S for every alternating dimap D, as in Definition 5.2. Based on the proof in

Theorem 5.6, it is clear that P (D) is a multiplicative invariant.

We now show that P (D) satisfies (ETI1) to (ETI8) by using induction on |E(D)| = m.

When m = 0, we have P (D) = 1 and the result for m = 0 follows. So, suppose m > 0 and

the result holds for every alternating dimap of genus zero that has size less than m.

Suppose is(D) = k(D). Each component of D has a single vertex and every edge in

D is either an ultraloop, a proper ω-loop, a proper ω2-loop or a proper 1-semiloop. Let

r ∈ E(D).

i) r is an ultraloop.

P (D) = wk(D) · yaf(D)−k(D) · zcf(D)−k(D)

= w · wk(D)−1 · yaf(D)−1−(k(D)−1) · zcf(D)−1−(k(D)−1)

= w · wk(D\r) · yaf(D\r)−k(D\r) · zcf(D\r)−k(D\r)

= w · P (D \ r) (by the inductive hypothesis .)
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ii) r is a proper ω-loop.

P (D) = wk(D) · yaf(D)−k(D) · zcf(D)−k(D)

= y · wk(D) · yaf(D)−1−k(D) · zcf(D)−k(D)

= y · wk(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r)

= y · P (D[ω]r) (by the inductive hypothesis .)

iii) r is a proper ω2-loop.

P (D) = wk(D) · yaf(D)−k(D) · zcf(D)−k(D)

= z · wk(D) · yaf(D)−k(D) · zcf(D)−1−k(D)

= z · wk(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)

= z · P (D[ω2]r) (by the inductive hypothesis .)

iv) r is a proper 1-semiloop.

yz · P (D) = (aw + by + cz) · wk(D) · yaf(D)−k(D) · zcf(D)−k(D)

(since yz 6= 0 and yz = aw + by + cz)

= yz ·
(
a · wk(D)+1 · yaf(D)−(k(D)+1) · zcf(D)−(k(D)+1)

+ b · wk(D) · yaf(D)−k(D) · zcf(D)−1−k(D)

+ c · wk(D) · yaf(D)−1−k(D) · zcf(D)−k(D)
)

= yz ·
(
a · wk(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r)

+ b · wk(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r)

+ c · wk(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)
)

= yz ·
(
a · P (D[1]r) + b · P (D[ω]r) + c · P (D[ω2]r)

)
(by the inductive hypothesis)

P (D) = a · P (D[1]r) + b · P (D[ω]r) + c · P (D[ω2]r) (since yz 6= 0 .)

Note that for µ ∈ {1, ω, ω2}, it is possible to have is(D[µ]r) = k(D[µ]r) by µ-reducing

r. Hence, we may have to consider more than one scenario for the remaining cases. Let

r ∈ E(D).

i) r is a proper 1-loop.

(a) is(D[1]r) = k(D[1]r).

P (D) = 0

= x · wk(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r) (since x = 0)

= x · P (D[1]r) (by the inductive hypothesis .)
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(b) Otherwise,

P (D) = 0

= x · 0
= x · P (D[1]r) (by the inductive hypothesis .)

ii) r is a proper ω-semiloop. In D[ω2]r, the number of components and a-faces are both

increased by 1. In D[1]r and D[ω]r, the number of in-stars and c-faces are reduced

by 1, respectively.

(a) is(D[1]r) = k(D[1]r) and is(D[ω2]r) = k(D[ω2]r).

P (D) = 0

= d · wk(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r) + e · 0
+ f · wk(D[ω2]r) · yaf(D[ω2]r)−k(D[ω2]r) · zcf(D[ω2]r)−k(D[ω2]r)

(since d = f = 0)

= d · P (D[1]r) + e · P (D[ω]r) + f · P (D[ω2]r)

(by the inductive hypothesis .)

(b) Otherwise,

P (D) = 0

= d · 0 + e · 0 + f · 0
= d · P (D[1]r) + e · P (D[ω]r) + f · P (D[ω2]r)

(by the inductive hypothesis .)

iii) r is a proper ω2-semiloop. In D[ω]r, the number of components and c-faces are both

increased by 1. In D[1]r and D[ω2]r, the number of in-stars and a-faces are reduced

by 1, respectively.

(a) is(D[1]r) = k(D[1]r) and is(D[ω]r) = k(D[ω]r).

P (D) = 0

= g · wk(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r)

+ h · wk(D[ω]r) · yaf(D[ω]r)−k(D[ω]r) · zcf(D[ω]r)−k(D[ω]r) + i · 0
(since g = h = 0)

= g · P (D[1]r) + h · P (D[ω]r) + i · P (D[ω2]r)

(by the inductive hypothesis .)

(b) Otherwise,

P (D) = 0

= g · 0 + h · 0 + i · 0
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= g · P (D[1]r) + h · P (D[ω]r) + i · P (D[ω2]r)

(by the inductive hypothesis .)

iv) r is a proper edge. In D[1]r, D[ω]r and D[ω2]r, the number of in-stars, c-faces and

a-faces are reduced by 1, respectively.

(a) is(D[1]r) = k(D[1]r).

P (D) = 0

= j · wk(D[1]r) · yaf(D[1]r)−k(D[1]r) · zcf(D[1]r)−k(D[1]r) + k · 0 + l · 0
(since j = 0)

= j · P (D[1]r) + k · P (D[ω]r) + l · P (D[ω2]r)

(by the inductive hypothesis .)

(b) Otherwise,

P (D) = 0

= j · 0 + k · 0 + l · 0
= j · P (D[1]r) + k · P (D[ω]r) + l · P (D[ω2]r)

(by the inductive hypothesis .)

This completes the backward implication, by induction.

Similarly, by using triality, we have

Corollary 5.23. Let S = (w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) be a parameter sequence

such that w, x, z 6= 0 and y = 0. A function P is an extended Tutte invariant with respect

to S for every alternating dimap D of genus zero if and only if

P (D) =

{
wk(D) · xis(D)−k(D) · zcf(D)−k(D), if af(D)=k(D),

0, otherwise,

with a = c = h = i = l = 0 and xz = dz + ex+ fw.

Corollary 5.24. Let S = (w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) be a parameter sequence

such that w, x, y 6= 0 and z = 0. A function P is an extended Tutte invariant with respect

to S for every alternating dimap D of genus zero if and only if

P (D) =

{
wk(D) · xis(D)−k(D) · yaf(D)−k(D), if cf(D)=k(D),

0, otherwise.

with a = b = e = f = k = 0 and xy = gy + hw + ix.
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5.2 Restricted Alternating Dimaps, Independent Parame-

ters

An extended Tutte invariant is well defined for an alternating dimap D if every edge-

ordering of D gives an identical derived polynomial, when D is reduced using these edge-

orderings.

In Section 5.1, we identified restrictions on the parameters that ensure extended Tutte

invariants are well defined for all alternating dimaps of genus zero when the restrictions are

satisfied (see Theorem 5.6). We now investigate the conditions on an alternating dimap

that are required in order to obtain a well defined extended Tutte invariant for it, without

any restriction on the parameters. The fact that no restriction is imposed on the parame-

ters implies that the variables w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l are all independent, and

will be treated as indeterminates.

To formalise this distinction, we need a more specific extended Tutte invariant.

The complete extended Tutte invariant of an alternating dimap takes values in a ring

E[w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l], where E is a field. The ring is considered to be a

subset of the field of fractions F := E(w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l) whose numerators

and denominators are in E[w, x, y, z, a, b, c, d, e, f, g, h, i, j, k, l].

We will determine the domain of the complete extended Tutte invariant, which is the

set of alternating dimaps for which it is well defined.

Let D be an alternating dimap. For i ∈ {1, 2, . . . , |E(D)|} and µi ∈ {1, ω, ω2}, a

reduction sequence for a given edge-orderingO = e1e2 . . . ei of D is a sequence of reductions

R = µ1, µ2, . . . , µi. By reducing D using the edge-ordering O and the reduction sequence

R, we obtain the minor D[µ1]e1[µ2]e2 . . . [µi]ei, which is denoted by D[R]O.

For a given edge-ordering, an extended Tutte invariant is constructed using a set of

sequences of reductions of the edges, where the edges are reduced in the given order. For

each sequence of reductions, a factor is introduced each time an edge is reduced in the

sequence. For instance, the factor of x is introduced when a proper 1-loop is reduced

in Definition 5.2. Note that if more than one reduction is performed on an edge (i.e., a

non-triloop edge in Definition 5.2), the type of reduction operation determines the factor

that will be introduced for each minor.

For i ∈ {1, 2, . . . , |E(D)|}, suppose H is a minor of D that is obtained by reducing

the first i edges of D. Then, the first i factors introduced by these i reductions form the

monomial of H with respect to D and the reductions used. In Figure 5.5, the first two

edges of an alternating dimap D are reduced in the extended Tutte invariant by using

O = pqr. Since only one edge p is reduced to obtain the minor D[ω]p, the factor e is also

the monomial of this minor. On the other hand, for the minor D[ω2]p[∗]q, two factors f

and w are obtained. Hence, we have fw as the monomial of D[ω2]p[∗]q.

Proposition 5.25. If an extended Tutte invariant is well defined for an alternating dimap

D, then this holds for any minor of D.
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qr

D[1]p D[ω]p

q

r

p

q

r
D

r

q

D[ω2]p

d e f+ +

r r r

D[1]p[ω2]q D[ω]p[1]q D[ω2]p[∗]q

dz ex fw+ +

Figure 5.5: Reductions on the first two edges of an alternating dimap D

Proof. Let P be an extended Tutte invariant that is well defined for an alternating dimap

D. By way of contradiction, suppose that there exists a minor D1 of D such that P is

not well defined for D1. Since P is not well defined for D1, there exist two edge-orderings

O1, O2 for D1 where two distinct derived polynomials P1 and P2 are obtained when D1 is

reduced using O1 and O2, respectively.

Since D1 is a minor of D, for some k ∈ {1, 2, . . . , |E(D)|} there exists an edge-

ordering O = e1e2 . . . ek of some subset of E(D) of size k and a reduction sequence

R = µ1, µ2, . . . , µk such that D1 = D[R]O. Let α be the monomial of D1 with respect to

D and these reductions. Suppose D contains t ≥ 1 minors D1, D2, . . . , Dt after the first k

edges are reduced.

i) If D1 is reduced using O1, we have

P (D) = α · P1 +
t∑
i=2

βi · P (Di), (5.6)

ii) If D1 is reduced using O2, we obtain

P (D) = α · P2 +
t∑
i=2

βi · P (Di), (5.7)

where in both cases, for i ≥ 2, the factor βi is the monomial of the respective minor

Di, and the remaining |E(D)| − k edges of each Di are reduced by using the same fixed

edge-ordering.

Note that by reducing each Di using a fixed edge-ordering, the summation over i in

both (5.6) and (5.7) produces the same expression. Since P1 6= P2, there exist two distinct
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derived polynomials for D. This implies that P is not well defined for D and we reach a

contradiction.

Lemma 5.26. The complete extended Tutte invariant is not well defined for the alternat-

ing dimap G1,3.

Proof. Let P be the complete extended Tutte invariant. Suppose D ∼= G1,3 has three

edges r, s and t as shown in Figure 5.6.

r s t

Figure 5.6: A labelled alternating dimap G1,3

Since D has three edges, there exist 3! = 6 possible edge-orderings. Let O1 = rst and

O2 = trs be two of the possible edge-orderings of D.

If D is reduced using O1 (see Figure 5.7, where the edge to be reduced is in red), we

obtain

r s t

D

reduce
r

t s

D[ω2]r

reduce
s

t

D[ω2]r[ω]s

Figure 5.7: Reductions of D ∼= G1,3 using O1 = rst

P (D) = z · P (D[ω2]r) (r is a proper ω2-loop in D)

= yz · P (D[ω2]r[ω]s) (s is a proper ω-loop in D[ω2]r)

= wyz (the final edge is always an ultraloop .)

On the other hand, if D is reduced using O2 (see Figure 5.8), then

r s t

D

reduce
t r s

D[1]t

+ r s

D[ω]t

+ r s

D[ω2]t

Figure 5.8: Reductions of D ∼= G1,3 on t using O2 = trs

P (D) = a · P (D[1]t) + b · P (D[ω]t) + c · P (D[ω2]t) (t is a proper 1-semiloop in D)

= aww + byw + czw (details are later in this paragraph)

= aww + bwy + cwz.

In D[1]t, the edges r and s are both ultraloops. In D[ω]t, the edges r and s are both proper

ω-loops and the final edge to be reduced is always an ultraloop. In D[ω2]t, the edges r

and s are both proper ω2-loops and the final edge to be reduced is always an ultraloop.
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Since the derived polynomials of D that are produced by the edge-orderings O1 and

O2 are different, the result follows.

Recall that the two alternating dimaps G2,3 are shown in Figure 5.2.

Lemma 5.27. The complete extended Tutte invariant is not well defined for either of the

alternating dimaps G2,3.

Proof. Let P be the complete extended Tutte invariant. Since there exist two possibilities

for G2,3, we consider two alternating dimaps Ga2,3 and Gc2,3 separately. Suppose D1
∼= Ga2,3

and D2
∼= Gc2,3 both have three edges r, s and t as shown in Figure 5.9.

s

r

t

r

s

t

Ga2,3 Gc2,3

Figure 5.9: Two labelled alternating dimaps Ga2,3 and Gc2,3

Since they both have three edges, there exist 3! = 6 possible edge-orderings for each of

them.

First, let O1 = srt and O2 = rst be two of the possible edge-orderings of D1.

If D1 is reduced using O1 (see Figure 5.10), we obtain

r

s

t

D1

reduce
s

r t

D1[1]s

reduce
r

t

D1[1]s[ω2]r

Figure 5.10: Reductions of D1
∼= Ga2,3 using O1 = srt

P (D1) = x · P (D1[1]s) (s is a proper 1-loop in D1)

= xz · P (D1[1]s[ω2]r) (r is a proper ω2-loop in D1[1]s)

= wxz (the final edge is always an ultraloop .)

On the other hand, if D1 is reduced using O2 (see Figure 5.11), then

r

s

t

D1

reduce
r

s t

D1[1]r

+

t

s

D1[ω]r

+ s t

D1[ω
2]r

Figure 5.11: Reductions of D1
∼= Ga2,3 on r using O2 = rst

P (D1) = d · P (D1[1]r) + e · P (D1[ω]r) + f · P (D1[ω
2]r)

(r is a proper ω-semiloop in D1)
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= dzw + exw + fww (details are later in this paragraph)

= dwz + ewx+ fww.

In D1[1]r, the edges s and t are both proper ω2-loops and the final edge to be reduced

is always an ultraloop. In D1[ω]r, the edges s and t are both proper 1-loops and the

final edge to be reduced is always an ultraloop. In D1[ω
2]r, the edges s and t are both

ultraloops.

Since the derived polynomials of D1 that are produced by the edge-orderingsO1 andO2

are different, the complete extended Tutte invariant is not well defined for the alternating

dimap Ga2,3.

Second, let O3 = rst and O4 = srt be two of the possible edge-orderings of D2.

If D2 is reduced using O3 (see Figure 5.12), we obtain

r

s

t

D2

reduce
r

s t

D2[1]r

reduce
s

t

D2[1]r[ω]s

Figure 5.12: Reductions of D2
∼= Gc2,3 using O3 = rst

P (D2) = x · P (D2[1]r) (r is a proper 1-loop in D2)

= xy · P (D2[1]r[ω]s) (s is a proper ω-loop in D2[1]r)

= wxy. (the final edge is always an ultraloop)

On the other hand, if D2 is reduced using O4 (see Figure 5.13), then

r

s

t

D2

reduce
s

r t

D2[1]s

+ r t

D2[ω]s

+

r

t

D2[ω
2]s

Figure 5.13: Reductions of D2
∼= Gc2,3 on s using O2 = srt

P (D2) = g · P (D2[1]s) + h · P (D2[ω]s) + i · P (D2[ω
2]s)

(s is a proper ω2-semiloop in D2)

= gyw + hww + ixw (details are later in this paragraph)

= gwy + hww + iwx.

In D2[1]s, the edges r and t are both proper ω-loops and the final edge to be reduced

is always an ultraloop. In D2[ω]s, the edges r and t are both ultraloops. In D2[ω
2]s,

the edges r and t are both proper 1-loops and the final edge to be reduced is always an

ultraloop.

Since the derived polynomials of D2 that are produced by the edge-orderingsO3 andO4

are different, the complete extended Tutte invariant is not well defined for the alternating

dimap Gc2,3.
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We now give the conditions required in order to obtain a well defined complete extended

Tutte invariant.

Theorem 5.28. The complete extended Tutte invariant is well defined for an alternating

dimap D of genus zero if and only if D contains only triloops.

Proof. The forward implication is proved by contrapositive. Let D be an alternating

dimap of genus zero that contains at least one non-triloop edge. By Corollary 5.17, the

alternating dimap D contains G1,3 or G2,3 as a minor. By Lemma 5.26 and Lemma 5.27,

the complete extended Tutte invariant is not well defined for G1,3 and G2,3, respectively.

By Proposition 5.25, the complete extended Tutte invariant is then not well defined for

D. Hence, the forward implication follows.

Conversely, suppose D is an alternating dimap of genus zero that contains only triloops.

This implies that every edge in each connected component of D is of the same type. By

Definition 5.2, each time a triloop is chosen and reduced, one factor w, x, y or z is

introduced. Suppose r ∈ E(D) is the first edge in a given edge-ordering. By using the

given edge-ordering, the triloop r is deleted after the first reduction operation. All the

other edges in D \ r remain as triloops of the same type as they were in D. This is

always true regardless of which edge is first reduced in D. In other words, the edge-

ordering is inconsequential. In addition, the final edge to be reduced in each component

is always an ultraloop (an improper triloop). Since the complete extended Tutte invariant

for alternating dimaps is multiplicative, and multiplication is commutative, the complete

extended Tutte invariant is well defined for D.
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CHAPTER 6

Tutte Invariants That Extend the Tutte Polynomial

Recall from [79] that the Tutte polynomial T (G;x, y) of a graph G has the following

deletion-contraction recurrence, for any e ∈ E(G):

T (G;x, y) =


1, if G is empty,

x · T (G/e;x, y), if e is a coloop,

y · T (G \ e;x, y), if e is a loop,

T (G \ e;x, y) + T (G/e;x, y), otherwise.

In addition to the extended Tutte invariant in Definition 5.2, Farr [37] defined two

other Tutte invariants, namely Tc(D;x, y) and Ta(D;x, y), for any alternating dimap D,

which are analogues of the Tutte polynomial. Note that Tc(D;x, y) and Ta(D;x, y) are

two special cases of extended Tutte invariants. Farr showed that the c-Tutte invariant

(respectively, a-Tutte invariant) of an alternating dimap is well defined for any alternating

dimap of the form altc(G) (respectively, alta(G)), when it equals the Tutte polynomial of

a plane graph G.

In this chapter, we discuss these two invariants for alternating dimaps that are 2-cell

embedded on an orientable surface of genus zero, i.e., the plane or the sphere. We first

characterise the c-Tutte invariant and the a-Tutte invariant, when they are well defined for

all alternating dimaps of genus zero. We then determine the class of alternating dimaps for

which these two invariants are well defined, without any restriction on the two parameters

of these invariants. We show that each of these invariants properly extends the Tutte

polynomial of a plane graph. Lastly, we discuss the factorisation of c-Tutte invariants.

6.1 Tutte Invariants with Dependent Paramaters for Arbi-

trary Alternating Dimaps

We first give the definitions of the c-Tutte invariant Tc and the a-Tutte invariant Ta.

Definition 6.1. A c-Tutte invariant for alternating dimaps is a multiplicative invariant

Tc such that, for any alternating dimap D and e ∈ E(D),

85



86 Chapter 6. Tutte Invariants That Extend the Tutte Polynomial

1. if e is an ultraloop,

Tc(D;x, y) = Tc(D \ e;x, y), (TC1)

2. if e is a proper 1-loop or a proper ω-semiloop,

Tc(D;x, y) = x · Tc(D[ω2]e;x, y), (TC2)

3. if e is a proper ω-loop or a proper 1-semiloop,

Tc(D;x, y) = y · Tc(D[1]e;x, y), (TC3)

4. if e is a proper ω2-loop or a proper ω2-semiloop,

Tc(D;x, y) = Tc(D[ω]e;x, y), (TC4)

5. otherwise,

Tc(D;x, y) = Tc(D[1]e;x, y) + Tc(D[ω2]e;x, y). (TC5)

Definition 6.2. An a-Tutte invariant for alternating dimaps is a multiplicative invariant

Ta such that, for any alternating dimap D and e ∈ E(D),

1. if e is an ultraloop,

Ta(D;x, y) = Ta(D \ e;x, y),

2. if e is a proper 1-loop or a proper ω2-semiloop,

Ta(D;x, y) = x · Ta(D[ω]e;x, y),

3. if e is a proper ω2-loop or a proper 1-semiloop,

Ta(D;x, y) = y · Ta(D[1]e;x, y),

4. if e is a proper ω-loop or a proper ω-semiloop,

Ta(D;x, y) = Ta(D[ω2]e;x, y),

5. otherwise,

Ta(D;x, y) = Ta(D[1]e;x, y) + Ta(D[ω]e;x, y).

Remark: For the reduction of a triloop e ∈ E(D), we have D[∗]e = D[1]e = D[ω]e =

D[ω2]e = D\e.

Theorem 6.1. [37, Theorem 5.2] For any plane graph G,

T (G;x, y) = Tc(altc(G);x, y) = Ta(alta(G);x, y).
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We now determine when the c-Tutte invariant is well defined for all alternating dimaps

of genus zero, using our results on extended Tutte invariants.

Proposition 6.2. The c-Tutte invariant is well defined for all alternating dimaps of genus

zero if and only if

x =
1±
√

3i

2
, y =

1∓
√

3i

2
.

Proof. We first consider the definitions of the extended Tutte invariant (see Definition 5.2)

and the c-Tutte invariant (see Definition 6.1). Since the variables x and y are used in both

definitions, we use α and β instead of the variables x and y, respectively, that are used for

the c-Tutte invariant. By comparing the recurrences in the two definitions, we see that

the c-Tutte invariant is an extended Tutte invariant with parameters

x = f = α, y = a = β, w = z = h = j = l = 1, b = c = d = e = g = i = k = 0. (6.1)

i) Suppose α, β 6= 0. In this case, the hypothesis of Theorem 5.6 is satisfied (since

w = z = 1 6= 0, x = α 6= 0 and y = β 6= 0). By substituting the respective values

in (6.1) into the necessary conditions in (5.2)–(5.5), and solving the equations, we

obtain

αβ = α+ β = 1. (6.2)

By solving (6.2), and using the fact that α = x and β = y in the c-Tutte invariant,

we have

x =
1±
√

3i

2
, y =

1∓
√

3i

2
.

ii) Suppose α = 0 and β 6= 0. In this case, the hypothesis of Theorem 5.22 is satisfied

(since w = z = 1 6= 0, x = α = 0 and y = β 6= 0). However, by Theorem 5.22, the

fact that h = j = 1 6= 0 implies that we do not get a well defined extended Tutte

invariant.

iii) Suppose α 6= 0 and β = 0. In this case, the hypothesis of Corollary 5.23 is satisfied

(since w = z = 1 6= 0, x = α 6= 0 and y = β = 0). However, by Corollary 5.23, the

fact that h = l = 1 6= 0 implies that we do not get a well defined extended Tutte

invariant.

iv) Suppose α = β = 0. In this case, the hypothesis of Theorem 5.19 is satisfied (since

w = z = 1 6= 0, x = α = 0 and y = β = 0). However, by Theorem 5.19, the fact that

h = 1 6= 0 implies that we do not get a well defined extended Tutte invariant.

The backward implication follows, by Theorem 5.6.

Corollary 6.3. The only c-Tutte invariants that are well defined for all alternating dimaps

D of genus zero are

Tc(D;
1±
√

3i

2
,
1∓
√

3i

2
) =

(
1±
√

3i

2

)is(D)−af(D)

.
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Note that

x =
1 +
√

3i

2
, y =

1−
√

3i

2

are the two primitive sixth roots of unity. These two points satisfy the equation (x −
1)(y − 1) = 1, so they lie on the hyperbola H1 := {(x, y) : (x − 1)(y − 1) = 1}, on which

T (G;x, y) and hence Tc(altc(G);x, y) are easy to evaluate.

By using a similar approach, we have the following proposition for the a-Tutte invari-

ant.

Proposition 6.4. The a-Tutte invariant is well defined for all alternating dimaps of genus

zero if and only if

x =
1±
√

3i

2
, z =

1∓
√

3i

2
.

Proof. By comparing the definitions of the extended Tutte invariant (see Definition 5.2)

and the a-Tutte invariant (see Definition 6.2), we have

x = h = α, z = a = β, w = y = f = j = k = 1, b = c = d = e = g = i = l = 0.

Then, by using similar arguments as in the proof of Proposition 6.2, we obtain

x =
1±
√

3i

2
, z =

1∓
√

3i

2
.

Corollary 6.5. The only a-Tutte invariants that are well defined for all alternating dimaps

D of genus zero are

Ta(D;
1±
√

3i

2
,
1∓
√

3i

2
) =

(
1±
√

3i

2

)is(D)−cf(D)

.

6.2 Well Defined c-Tutte Invariants for Restricted Alternat-

ing Dimaps

The c-Tutte invariant and the a-Tutte invariant are closely related. Once a problem is

solved for one of these invariants, it can then be solved for the other by some appropriate

modifications, as evidenced in Section 6.1. Hence, we only focus on the c-Tutte invariant

from now onwards.

A c-cycle block (respectively, an a-cycle block) of an alternating dimap D is a block

that is a clockwise face (respectively, an anticlockwise face) of D that has the same number

of vertices as edges. Such a block is a directed cycle of D.

A c-simple alternating dimap (see Figure 6.1) is a loopless alternating dimap of genus

zero in which every block is either:
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Figure 6.1: A c-simple alternating dimap with four blocks

a
b

c

d
f

e

a

b
c

d

f

e

Figure 6.2: A c-alternating dimap and its c-block graph

i) a c-cycle block, or

ii) an element of altc(G),

and there exists no block within a clockwise face of any other block.

A c-alternating dimap is an alternating dimap of genus zero that can be obtained

from a c-simple alternating dimap by adding some c-multiloops within some anticlockwise

faces of the c-simple alternating dimap. Hence, a c-simple alternating dimap is merely a

c-alternating dimap without any loops.

Let A denote the set of cutvertices and B denote the set of blocks of a c-alternating

dimap H. We construct the c-block graph of H with vertex set A ∪ B as follows: ai ∈ A
and bj ∈ B are adjacent if block bj of H contains the cutvertex ai of H. The construction

of the c-block graph of a c-alternating dimap is the same as the construction of the block

graph of a graph. Hence, the c-block graph of a connected c-alternating dimap is a tree.

An example of a c-alternating dimap and the corresponding c-block graph is shown in

Figure 6.2.

Lemma 6.6. Let D be an alternating dimap. Every clockwise face of D has size exactly

two if and only if there exists an undirected orientably embedded graph G such that D ∼=
altc(G).
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Proof. We first prove the forward implication. Given an alternating dimap D where all of

its clockwise faces have size exactly two, we construct an undirected graph G as follows.

Let V (G) = V (D). For each clockwise face of D, a new edge of G that is incident with

the same endvertices (i.e., the two vertices incident with this face, which may coincide) is

added in G such that the new edge is within the clockwise face of D. Each clockwise face

contains exactly one edge in this way, therefore edges in G do not intersect. Hence, we

obtain an undirected embedded graph G such that D ∼= altc(G).

Conversely, if there exists an undirected graph G such that an alternating dimap

D ∼= altc(G), every clockwise face ofD has size exactly two, by the definition of altc(G).

Proposition 6.7. The c-union of two c-alternating dimaps is also a c-alternating dimap.

Proof. Let D1 and D2 be c-alternating dimaps and D = D1 ∪c D2. By the c-union

construction (as defined on page 19) and the fact that the set of clockwise faces of D is

the union of the sets of clockwise faces of D1 and D2, every non-loop block of D is either

a c-cycle block or is an element of altc(G), and there exists no block within a clockwise

face of any other block. In addition, D may contain some c-multiloops within some of its

anticlockwise faces. The set of c-multiloops of D is also the union of the sets of c-multiloops

of D1 and D2 Therefore, D is also a c-alternating dimap.

Corollary 6.8. The c-union of two c-simple alternating dimaps is also a c-simple alter-

nating dimap.

Proposition 6.9. Let D1 and D2 be alternating dimaps and D = D1 ∪c D2. Then, the

set of blocks in D is the union of the sets of blocks of D1 and D2.

Proof. The result follows immediately, by the c-union construction.

In the following lemmas, we show that the c-Tutte invariant is well defined for any

alternating dimap (of genus zero) that is either a c-cycle block or a c-multiloop.

Lemma 6.10. Let D be an alternating dimap that is a c-cycle block of size m ≥ 1. Then,

Tc(D;x, y) = xm−1.

Proof. Suppose D is as stated. We proceed by induction on the number of edges of D.

For the base case, suppose m = 1, so that D is an ultraloop. Then, we have Tc(D;x, y) =

x0 = 1. The result for m = 1 follows.

For the inductive step, assume that m > 1 and the result holds for every D that

has less than m edges. Note that every edge that belongs to D is a proper 1-loop. Let

e ∈ E(D). By reducing e, we have

Tc(D;x, y) = x · Tc(D[ω2]e;x, y) (by (TC2))

= x · x(m−1)−1 (by the inductive hypothesis)

= xm−1.

The result follows, by induction.
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Corollary 6.11. Let D be an alternating dimap that is a c-cycle block of size m ≥ 1 and

St be a tree of size t ≥ 0. Then,

Tc(D;x, y) = T (Sm−1;x, y).

Lemma 6.12. Let D be an alternating dimap of genus zero that is a c-multiloop of size

m and put k = cf(D). Then,

Tc(D;x, y) = ym−k.

Proof. Suppose D is as stated. We proceed by induction on the number of edges of D.

For the base case, suppose m = 0. Then, we have Tc(D;x, y) = y0 = 1 and the result for

m = 0 follows.

For the inductive step, assume that m > 0 and the result holds for every D that

contains less than m edges.

Recall that every edge in an alternating dimap belongs to one clockwise face and one

anticlockwise face. Each time an edge is reduced, the size of the alternating dimap is

reduced by one. Let e ∈ E(D) and k = cf(D). Note that e is either a proper 1-semiloop,

a proper ω-loop or a proper ω2-loop, in D. We consider these three cases as follows.

Suppose e is a proper 1-semiloop or a proper ω-loop. The number of clockwise faces

remains unchanged after e is reduced. Hence,

Tc(D;x, y) = y · Tc(D[1]e;x, y) (by (TC3))

= y · y(m−1)−k (by the inductive hypothesis)

= ym−k.

Suppose e is a proper ω2-loop. The reduction on e will now reduce the number of the

clockwise faces by 1. Hence,

Tc(D;x, y) = Tc(D[ω]e;x, y) (by (TC4))

= y(m−1)−(k−1) (by the inductive hypothesis)

= ym−k.

This completes the proof, by induction.

Corollary 6.13. Let D be an alternating dimap of genus zero that is a c-multiloop of size

m and put k = cf(D), and Lt be a graph with t loops. Then,

Tc(D;x, y) = T (Lm−k;x, y).

The following two lemmas show the general form of the c-Tutte invariant, when a

c-cycle block or a c-multiloop is first reduced in certain alternating dimaps.
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Lemma 6.14. Let Cm be a c-cycle block of size m ≥ 1 in a c-alternating dimap D. Then,

Tc(D;x, y) = xm−1 · Tc(D \ Cm;x, y).

Proof. Suppose Cm is as stated. We proceed by induction on m. For the base case, suppose

m = 1. The c-cycle block C1 is a proper ω2-loop. By reducing the proper ω2-loop, we

have Tc(D;x, y) = Tc(D[ω]C1;x, y) = x1−1 · Tc(D \ C1;x, y). Hence, the result for m = 1

follows.

For the inductive step, assume that m > 1 and the result holds for every k < m. Now,

every edge in Cm is either a proper 1-loop or a proper ω-semiloop. Let e ∈ E(Cm). By

reducing e,

Tc(D;x, y) = x · Tc(D[ω2]e;x, y) (by (TC2))

= x · x(m−1)−1 · Tc(D[ω2]e \ Cm−1;x, y) (by the inductive hypothesis)

= xm−1 · Tc(D \ Cm;x, y).

This completes the proof, by induction.

Lemma 6.15. Let Rm be a c-multiloop of size m in an alternating dimap D of genus zero

and put k = cf(Rm). Then,

Tc(D;x, y) = ym−k · Tc(D \Rm;x, y).

Proof. Let Rm be a c-multiloop with m edges in an alternating dimap D of genus zero.

We proceed by induction on m. For the base case, suppose m = 0. Clearly, the result for

m = 0 follows.

For the inductive step, assume that m > 0 and the result holds for every ` < m. Let

e ∈ E(Rm) and k = cf(Rm). Note that e is either a proper 1-semiloop, a proper ω-loop or

a proper ω2-loop, in Rm. We consider these three cases as follows.

Suppose e is a proper 1-semiloop or a proper ω-loop. The number of clockwise faces

of Rm remains unchanged after e is reduced. Hence,

Tc(D;x, y) = y · Tc(D[1]e;x, y) (by (TC3))

= y · y(m−1)−k · Tc(D[1]e \Rm−1;x, y) (by the inductive hypothesis)

= ym−k · Tc(D \Rm;x, y).

Suppose e is a proper ω2-loop. The reduction on e will now reduce the number of

clockwise faces by one. Hence,

Tc(D;x, y) = Tc(D[ω]e;x, y) (by (TC4))

= y(m−1)−(k−1) · Tc(D[ω]e \Rm−1;x, y) (by the inductive hypothesis)

= ym−k · Tc(D \Rm;x, y).

This complete the proof, by induction.
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We now show that the c-Tutte invariant is multiplicative over blocks for any c-simple

alternating dimap.

Lemma 6.16. Let D be a c-union of two c-simple alternating dimaps S1 and S2. Then,

Tc(D;x, y) = Tc(S1;x, y) · Tc(S2;x, y).

Proof. Suppose D is a c-union of two c-simple alternating dimaps S1 and S2. By Corol-

lary 6.8, the alternating dimap D is also a c-simple alternating dimap. Thus, every block

of D is either a c-cycle block or is an element of altc(G).

We proceed by induction on the number p of c-cycle blocks of D. For the base case,

suppose p = 0, so that there exists no c-cycle block in both S1 and S2. Thus, every block

of S1, S2 and hence D is an element of altc(G). Let S1 ∼= altc(G1) and S2 ∼= altc(G2).

Then D ∼= altc(G) for some plane graph G = G1 ∪iG2, where i ∈ {0, 1}. By Theorem 6.1,

Tc(D;x, y) = T (G;x, y),

Tc(Si;x, y) = T (Gi;x, y), i ∈ {1, 2}.

Since the Tutte polynomial is multiplicative over blocks for any graph G, we have

T (G;x, y) = T (G1;x, y) · T (G2;x, y).

Hence,

Tc(D;x, y) = Tc(S1;x, y) · Tc(S2;x, y).

For the inductive step, assume that p > 0 and the result holds for any c-union that

contains less than p c-cycle blocks. Without loss of generality, let Cm be a c-cycle block

in S1 that contains m ≥ 1 edges. Since D is a c-union of S1 and S2, it contains Cm as one

of its blocks. By first reducing every edge of Cm, we have

Tc(D;x, y) = xm−1 · Tc(D \ Cm;x, y) (by Lemma 6.14 applied to D)

= xm−1 · Tc(S1 \ Cm;x, y) · Tc(S2;x, y) (by the inductive hypothesis)

= xm−1 · Tc(S1;x, y)

xm−1
· Tc(S2;x, y) (by Lemma 6.14 applied to S1)

= Tc(S1;x, y) · Tc(S2;x, y).

The result follows, by induction.

We extend the result in Lemma 6.16, from c-simple alternating dimaps to c-alternating

dimaps.

Theorem 6.17. Let D be a c-union of two c-alternating dimaps S1 and S2. Then,

Tc(D;x, y) = Tc(S1;x, y) · Tc(S2;x, y).



94 Chapter 6. Tutte Invariants That Extend the Tutte Polynomial

Proof. Suppose D is a c-union of two c-alternating dimaps S1 and S2. By Propostion 6.7,

the alternating dimap D is also a c-alternating dimap. Thus, every non-loop block of D

is either a c-cycle block or is an element of altc(G), and there exists no block within a

clockwise face of any other block. In addition, D contains p c-multiloops within some of

its anticlockwise faces.

We proceed by induction on p. For the base case, suppose p = 0. Then, S1, S2 and

D contain no c-multiloops. In other words, they all are c-simple alternating dimaps. By

Lemma 6.16, we have Tc(D;x, y) = Tc(S1;x, y)·Tc(S2;x, y) and the result for p = 0 follows.

For the inductive step, assume that p > 0 and the result holds for every c-union that

contains less than p c-multiloops. Without loss of generality, assume that S1 and hence D

contains a c-multiloop Rm. Let k = cf(Rm). By first reducing every edge of Rm, we have

Tc(D;x, y) = ym−k · Tc(D \Rm;x, y) (by Lemma 6.15 applied to D)

= ym−k · Tc(S1 \Rm;x, y) · Tc(S2;x, y) (by the inductive hypothesis)

= ym−k · Tc(S1;x, y)

ym−k
· Tc(S2;x, y) (by Lemma 6.15 applied to S1)

= Tc(S1;x, y) · Tc(S2;x, y) (by (TC4) .)

The result follows, by induction.

Since there are a few non-isomorphic alternating dimaps that may be denoted by

G3,5, we write G3,5,1 (see Figure 6.3) for the alternating dimap G3,5 that is obtained by

subdividing one of the edges of altc(G) where the plane graph G is a cycle of size exactly

two.

Figure 6.3: An alternating dimap G3,5,1

We now present one definition and two results (with proofs) by Farr in 2013. These

are unpublished and included by permission.

Definition 6.3 (Farr). A turner is a directed closed trail (which may repeat vertices but

not edges) in which every edge is followed either by its left successor or its right successor.

Theorem 6.18 (Farr). If G and G \X are alternating dimaps, with X ⊆ E(G), then X

is an edge-disjoint union of turners.

Proof. Let G and X be as stated. Let e1 ∈ E(G \X) and let e2 be the left (respectively,

right) successor of e1 in G \ X, with e1 has v as its head and e2 has v as its tail. Let

E(v, e1, e2, X) be the set of edges of X between e1 and e2 in G going clockwise (resp.,

anticlockwise) around v from e1 to e2. Since G and G \X are both alternating dimaps,

|E(v, e1, e2, X)| is even. Label each edge of E(v, e1, e2, X) directed into v as a right-turn
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(resp., left-turn). This done, each out-edge of v in E(v, e1, e2, X) can be obtained from

precisely one in-edge of v in E(v, e1, e2, X) by following the instruction given by that in-

edge’s label. Doing this for each such triple (e1, v, e2) gives a label left-turn/right-turn to

each edge of X (since every edge is an in-edge for some v). This labelling allows us to

partition X into turners: for each edge in X, its turner is obtained by repeatedly using

the label on the current edge to determine which edge (of the two out-edges next to it at

its head) is its successor in the turner, a process which can never repeat an edge until it

returns to where it started. Note that turners cannot cross.

Corollary 6.19 (Farr). If H ≤ G are alternating dimaps, then there exist Y,Z ⊆ E(G)

such that G[ω]Y [ω2]Z = H.

Proof. Let X = E(G) \ E(H). By Theorem 6.18, X is an edge-disjoint union of turners.

Consider the labelling of the edges of X given by the proof of that theorem. Let Y be the

left-turn edges and Z be the right-turn edges. Then G[ω]Y [ω2]Z = H.

Fact 6.1. A block of an alternating dimap is a c-cycle block if and only if the block has

exactly one anticlockwise face and exactly one clockwise face.

By using Corollary 6.19, we now show that certain alternating dimaps contain G3,5,1

as a minor.

Lemma 6.20. Every non-loop block of an alternating dimap that is neither a c-cycle block

nor an element of altc(G) contains G3,5,1 as a minor.

f1

e1

v1v2

e2
u1u2

P1

P2

f2

w1

w2

Figure 6.4: The block B in the proof of Lemma 6.20

Proof. Let B be a non-loop block of an alternating dimap that is neither a c-cycle block

nor an element of altc(G). By Fact 6.1, the former implies that the number of a-faces or the

number of c-faces of B is at least two. The existence of at least two a-faces (respectively,

c-faces) in a block implies that the number of c-faces (respectively, a-faces) of the block

is also at least two. Since B is a non-loop block, it contains no proper ω2-loops. By

Lemma 6.6, if B is an element of altc(G), every clockwise face of B has size exactly two.

Hence, at least one of the c-faces f1 of B has size greater than two.
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Let e1 ∈ E(∂f1). Since B contains more than one c-face, there exists an edge e2 such

that e2 /∈ E(∂f1) and e2 ∈ E(∂f2) where f2 is another c-face in B. Since B contains no

cutvertex, there exists a circuit C that contains both e1 and e2. Let u1 be the head and

u2 be the tail of e2. Pick the vertex u1 and traverse C until the first vertex v1 ∈ V (∂f1) is

met. Then, pick u2 and traverse C in the opposite direction and stop once another vertex

v2 ∈ V (∂f1) is met. Let P1 (highlighted in blue in Figure 6.4) be the path in C that has

v1 and v2 as its endvertices, P1 does not use any edge that belongs to f1 and e2 ∈ E(P1).

Now, observe that vertices v1 and v2 both have degree at least three (the vertices v1 and

v2 both belong to f1, and P1 is incident with both of them). Let w1, w2 ∈ V (∂f2) and P2

(highlighted in red) be a w1w2-path in f2 such that E(P2) = E(∂f2) \ E(P1).

Note that f1 can be contracted to a c-face f ′ of size three that contains three vertices

(since every c-face of size greater than two can be contracted to a c-face of size exactly two,

by Lemma 5.7). Then, by contracting every edge g3 ∈ E(P1)\{e2}, the path P1 is reduced

to a path of length one that is incident with two of the vertices v′1, v
′
2 ∈ V (∂f ′). Observe

that P2 now has v′1 and v′2 as both of its endvertices. Contract every edge in P2 except

one, leaving an edge e3 that is incident with v′1 and v′2. Suppose E1 = E(∂f ′) ∪ {e2, e3}.
Then, delete every edge h ∈ E(B) \ E1 to obtain an alternating dimap S ∼= G3,5,1. Since

S ≤ B, by Corollary 6.19 there exist Y,Z ⊆ E(B) such that B[ω]Y [ω2]Z = S.

We next show that certain alternating dimaps contain Gc2,3 as a minor. The alternating

dimap Gc2,3 is shown in Figure 5.2.

Lemma 6.21. Let D be an alternating dimap such that there exists a block within a

clockwise face of some other block and they form a clockwise face of size greater than two.

Then, D has Gc2,3 as a minor.

v

u

g′

s

r

R

S

Figure 6.5: Two blocks B1 and B2 in the proof of Lemma 6.21

Proof. Suppose an alternating dimap D contains two blocks B1 and B2 such that these

two blocks share exactly one common vertex v, and B1 is within one of the c-faces g of

B2. Let g′ ∈ F (D) be the c-face of size greater than two that is formed by the boundary

of g and some edges of B1.

Since g′ has size greater than two, it contains at least two vertices including v. The

fact that v has degree greater than two in D implies that every edge e1 ∈ I(v) is not

a proper 1-loop. Suppose R = E(B1) ∩ E(∂g′) and S = E(B2) ∩ E(∂g′). Note that
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e

f

g

Figure 6.6: Alternating dimap Gc2,3

e

f

g

D

reduce
e

f g

D[ω2]e

reduce
f g

D[ω2]e[1]f

Figure 6.7: Reductions of D ∼= Gc2,3 using O1 = efg

S is the boundary of the face g in B2. Let r ∈ R ⊆ E(B1) and s ∈ S ⊆ E(B2) and

r, s ∈ E(∂g′) ∩ I(v). Since g′ is formed by at least three edges, at least one of the two

edges r and s is a non-loop edge (otherwise g′ is a clockwise face of size two). Without

loss of generality, let s = uv be a non-loop edge. Since s ∈ I(v) and is a non-loop edge, s

is a non-triloop edge in D. By Corollary 5.17, the alternating dimap D has G1,3 or G2,3

as its minor.

To obtain Gc2,3 as a minor in D, for each vertex w ∈ V (∂g′) and for each edge e2 ∈
I(w)\E(∂g′) (green edges in Figure 6.5), reduce e2 using ω2-reduction. Now, g′ belongs to

a component P that has exactly two blocks. Let T = I(u)∪I(v) in P . By contracting every

edge e3 ∈ E(P ) \ T , we obtain a component P ′ ∼= Gc2,3. Since P ′ ≤ D, by Corollary 6.19,

there exist Y,Z ⊆ E(D) such that D[ω]Y [ω2]Z = P ′.

Therefore, D has Gc2,3 as a minor.

Lemma 6.22. The c-Tutte invariant is not well defined for the alternating dimap Gc2,3.

Proof. Suppose D ∼= Gc2,3 has three edges e, f and g as shown in Figure 6.6. Since D has

three edges, there exist 3! = 6 possible edge-orderings. Let O1 = efg and O2 = feg be

two of the possible edge-orderings of D.

If D is reduced using O1 (see Figure 6.7), we obtain

Tc(D;x, y) = x · Tc(D[ω2]e;x, y) (e is a proper 1-loop in D)

= xy · Tc(D[ω2]e[1]f ;x, y) (f is a proper ω-loop in D[ω2]e)

= xy (the final edge is always an ultraloop .)

On the other hand, if D is reduced using O2 (see Figure 6.8), then

Tc(D;x, y) = Tc(D[ω]f ;x, y) (f is a proper ω2-semiloop in D)

= Tc(D[ω]f \ e;x, y) (e is an ultraloop in D[ω]f)
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e

f

g

D

reduce
f e g

D[ω]f

reduce
e g

D[ω]f \ e

Figure 6.8: Reductions of D ∼= Gc2,3 using O2 = feg

e f
g

h

i

Figure 6.9: Alternating dimap G3,5,1

= 1 (the final edge is always an ultraloop .)

Since the derived polynomials of D that are produced by the edge-orderings O1 and

O2 are different, the result follows.

By using a similar approach, we show that the c-Tutte invariant is not well defined for

alternating dimap G3,5,1.

Lemma 6.23. The c-Tutte invariant is not well defined for the alternating dimap G3,5,1.

Proof. Suppose D ∼= G3,5,1 has five edges e, f, g, h and i as shown in Figure 6.9. Since

D has five edges, there exist 5! = 120 possible edge-orderings. Let O1 = efghi and

O2 = feghi be two of the possible edge-orderings of D.

Note that the c-Tutte invariant is well defined for any element that belongs to altc(G).

We also have Tc(altc(G);x, y) = T (G;x, y) for some plane graph G, by Theorem 6.1.

If D is reduced using O1 (see Figure 6.10), we obtain

Tc(D;x, y) = x · Tc(D[ω2]e;x, y) (e is a proper 1-loop in D)

= x · (x+ y) (since D[ω2]e belongs to altc(G))

= x2 + xy.

On the other hand, if D is reduced using O2 (see Figure 6.11), then

Tc(D;x, y) = Tc(D[1]f ;x, y) + Tc(D[ω2]f ;x, y) (f is a proper edge in D)

= (x+ y) + x2 (since D[1]f and D[ω2]f both belong to altc(G))

= x2 + x+ y.

Since the derived polynomials of D that are produced by the edge-orderings O1 and

O2 are different, the result follows.
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Figure 6.10: Reductions of D ∼= G3,5,1 on e using O1 = efghi
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Figure 6.11: Reductions of D ∼= G3,5,1 on f using O2 = feghi

Theorem 6.24. The c-Tutte invariant is well defined for an alternating dimap D if and

only if D is a c-alternating dimap.

Proof. The forward implication is proved by contradiction using two different cases.

Let D be an alternating dimap such that the c-Tutte invariant is well defined for D.

Suppose D is not a c-alternating dimap. This implies that D is not a c-simple alternating

dimap after every loop in D is removed. Thus, either it contains a block that is neither a

c-cycle block nor an element of altc(G), or there exists a block within a clockwise face of

some other block.

First, assume that D contains a block B that is neither a c-cycle block nor an element

of altc(G). By Lemma 6.20, the block B contains G3,5,1 as a minor. By Lemma 6.23, the

c-Tutte invariant is not well defined for G3,5,1. Since B is a block of D, the alternating

dimap D contains G3,5,1 as a minor. By Proposition 5.25, the c-Tutte invariant is not well

defined for D. We reach a contradiction.

Secondly, suppose there exists a block B in D such that B contains another block B′

within one of its clockwise faces. Note that B and B′ form a clockwise face of size greater

than two, else it is a c-multiloop. By Lemma 6.21, the alternating dimap D contains

Gc2,3 as a minor. By Lemma 6.22, the c-Tutte invariant is not well defined for Gc2,3. By

Proposition 5.25, we again get a contradiction. Hence, the forward implication follows.

It remains to show if D is a c-alternating dimap, then the c-Tutte invariant is well

defined for D. Every non-loop block of D is either a c-cycle block or is an element of

altc(G), and D contains no block within a clockwise face of any other block. In addition,

D may contain some c-multiloops within some of its anticlockwise faces. By Lemma 6.10,

the c-Tutte invariant is well defined for every c-cycle block. By Theorem 6.1, the c-

Tutte invariant is also well defined for alternating dimaps that belongs to altc(G). By
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Lemma 6.12, the c-Tutte invariant is also well defined for every c-multiloop. By Theo-

rem 6.17, the c-Tutte invariant is multiplicative over non-loop blocks and c-multiloops for

any c-alternating dimap. Hence, the c-Tutte invariant is well defined for D.

Therefore, the c-Tutte invariant is well defined for an alternating dimap D if and only

if D is a c-alternating dimap.

We now develop a relationship between plane graphs G and c-alternating dimaps D,

when the Tutte polynomial of G and the c-Tutte invariant of D are both identical.

Theorem 6.25. Let D be a c-alternating dimap, G be a plane graph and G′ is obtained

from G by deleting all the loops and bridges in G. Let R and S be the set of c-cycle blocks

and c-multiloops in D, respectively. Let ER =
⋃
r∈RE(r), ES =

⋃
s∈S E(s) and D′ =

D \ ER \ ES. Then, T (G;x, y) = Tc(D;x, y) if and only if Tc(altc(G
′);x, y) = Tc(D

′;x, y)

and G contains
∑

r∈R (|r| − 1) bridges and
∑

s∈S (|s| − cf(s)) loops.

Remark: T (G;x, y) = Tc(D;x, y) if and only if Tc(altc(G);x, y) = Tc(D;x, y). So Theo-

rem 6.25 is about situations of Tc-equivalence in alternating dimaps.

Proof. Let D, G, G′, R, S, ER and ES be as stated. To prove the forward implication,

we let B and L be the sets of bridges and loops in G, respectively. Suppose |B| = p and

|L| = q. Since the Tutte polynomial is multiplicative over blocks, we have

Tc(D;x, y) = T (G;x, y) = xp · yq · T (G′;x, y).

By Theorem 6.17, the c-Tutte invariant is multiplicative over c-cycle blocks, elements of

altc(G) and c-multiloops. By Definition 6.1, a factor of x is introduced when a proper

1-loop or a proper ω-semiloop is reduced. In any c-alternating dimap, proper 1-loops and

proper ω-semiloops can only be found in c-cycle blocks. Note that if a plane graph H

has a single edge, then altc(H) is also a c-cycle block of size two. By Lemma 6.14 and

using the fact that the c-Tutte invariant is multiplicative over c-cycle blocks, we have

p =
∑

r∈R (|r| − 1). Likewise, a factor of y is introduced when a proper ω-loop or a

proper 1-semiloop is reduced. These two types of edges can only be found in c-multiloops.

By Lemma 6.15 and using the fact that the c-Tutte invariant is multiplicative over c-

multiloops, we have q =
∑

s∈S (|s| − cf(s)). After each c-cycle block and each c-multiloop

is reduced in D, we obtain D′ = D \ ER \ ES . It can also be seen that D′ is an element

of altc(G). Since

xp · yq · T (G′;x, y) = Tc(D;x, y) = xp · yq · Tc(D′;x, y),

we have

T (G′;x, y) = Tc(D
′;x, y). (6.3)

Since G′ is a plane graph, by Theorem 6.1 and (6.3), we obtain

Tc(altc(G
′);x, y) = T (G′;x, y) = Tc(D

′;x, y).



6.3. Factorisation of c-Tutte Invariants 101

The backward implication follows immediately, by Theorem 6.1, Lemmas 6.14 and

6.15, and Theorem 6.17.

Corollary 6.26. If D is a c-alternating dimap, then there exists a plane graph H such

that Tc(D;x, y) = Tc(altc(H);x, y) = T (H;x, y).

Proof. Let D be a c-alternating dimap, R and S be the set of c-cycle blocks and c-

multiloops inD, respectively. Let ER =
⋃
r∈RE(r), ES =

⋃
s∈S E(s) andD′ = D\ER\ES .

Every block in D′ is an element of altc(G). This implies that every clockwise face of D′

has size exactly two. By Lemma 6.6, there exists an undirected graph H ′ such that

D′ ∼= altc(H
′). By adding in

∑
r∈R (|r| − 1) bridges and

∑
s∈S (|s| − cf(s)) loops into H ′,

we obtain a plane graph H and Tc(D;x, y) = Tc(altc(H);x, y) = T (H;x, y).

By defining an a-alternating dimap with appropriate modifications, we have the fol-

lowing two corollaries, based on Theorem 6.24 and Theorem 6.25, respectively.

Corollary 6.27. The a-Tutte invariant is well defined for an alternating dimap D if and

only if D is an a-alternating dimap.

Corollary 6.28. Let D be an a-alternating dimap, G be a plane graph and G′ is obtained

from G by deleting all the loops and bridges in G. Let R and S be the set of a-cycle blocks

and a-multiloops in D, respectively. Let ER =
⋃
r∈RE(r), ES =

⋃
s∈S E(s) and D′ =

D \ER \ES. Then, T (G;x, y) = Ta(D;x, y) if and only if Ta(alta(G
′);x, y) = Ta(D

′;x, y)

and G contains
∑

r∈R (|r| − 1) bridges and
∑

s∈S (|s| − af(s)) loops.

6.3 Factorisation of c-Tutte Invariants

Factorisation of the Tutte polynomial of a graph reflects the structure of the graph [63].

It is natural to ask under what conditions the c-Tutte invariants of c-alternating dimaps

factorise. We found that the factorisation of c-Tutte invariants also reflects the structure

of the associated c-alternating dimaps.

It is clear that Theorem 6.1 leads to the following proposition.

Proposition 6.29. Let G be a plane graph and D ∼= altc(G). Then, Tc(D;x, y) factorises

if and only if T (G;x, y) factorises.

By Theorem 6.17, the c-Tutte invariant is multiplicative over non-loop blocks (c-cycle

blocks and elements of altc(G)) and c-multiloops for c-alternating dimaps. Using this and

Theorem 6.25, we have the following corollaries.

Corollary 6.30. Let D be a c-alternating dimap and R be its set of c-cycle blocks. Then,∑
r∈R (|r| − 1) = p if and only if xp | Tc(D;x, y).

Corollary 6.31. Let D be a c-alternating dimap and S be its set of c-multiloops. Then,∑
s∈S (|s| − cf(s)) = q if and only if yq | Tc(D;x, y).

Corollary 6.32. Let D be a c-alternating dimap, and R and S be the set of c-cycle blocks

and c-multiloops in D, respectively. If
∑

r∈R (|r| − 1) ≥ 2 or
∑

s∈S (|s| − cf(s)) ≥ 2, then

Tc(D;x, y) factorises.
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The converse of Corollary 6.32 does not necessarily hold, by Proposition 6.29.

We know that if D is a c-alternating dimap, then the c-Tutte invariant of D is the

same as the Tutte polynomial of some graph by Theorem 6.25. A natural question that

arises is whether this property still holds when D is not a c-alternating dimap. Before we

present our counterexample, we have the following observation.

Proposition 6.33. The polynomial x2 + 1 is not the Tutte polynomial of any graph.

Proof. Suppose x2 + 1 is the Tutte polynomial of some connected graph G. The Tutte

polynomial specialises to the chromatic polynomial χ(G;x) at y = 0 by the following

relation:

χ(G;x) = (−1)|V (G)|−k(G)xk(G)T (G; 1− x, 0).

Since x2 + 1 is the Tutte polynomial of some connected graph G, we have

χ(G;x) = (−1)|V (G)|−1x(x2 − 2x+ 2).

It is clear that x−1 is not a factor of χ(G;x). The chromatic number of G is 1 implies that

G has no edges. The multiplicity of the factor x is 1 in χ(G;x), so G has only one block.

The only connected graph that has chromatic number 1 and a single block is a single

vertex, and its chromatic polynomial is x. Hence, χ(G;x) is not a chromatic polynomial

for any connected graph G. It follows that x2 + 1 is not the Tutte polynomial of any

connected graph. Since the Tutte polynomial is multiplicative over components and x2+1

is irreducible over Q, the result follows.

Let D be the alternating dimap G3,5,1, which is not a c-alternating dimap, as shown

in Figure 6.9. We consider two ordered alternating dimaps D1 = (D, feghi) and D2 =

(D, ifegh).

For D1, it is routine to show that Tc(D1;x, y) = x2 + x+ y = T (G;x, y), where G is a

triangle. This shows that there exists an ordered alternating dimap D whose underlying

alternating dimap is not a c-alternating dimap, but Tc(D;x, y) = Tc(altc(H);x, y) where

H is plane graph.

We now give an ordered alternating dimap that has c-Tutte invariant x2+1. For D2, we

have Tc(D2;x, y) = x2+1, which gives two imaginary roots i and −i. By Proposition 6.33,

we know that x2 + 1 is not the Tutte polynomial of any graph. This observation shows

that for ordered alternating dimaps, there exist c-Tutte invariants that are not the Tutte

polynomial of any graph.



CHAPTER 7

Factorisation of Greedoid Polynomials of Rooted Digraphs

Recall that Gordon and McMahon [39] defined a two-variable greedoid polynomial

f(G; t, z) =
∑

A⊆E(G)

tr(G)−r(A)z|A|−r(A)

for any greedoid G, which we call the greedoid polynomial. They proved that the greedoid

polynomials of rooted digraphs have the multiplicative direct sum property, that is, if a

digraph D = D1 ⊕D2, then f(D; t, z) = f(D1; t, z) · f(D2; t, z). This raises the question

of whether this is the only circumstance in which this polynomial can be factorised. Note

that the Tutte polynomial of a graph G factorises if and only if G is a direct sum [63], but

the situation for the chromatic polynomial is more complex [65]. Gordon and McMahon

showed that the greedoid polynomial of a rooted digraph that is not necessarily a direct

sum has 1 + z among its factors under certain conditions (see Theorems 4.11 and 4.13).

We address more general types of factorisation in this chapter.

Note that we focus on directed branching greedoids. Hence, all our digraphs are rooted.

7.1 Preliminaries

We compute the greedoid polynomials for all rooted digraphs (up to isomorphism unless

otherwise stated) up to order six. All the labelled rooted digraphs (without loops and

multiple edges, but cycles of size two are allowed) up to order six were provided by Brendan

McKay1 on 28 March 2018 (personal communication from McKay to Farr). We then study

the factorability of these polynomials, particularly those that are not divisible by 1 + z

Two rooted digraphs are GM-equivalent if they both have the same greedoid polyno-

mial. If a rooted digraph is a direct sum, then it is separable. Otherwise, it is non-separable.

A greedoid polynomial f(D) of a rooted digraph D of order n GM-factorises if f(D) =

f(G)·f(H) such that G and H are rooted digraphs of order at most n and f(G), f(H) 6= 1.

Note that f(G) and f(H) are not necessarily distinct. A GM-factor of a rooted digraph

D is a polynomial P where P divides f(D) and P 6= 1. The polynomials f(G) and f(H)

1More combinatorial data can be found at https://users.cecs.anu.edu.au/˜bdm/data/.
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are GM-factors of f(D). Furthermore, any factor of f(G) (or F (H)) is also a GM-factor.

We also say a rooted digraph D GM-factorises if its greedoid polynomial GM-factorises.

Every rooted digraph that is a direct sum has a GM-factorisation.

An irreducible GM-factor is basic if the GM-factor is either 1 + t or 1 + z. Otherwise,

the irreducible GM-factor is nonbasic. We are most interested in nonbasic GM-factors. A

GM-factor is primary if it is irreducible, nonbasic and is not a GM-factor of any greedoid

polynomial of rooted digraphs of smaller order. Such a factor appears as a GM-factor

only in rooted digraphs with at least as many vertices as the current one. For k ≥ 1, a

non-separable digraph is k-nonbasic if its greedoid polynomial has k nonbasic GM-factors.

A non-separable digraph is totally k-nonbasic if it is k-nonbasic and contains no basic

GM-factors. Likewise, a non-separable digraph is k-primary if its greedoid polynomial

has k primary GM-factors. A non-separable digraph is totally k-primary if it is k-primary

and contains no basic GM-factors. It follows that if a non-separable digraph is (totally)

k-primary, then the digraph is (totally) `-nonbasic for some ` ≥ k.

Our results show that there exist non-separable digraphs that GM-factorise and their

polynomials have neither 1 + t nor 1 + z as factors. In some cases (but not all), these non-

separable digraphs of order n are GM-equivalent to a separable digraph of order at most

n. We give the numbers of polynomials of this type of non-separable digraph. For rooted

digraphs up to order six and k ≥ 2, we found that there exist no (k+1)-nonbasic digraphs

and no k-primary digraphs. We also provide the numbers of 2-nonbasic digraphs, totally

2-nonbasic digraphs, 1-primary digraphs and totally 1-primary digraphs. We then give

the first examples of totally 2-nonbasic and totally 1-primary digraphs. Lastly, we give an

infinite family of non-separable digraphs where their greedoid polynomials factorise into

at least two non-basic GM-factors.

7.2 Results

The greedoid polynomials of all rooted digraphs (without loops and multiple edges, but

cycles of size two are allowed) up to order six were computed by using Algorithm 1 (see

Appendix A). This algorithm is based on the deletion-contraction recurrence in Propo-

sition 4.8 that was introduced by Gordon and McMahon [39]. We then simplified and

factorised all these greedoid polynomials using Wolfram Mathematica.

Throughout, numbers of rooted digraphs are up to isomorphism unless stated other-

wise.

7.2.1 Separability and Non-separability

For each order, we determined the numbers of rooted digraphs, separable digraphs, non-

separable digraphs, and non-separable digraphs of order n that are GM-equivalent to

some separable digraph of order at most n (see Table 7.2, and the list of abbreviations in

Table 7.1).

Note that the sequences of numbers of labelled rooted digraphs (T) and rooted digraphs

(T-ISO) are not listed in The On-Line Encyclopedia of Integer Sequences (OEIS).
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Abbreviation Description

T Number of labelled rooted digraphs

T-ISO Number of rooted digraphs

S Number of separable digraphs

NS Number of non-separable digraphs

NSE Number of non-separable digraphs of order n that are GM-equivalent

to some separable digraph of order at most n

Table 7.1: Abbreviations for Table 7.2

n T T-ISO S NS NSE

1 1 1 0 1 0

2 6 4 0 4 0

3 48 36 6 30 7

4 872 752 88 664 200

5 48040 45960 2404 43556 10641

6 9245664 9133760 150066 8983694 1453437

Table 7.2: Numbers of various types of rooted digraphs (up to order six)

We observe that the ratio of T-ISO to T shows an increasing trend. The ratio of NS

to T-ISO is also increasing (for n ≥ 3), as expected.

For each order, we also provide the number PU of unique greedoid polynomials and

the ratio of PU to T-ISO, in Table 7.3.

n T-ISO PU PU/T-ISO

1 1 1 1.0000

2 4 4 1.0000

3 36 22 0.6111

4 752 201 0.2673

5 45960 6136 0.1335

6 9133760 849430 0.0930

Table 7.3: Numbers PU of unique greedoid polynomials of rooted digraphs (up to order
six) and the ratio of PU to T-ISO

Bollobás, Pebody and Riordan conjectured that almost all graphs are determined by their

chromatic or Tutte polynomials [6]. However, this conjecture does not hold for matroids.

The ratio of the number of unique Tutte polynomials of matroids to the number of non-

isomorphic matroids approaches 0 as the cardinality of matroids increases, which can be

shown using the bounds given in Exercise 6.9 in [13]. We believe that greedoid polynomials

of rooted digraphs behave in a similar manner as matroids. According to our findings,

the ratio of PU to T-ISO shows a decreasing trend. We expect that as n increases, this
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ratio continues to decrease. The question is, does this ratio eventually approach 0 or is it

bounded away from 0? Further computation should give more insight on this question.

7.2.2 Factorability

For n ∈ {1, . . . , 5}, we identified the numbers of greedoid polynomials that GM-factorise

for rooted digraphs of order n. Details are given in Table 7.5 (see Table 7.4 for the list of

abbreviations and Figure 7.1 for the corresponding Venn diagram).

Abbreviation Description

Number of greedoid polynomials of rooted digraphs that . . .

PNF . . . cannot be GM-factorised

PF . . . can be GM-factorised

PFS . . . can be GM-factorised and the digraph is separable

PFNS . . . can be GM-factorised and the digraph is non-separable

PF PFS ∪ PFNS

COMM PFS ∩ PFNS

PFSU PFS − COMM

PFNSU PFNS − COMM

Table 7.4: Abbreviations for Figure 7.1 and Table 7.5

COMM

PFSU PFNSU

PFS PFNS

U

PNF

Figure 7.1: Venn diagram that represents the factorability of greedoid polynomials of
rooted digraphs where U = PF ∪ PNF and PF = PFS ∪ PFNS

n PNF PF PFS PFNS COMM PFSU PFNSU

1 1 0 0 0 0 0 0

2 3 1 0 1 0 0 1

3 6 16 6 13 3 3 10

4 37 164 41 145 22 19 123

5 1044 5092 444 4867 219 225 4648

Table 7.5: Factorability of greedoid polynomials of rooted digraphs (up to order five)
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We found that the ratio of PF to PU shows an upward trend, and the ratio stands at

0.8299 when n = 5. It seems that most likely as n increases, the ratio will either approach 1

in which case almost all greedoid polynomials of rooted digraphs GM-factorise, or the ratio

will approach a fixed α where 0.8299 ≤ α < 1. We ask, what is the limiting proportion of

greedoid polynomials of rooted digraphs that GM-factorise, as n→∞?

We categorised these polynomials into two classes, according to whether they are poly-

nomials of separable or non-separable digraphs. Some of these polynomials are polynomials

of both separable and non-separable digraphs. The number of such polynomials is given

in column 6 (COMM) in Table 7.5. One such example for digraphs of order three is shown

in Figure 7.2, where the two digraphs have the same greedoid polynomial (1 + t)(1 + z).

r

(a)

r

(b)

Figure 7.2: Digraphs that have the same greedoid polynomial where (a) is non-separable
and (b) is separable

We are interested in non-separable digraphs that can be GM-factorised, especially

those digraphs that have greedoid polynomials that are not the same as polynomials of

any separable digraph. The numbers of greedoid polynomials of these digraphs are given

in column PFNSU in Table 7.5, and examples of such rooted digraphs of order two and

three are given in Figure 7.3 and Figure 7.4, respectively. It is easy to verify that the

greedoid polynomial of the rooted digraph in Figure 7.3 is (1 + t)(1 + z). The greedoid

polynomials of rooted digraphs in Figure 7.4 are (from left to right starting from the first

row) given in Table 7.6.

r

Figure 7.3: The non-separable digraph of order two that GM-factorises

r r r r r

r r r r r

Figure 7.4: Ten of the 16 non-separable digraphs (one for each of the ten different greedoid
polynomials) of order three that GM-factorise
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Greedoid polynomials
Number of non-separable

rooted digraphs of order three

1. (1 + z)3 2
2. (1 + z)(1 + t+ t2 + t2z) 3
3. (1 + z)(2 + 2t+ t2 + z + tz + t2z) 2
4. (1 + z)4 1
5. (1 + z)2(1 + t+ t2 + t2z) 3
6. (1 + t)(1 + z)3 1
7. (1 + z)2(2 + 2t+ t2 + z + tz + t2z) 1
8. (1 + z)2(3 + 2t+ t2 + z + t2z) 1
9. (1 + z)3(1 + t+ t2 + t2z) 1

10. (1 + z)3(3 + 2t+ t2 + z + t2z) 1

Table 7.6: Greedoid polynomials of non-separable digraphs of order three that GM-
factorise and these polynomials are not the same as polynomials of any separable di-
graph of order three, and the numbers of associated non-separable digraphs (making 16
non-separable rooted digraphs altogether)

7.2.3 2-nonbasic and 1-primary Digraphs

We investigate greedoid polynomials that contain nonbasic and primary GM-factors. De-

tails are given in Table 7.8 (see Table 7.7 for the list of abbreviations and Figure 7.5 for

the corresponding Venn diagram). For rooted digraphs up to order six, each 1-primary

digraph is a 2-nonbasic digraph, and each totally 1-primary digraph is a totally 2-nonbasic

digraph.

Abbreviation Description

2-NB Number of 2-nonbasic digraphs

2-TNB Number of totally 2-nonbasic digraphs

1-P Number of 1-primary digraphs

1-TP Number of totally 1-primary digraphs

Table 7.7: Abbreviations for Figure 7.5 and Table 7.8

2-TNB

1-P

2-NB

U

1-TP

Figure 7.5: Venn diagram that represents four types of digraphs in Table 7.8 where U is
the set of digraphs (up to order six) that can be GM-factorised
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n 2-NB 2-TNB 1-P 1-TP

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 120 0 0 0

6 12348 15 1252 9

Table 7.8: Numbers of the four types of non-separable digraphs (up to order six) that can
be GM-factorised

All rooted digraphs up to order four either have one nonbasic GM-factor or only basic

GM-factors in their polynomials. There are 120 rooted digraphs of order five that have

greedoid polynomials with at least two nonbasic GM-factors. The number of distinct

greedoid polynomials of these 120 rooted digraphs is 34. Further examination showed

that the number of nonbasic GM-factors in these polynomials is exactly two. Nonetheless,

117 of the 120 rooted digraphs have greedoid polynomials that contain at least one basic

GM-factor, and the remaining three are separable digraphs (as shown in Figure 7.6).

r r r

Figure 7.6: Three separable digraphs of order five that have two nonbasic GM-factors

Hence, there exist no totally 2-nonbasic digraphs of order five. In addition, none of the

polynomials of these 120 rooted digraphs contains a primary GM-factor. This implies

that none of the rooted digraphs up to order five are k-primary, for k ≥ 1. Each of the

GM-factors of greedoid polynomials of rooted digraphs up to order five is either basic, or

is a GM-factor of some greedoid polynomials of rooted digraphs of smaller order.

There are 12348 rooted digraphs of order six that have greedoid polynomials with

at least two nonbasic GM-factors. The number of distinct greedoid polynomials of these

12348 rooted digraphs is 837. A quick search showed that all these digraphs are 2-nonbasic.

We found that 15 of these rooted digraphs are totally 2-nonbasic. One of the totally 2-

nonbasic digraphs D1 of order six is shown in Figure 7.7 and its greedoid polynomial is as

follows:

f(D1) = (1 + t+ t2 + t2z)(2 + 2t+ t2 + t3 + z + tz + t2z + 3t3z + 3t3z2 + t3z3).
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r

Figure 7.7: A totally 2-nonbasic digraph of order six

The nonbasic GM-factors of f(D1) are greedoid polynomials of rooted digraphs G and H

that have order three and four, respectively (see Figure 7.8). We have f(G) = 1+t+t2+t2z

and f(H) = 2+2t+t2+t3+z+tz+t2z+3t3z+3t3z2+t3z3. However, D1 is a non-separable

digraph and hence not the direct sum of G and H.

r

G

r

H

Figure 7.8: Rooted digraphs G and H

There are also 1252 rooted digraphs of order six that have greedoid polynomials with

one primary GM-factor, and all these digraphs are non-separable. However, only nine of

them are totally 1-primary digraphs. One of the totally 1-primary digraphs D2 of order

six is shown in Figure 7.9 and it has the following greedoid polynomial:

f(D2) = (1+ t+ t2 + t2z)(4+3t+ t2 + t3 +4z+2tz+ t2z+4t3z+z2 +6t3z2 +4t3z3 + t3z4).

r

Figure 7.9: A totally 1-primary digraph of order six

The totally 1-primary digraph D2 GM-factorises into one nonbasic GM-factor 1+t+t2+t2z

and one primary GM-factor 4+3t+t2+t3+4z+2tz+t2z+4t3z+z2+6t3z2+4t3z3+t3z4.

The GM-factor 1+ t+ t2 + t2z is not primary as it is the greedoid polynomial of the rooted

digraph G in Figure 7.8. Note that D2 is also a totally 2-nonbasic digraph since every

primary GM-factor is a nonbasic GM-factor.

The fact that a greedoid polynomial of a rooted digraph is not divisible by 1 + z

implies that the associated rooted digraph has neither a directed cycle nor a greedoid loop.
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Our results show that there exist some non-separable digraphs (of order six) that GM-

factorise into only nonbasic GM-factors, or both nonbasic and primary GM-factors. This

implies that the multiplicative direct sum property, and the existence of greedoid loops

and directed cycles, are not the only characteristics that determine if greedoid polynomials

of rooted digraphs factorise.

7.2.4 An Infinite Family

Lastly, we show that there exists an infinite family of digraphs where their greedoid poly-

nomials factorise into at least two nonbasic GM-factors. We first characterise greedoid

polynomials of two classes of rooted digraphs.

Let Pm,v0 be a directed path v0v1 . . . vm of size m ≥ 0 rooted at v0, and Cm,v0 be a

directed cycle v0v1 . . . vm−1v0 of size m ≥ 1 rooted at v0. For convenience, we usually write

Pm for Pm,v0 and Cm for Cm,v0 .

Lemma 7.1.

f(Pm; t, z) = 1 +
t(1− (t(1 + z))m)

1− t(1 + z)
.

Proof. We proceed by induction on the number m of edges of Pm. For the base case,

suppose m = 0. We have f(P0) = 1 and the result for m = 0 follows. Assume that

m > 0 and the result holds for every rooted directed path of size less than m. Let e be

the outgoing edge of the root vertex of Pm. By Proposition 4.8, we have

f(Pm) = f(Pm/e) + tr(Pm)−r(Pm\e)f(Pm \ e)

=

(
1 +

t(1− (t(1 + z))m−1)
1− t(1 + z)

)
+ tm−0(1 + z)m−1

= 1 +
t(1− (t(1 + z))m)

1− t(1 + z)
.

Suppose Qm is an undirected path v0v1 . . . vm of size m ≥ 0 rooted at either v0 or vm.

Then f(Pm; t, z) = f(Qm; t, z), since there is a rank-preserving bijection between 2E(Pm)

and 2E(Qm).

Lemma 7.2.

f(Cm; t, z) = (1 + z)f(Pm−1; t, z).

Proof. We proceed by induction on the number m of edges of Cm. For the base case,

suppose m = 1. We have f(C1) = (1 + z)f(P0) = 1 + z and the result for m = 1 follows.

Assume that m > 1 and the result holds for every rooted directed cycle of size less than

m. Let e be the outgoing edge of the root vertex of Cm. By Proposition 4.8, we have

f(Cm) = f(Cm/e) + tr(Cm)−r(Cm\e)f(Cm \ e)
= (1 + z)f(Pm−2) + t(m−1)−0(1 + z)m−1

= (1 + z)
(
f(Pm−2) + tm−1(1 + z)m−2

)
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= (1 + z)f(Pm−1) (by Lemma 7.1 .)

Gordon gave a formula for the greedoid polynomials of rooted undirected cycles in [38].

Those polynomials are different to the ones given by Lemma 7.2.

We now give an infinite family of digraphs where their greedoid polynomials factorise

into at least two nonbasic GM-factors, extending the example in Figure 7.7.

Lemma 7.3. There exists an infinite family of non-separable digraphs D that have at least

two nonbasic GM-factors, where

f(D) = f(Pk+1)
(
f(Ck+1) + f(Pk+1) + tk+2(1 + z)k+2

)
, for k ≥ 1.

v0a0

ak

v1 b0

bk

e

Figure 7.10: The digraph D in the proof of Lemma 7.3

Proof. Let D be the non-separable digraph rooted at vertex v0 shown in Figure 7.10,

where a0 . . . ak and b0 . . . bk are two directed paths in D of length k ≥ 1 starting at a0

and b0, respectively. To compute the greedoid polynomial of D by using Proposition 4.8,

we first choose the edge e = v0v1. By deleting and contracting e, we obtain the digraphs

D1 = D/e and D2 = D \ e as shown in Figure 7.11.

a0

ak

v0 b0

bk

(a) D1 = D/e

v0a0

ak

v1 b0

bk

(b) D2 = D \ e

Figure 7.11: Two minors D/e and D \ e of D

Note that D1 is a separable digraph rooted at v0. Let R = {v0, a0, . . . , ak} ⊂ V (D1),

S = {v0, b0, . . . , bk} ⊂ V (D1) and T = {v0, a0, . . . , ak} ⊂ V (D2). Suppose A = D1[R]

and B = D1[S] are the subdigraphs of D1 induced by R and S respectively, and C =

D2[T ] is the subdigraph of D2 induced by T . Clearly, B ∼= C ∼= Pk+1. Hence we have

f(B) = f(C) = f(Pk+1). Note that every edge g ∈ E(D2) \ E(C) is a greedoid loop, and
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|E(D2) \ E(C)| = k + 2. By using the recurrence formula, we have

f(D) = f(D/e) + tr(D)−r(D\e)f(D \ e)
= f(A) · f(B) + t(2k+3)−(k+1)f(C) · (1 + z)k+2

= f(Pk+1)
(
f(A) + tk+2(1 + z)k+2

)
(since f(B) = f(C) = f(Pk+1) .)

It remains to show that f(A) can be expressed in terms of f(Pk) and f(Ck). By taking

h = v0ak ∈ E(A) (see Figure 7.12) as the outgoing edge in the recurrence formula, we

have

a0

ak

v0

h

Figure 7.12: The subdigraph A of D1 induced by R

f(A) = f(A/h) + tr(A)−r(A\h)f(A \ h)

= f(Ck+1) + t(k+1)−(k+1)f(Pk+1) (since A/h ∼= Ck+1 and A \ h ∼= Pk+1)

= f(Ck+1) + f(Pk+1).

Therefore,

f(D) = f(Pk+1)
(
f(Ck+1) + f(Pk+1) + tk+2(1 + z)k+2

)
.

Clearly, both factors of f(D) are nonbasic GM-factors. Since D is non-separable and

k ≥ 1, we complete the proof.

We extend the infinite family in Lemma 7.3, and characterise the greedoid polynomials

of a new infinite family, as follows.

Theorem 7.4. There exists an infinite family of non-separable digraphs D that have at

least two nonbasic GM-factors, where

f(D) = f(Pk+1)

(
f(Ck+1) + f(Pk+1) +

tk+2(1 + z)k+2(1− (t(1 + z))`)

1− t(1 + z)

)
, for k, ` ≥ 1.
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v0 v1 v`

a0

ak

b0

bk

e

Figure 7.13: The digraph D in the proof of Theorem 7.4

Proof. Let D be the non-separable digraph rooted at vertex v0 shown in Figure 7.13,

where L = v0 . . . v` is a directed path in D of length ` ≥ 1 starting at v0. We proceed by

induction on the length ` of L.

For the base case, suppose ` = 1. By Lemma 7.3, we have

f(D) = f(Pk+1)
(
f(Ck+1) + f(Pk+1) + tk+2(1 + z)k+2

)
= f(Pk+1)

(
f(Ck+1) + f(Pk+1) +

tk+2(1 + z)k+2(1− (t(1 + z))`)

1− t(1 + z)

)
,

and the result for ` = 1 follows.

Assume that ` > 1 and the result holds for every r < `.

Let e = v0v1 ∈ E(D). By applying the deletion-contraction recurrence in Proposi-

tion 4.8 on e, we obtain the digraphs D1 = D/e and D2 = D \ e as shown in Figure 7.14.

v1 v`

a0

ak

b0

bk

(a) D1 = D/e

v0 v1 v`

a0

ak

b0

bk

(a) D2 = D \ e

Figure 7.14: Two minors D/e and D \ e of D

Note that D1 is a non-separable digraph rooted at v1. Since the directed path v1 . . . v`

in D1 has length ` − 1, we use the inductive hypothesis to obtain f(D1). Let R =

{v0, a0, . . . , ak} ⊂ V (D2), and A = D2[R] be the subdigraph of D2 induced by R. Clearly,

A ∼= Pk+1. Hence, we have f(A) = f(Pk+1). Note that every edge g ∈ E(D2) \ E(A) is a

greedoid loop, and |E(D2) \E(A)| = k + `+ 1. By using the recurrence formula, we have

f(D) = f(D/e) + tr(D)−r(D\e)f(D \ e)

= f(Pk+1)

(
f(Ck+1) + f(Pk+1) +

tk+2(1 + z)k+2(1− (t(1 + z))`−1)
1− t(1 + z)

)
+ t(2k+`+2)−(k+1)

(
f(Pk+1) · (1 + z)k+`+1

)



7.2. Results 115

= f(Pk+1)

(
f(Ck+1) + f(Pk+1) +

(
tk+2(1 + z)k+2(1− (t(1 + z))`−1)

1− t(1 + z)

)
+ tk+`+1(1 + z)k+`+1

)
= f(Pk+1)

(
f(Ck+1) + f(Pk+1) +

tk+2(1 + z)k+2(1− (t(1 + z))`)

1− t(1 + z)

)
.

We observe that if every directed path has length at most one in a digraph D rooted

at a vertex v, the greedoid polynomial of D is trivial. In this scenario, every vertex in D

is either a sink vertex or a source vertex. If v is a sink vertex, then every edge in D is a

greedoid loop. If v is a source vertex, every edge that is not incident with v is a greedoid

loop.

In the following theorem, we give an infinite family of digraphs where each greedoid

polynomial of these digraphs is a nonbasic GM-factor of the greedoid polynomial of some

non-separable digraph. The proof follows similar approaches as in Lemma 7.3 and Theo-

rem 7.4.

Theorem 7.5. For any digraph G that has a directed path of length at least two, there

exists a non-separable digraph D where f(D) has f(G) as a nonbasic GM-factor.

a0 v1 a′0a1

a2

ak

a′1

a′2

a′k

G G′

e

Figure 7.15: An illustration of the non-separable digraph D in Theorem 7.5

Proof. Let G be a digraph that has a directed path K = a0a1 . . . ak of length k ≥ 2, and

G′ be a copy of G. The copy of K in G′ is denoted by K ′ = a′0a
′
1 . . . a

′
k.

We construct a non-separable digraph D` using G and G′, as follows. We first create

a directed path L = a0v1 . . . v`−1a′0 of length `. We add a directed edge a′0ak, and assign

v0 as the root vertex of D` (see Figure 7.15).

To show that f(G) is a nonbasic GM-factor of f(D`), we proceed by induction on the

length ` of L.

For the base case, suppose ` = 1. We apply the deletion-contraction recurrence in

Proposition 4.8 on e = a0a
′
0. We denote a0 the root vertex of the separable digraph D1/e.

We have

f(D1) = f(D1/e) + tr(D1)−r(D1\e)f(D1 \ e)
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= f(G+ a0ak) · f(G) + t(2r(G)+1)−r(G)f(G) · (1 + z)|E(G)|+1

= f(G)
(
f(G+ a0ak) + tr(G)+1(1 + z)|E(G)|+1

)
.

Hence, the result for ` = 1 follows.

Assume that ` > 1 and the result holds for every r < `.

For the inductive step, we apply the deletion-contraction recurrence on e = v0v1. We

have

f(D`) = f(D`/e) + tr(D`)−r(D`\e)f(D` \ e)
= f(D`/e) + t(2r(G)+`)−r(G)f(G) · (1 + z)|E(G)|+`

= f(D`/e) + tr(G)+`f(G) · (1 + z)|E(G)|+`.

Note that D`/e ∼= D`−1. By the inductive hypothesis, f(D`/e) has f(G) as a nonbasic

GM-factor. This implies that f(D`) has f(G) as a nonbasic GM-factor.

We now have the following corollary.

Corollary 7.6. Let D be a non-separable digraph that belongs to the infinite family in

Theorem 7.5. By replacing the edge a′0ak ∈ E(D) by any digraph R such that every edge

in E(R) that is incident with ak is an incoming edge of ak, then f(D) has f(G) as a

nonbasic GM-factor.

7.3 Computational Methods

All labelled rooted digraphs (without loops and multiple edges, but cycles of size two are

allowed) up to order six were provided by Brendan McKay on 28 March 2018 (personal

communication from McKay to Farr). Each digraph is given as a list of numbers on one

line separated by a single space. The first number is the order of the digraph, the second

number is the size of the digraph, and each pair of subsequent numbers represent a directed

edge of the digraph. For instance, 3 2 2 0 2 1 represents a digraph of order 3 and size 2.

The directed edges of the digraph are (2, 0) and (2, 1). Details are as follows:

order︷︸︸︷
3 2︸︷︷︸

size

edge︷︸︸︷
2 0 2 1︸︷︷︸

edge

.

We use a set of numbers {0, 1, . . . , n − 1} to represent vertices for each digraph of

order n, and an edge list to represent the edge set of each digraph, e.g., [[0, 1]] represents

a digraph with a single edge directed from vertex 0 to vertex 1. As there are 9,245,664

labelled rooted digraphs of order six, we split these digraphs into 52 files.

We use Python 3 (source code filename extension .py), Wolfram Mathematica 11

(source code filename extension .nb) and Bash Shell (Mac OS Version 10.13.4), in com-

puting results for greedoid polynomials of rooted digraphs up to order six.

Algorithms of our programs are given in Appendix A. For brevity, we omit some

elementary algorithms. Steps in obtaining our results are also summarised in Appendix A.



CHAPTER 8

Conclusions and Future Work

Several Tutte-like polynomials for directed graphs have been defined over many years. We

focused on two of these polynomials in this thesis, namely Tutte invariants for alternating

dimaps and two-variable greedoid polynomials for rooted digraphs. Research is an endless

process. We now conclude our findings and suggest some open problems for future research,

in Sections 8.1, 8.2 and 8.3.

We first have the following conjecture for alternating dimaps. This conjecture is in-

spired by the Robertson-Seymour Theorem [20, 70] (or graph minor theorem), which states

that for every minor-closed class of graphs, there exists a finite set of forbidden minors.

Conjecture 8.1 (Farr). For every infinite sequence of alternating dimaps Gk, k ∈ Z+,

there exist i, j such that i < j and Gi is a minor of Gj.

8.1 Characterisations of Extended Tutte Invariants

We described the relationship between extended Tutte invariants for alternating dimaps

and their trials. We gave a full characterisation of extended Tutte invariants for all al-

ternating dimaps of genus zero. With these characterisations, extended Tutte invariants

of alternating dimaps can be obtained without performing reduction operations. We also

showed that the extended Tutte invariant is well defined for an alternating dimap of genus

zero if and only if the alternating dimap contains only triloops. We established some

excluded minor characterisations of alternating dimaps of genus zero when their Tutte

invariants are well defined.

Research in this area can be extended by investigating the situation where two alter-

nating dimaps have the same extended Tutte invariant.

Problem 8.2. Does there exist an efficient method to determine if two alternating dimaps

have the same extended Tutte invariant, without performing reduction operations?

Farr [37] has suggested to investigate extended Tutte invariants for ordered alternating

dimaps. We could ask a similar question.

117
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(a) (b)

Figure 8.1: (a) A 1-posy, (b) A minor of altc(K4)

Problem 8.3. Does there exist an efficient method to determine if two ordered alternating

dimaps have the same extended Tutte invariant, without performing reduction operations?

Recall that in Chapter 5, we only discussed extended Tutte invariants for alternating

dimaps that are embedded on an orientable surface that has genus zero. The reason is, we

believe that more edge types may need to be defined if an alternating dimap is embedded

on an orientable surface that has genus greater than zero. For instance, consider a k-posy

for k ≥ 1 (see [37] for more details), and a minor of altc(K4) that is embedded on a torus

(see Figure 8.1). (The minor of altc(K4) that is shown in Figure 8.1 can be obtained

by performing four 1-reductions and four ω-reductions on the edges of altc(K4).) These

alternating dimaps each have edges that are proper µ-semiloops for two or three distinct

µ, a situation that cannot occur in the plane and which increases the ways in which a

Tutte invariant may fail to be well defined.

Problem 8.4. How do we properly define extended Tutte invariants for alternating dimaps

that are embedded on an orientable surface with genus greater than zero?

8.2 Tutte Invariants and the Tutte polynomial

The c-Tutte invariant for alternating dimaps is a special type of extended Tutte invariant

involving two variables x and y, which is similar to the Tutte polynomial. We showed

that the c-Tutte invariant is well defined for all alternating dimaps of genus zero if and

only if x = (1 ±
√

3i)/2 and y = (1 ∓
√

3i)/2. We proved that the c-Tutte invariant is

multiplicative over non-loop blocks and c-multiloops for c-alternating dimaps. We then

showed that the c-Tutte invariant is well defined for an alternating dimap if and only if the

alternating dimap is a c-alternating dimap. We also extended the relationship between

the Tutte polynomial and the c-Tutte invariant.

Since triality plays an important role for alternating dimaps, we could investigate the

following problem.

Problem 8.5. What is the relationship between the c-Tutte invariant of c-alternating

dimaps and its two trials?

Knowing that the c-Tutte invariant is an analogue of the Tutte polynomial under

certain circumstances, a natural question that arises is:
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Problem 8.6. Does the c-Tutte invariant yield another option to compute the Tutte poly-

nomial for abstract planar graphs?

Since there are three equivalent ways to define the Tutte polynomial, we could inves-

tigate if there exist some equivalent definitions for the c-Tutte invariant.

Problem 8.7. Can the c-Tutte invariant be defined by using a state sum expansion, or

some notion of basis activities?

Problem 8.8. Is the c-Tutte invariant well defined for some alternating dimaps that are

embedded on an orientable surface with genus greater than zero? If so, can we characterise

them?

Iain Moffatt (Royal Holloway) has also suggested the following problem in this area.

Problem 8.9. Can we evaluate the c-Tutte invariant in terms of the ribbon graph poly-

nomial of Bollobás and Riordan (cf. Theorem 6.1)?

8.3 Factorisation of Greedoid Polynomials of Rooted Di-

graphs

We presented (i) the results from exhaustive computation of all small rooted digraphs and

(ii) the first results of the GM-factorability of greedoid polynomials of rooted digraphs.

We computed the greedoid polynomials for all rooted digraphs up to order six. We found

that the multiplicative direct sum property, and the existence of greedoid loops and di-

rected cycles, are not the only characteristics that determine if greedoid polynomials of

rooted digraphs factorise. We showed that there exists an infinite family of non-separable

digraphs where their greedoid polynomials GM-factorise. We also characterised the gree-

doid polynomials of rooted digraphs that belong to the family.

From Table 7.2, the ratio of PU to T-ISO show a decreasing trend. We expect that as

n increases, this ratio continues to decrease. Hence, we have the following conjecture.

Conjecture 8.10. Most rooted digraphs are not determined by their greedoid polynomials.

From Tables 7.2 and 7.5, we can see that the ratio of PF to PU shows an upward trend

and the ratio equals 0.8299 when n = 5.

Problem 8.11. What is the limiting proportion of greedoid polynomials of rooted digraphs

that GM-factorise as n→∞?

Other potential problems in this area are as follows.

Problem 8.12. Investigate the factorability of greedoid polynomials of rooted graphs, or

even greedoids in general.

Gordon and McMahon gave a graph-theoretic interpretation for the highest power of

1 + z for greedoid polynomials of rooted digraphs. We could investigate a similar problem

for the other basic factor 1 + t.
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Problem 8.13. Does there exist a graph-theoretic interpretation for the highest power of

1 + t for greedoid polynomials of rooted digraphs?

We found that the number of nonbasic factors and primary factors that exist in the

greedoid polynomials of rooted digraphs up to order six is at most two and one, respec-

tively. By Theorem 7.5, we can see that there exist (totally) k-nonbasic rooted digraphs

for k ≥ 3.

Problem 8.14. For k ≥ 2, does there exist a (totally) k-primary rooted digraph?

For rooted digraphs of order six, there are 15 totally 2-nonbasic digraphs and nine

totally 1-primary digraphs.

Problem 8.15. For k ≥ 1, can we characterise greedoid polynomials of totally (k + 1)-

nonbasic digraphs and totally k-primary digraphs?

Since greedoid polynomials of rooted digraphs factorise under several scenarios, we

could also investigate the following problem.

Problem 8.16. Determine necessary and sufficient conditions for greedoid polynomials

of rooted digraphs to factorise.
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APPENDIX A

Commands and Algorithms

We summarised commands and algorithms of our programs in Chapter 7, as follows:

Part A

The relationships between files and programs in Part A is shown in Figure A.1.

1. Program name: Greedoid polynomial.py (see Algorithms 1–8)

Input: dig n.txt that contains all digraphs of order n.

Output:

• dig n edgeList.txt : contains edge lists for each rooted digraph of order n.

• dig n poly.txt : contains greedoid polynomials (not in their simplest form) for

each rooted digraph of order n which are obtained by using the deletion-

contraction recurrence in Proposition 4.8.

• dig n isomorphism.txt : contains rooted digraphs of order n together with a set

of root verticess such that each digraph that has its root vertex in the set is

isomorphic to each other.

• dig n directSum.txt : summarises whether each rooted digraph of order n is a

direct sum (DS), not a direct sum (NDS), or is isomorphic (ISO) to some other

rooted digraphs.

• dig n info.txt : contains the number of rooted digraphs of order n that are direct

sums, and the number of rooted digraphs of order n that need to be excluded

so that all rooted digraphs of order n are non-isomorphic.

2. Program name: dig n factorise.nb

Input: dig n poly.txt.

Output: dig n poly factorised.txt that contains the greedoid polynomials for rooted

digraphs of order n in their factorised forms.

3. Program name: Numbering edgeList.py

Input: dig n edgeList.txt.
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Output: dig n edgeList Numbering.txt that includes the following numbering

scheme for each line in the input file

n.z) edgeList

where n is the order of the digraph and z ≥ 1.

4. Program name: Numbering block poly factorised.py

Input: dig n poly factorised.txt.

Output: dig n poly factorised Numbering.txt that includes the following numbering

scheme for each line in the input file

n.z.r) poly factorised

where n is the order of the digraph, z ≥ 1 corresponds to the zth rooted digraph in

the dig n edgeList Numbering.txt, and 0 ≤ r ≤ n − 1 represents the root vertex of

the digraph.

5. Program name: Numbering block directSum.py

Input: dig n directSum.txt.

Output: dig n directSum Numbering.txt that includes the following numbering

scheme for each line in the input file:

n.z.r) DS/NDS/ISO

where n is the order of the digraph, z ≥ 1 corresponds to the zth rooted digraph in

the dig n edgeList Numbering.txt, and 0 ≤ r ≤ n − 1 represents the root vertex of

the digraph.

6. Program name: DirectSum vs notDirectSum.py (see Algorithm 9)

Input: dig n directSum Numbering.txt and dig n poly factorised Numbering.txt.

Output:

• dig n poly directSum.txt : contains greedoid polynomials for rooted digraphs of

order n that are direct sums, with the respective numbering.

• dig n poly notDirectSum.txt : contains greedoid polynomials for rooted digraphs

of order n that are not direct sums, with the respective numbering.

7. Program name: DirectSum vs notDirectSum unique.py (similar to Algorithm 9)

Input: dig n directSum.txt and dig n poly factorised.txt.

Output:

• dig n poly directSum unique.txt : contains unique greedoid polynomials for

rooted digraphs of order n that are direct sums.

• dig n poly notDirectSum unique.txt : contains unique greedoid polynomials for

rooted digraphs of order n that are not direct sums.

8. Language: Bash Shell.

Input: dig n poly factorised.txt.

Output: dig n unique poly.txt that contains all unique greedoid polynomials of

rooted digraphs of order n.

Command:
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tr -d "\r" < dig n poly factorised.txt | sort | uniq
> dig n unique poly.txt

Remark: If we replace uniq by uniq -c in the above command, the last line of

dig n unique poly.txt gives the number of occurrences of “isomorphic”, which is also

the number of rooted digraphs of order n that need to be excluded so that all rooted

digraphs of order n are non-isomorphic. This number should match with the one in

dig n info.txt.

9. Language: Bash Shell.

Input: Combined unique poly n-1.txt and dig n unique poly.txt.

Output: Combined unique poly n.txt that contains all unique greedoid polynomials

of rooted digraphs up to order n.

Command:

cat Combined unique poly n-1.txt dig n unique poly.txt | sort | uniq
> Combined unique poly n.txt

Remark: Since Combined unique poly 1.txt is literally dig 1 unique poly.txt, we first

use dig 1 unique poly.txt and dig 2 unique poly.txt as input files to obtain Com-

bined unique poly 2.txt. For brevity, we only show dig n unique poly.txt as the input

in Figure A.1. A similar concept is used for both steps 13 and 18.

10. Program name: Factorability unique.py (see Algorithm 10)

Input: dig n unique poly.txt and Combined unique poly n.txt.

Output: dig n factorability unique.txt that contains the number of greedoid polyno-

mials of rooted digraphs of order n that can be GM-factorised, and output each of

these polynomials.

11. Program name: Factorability unique directSum.py (similar to Algorithm 10)

Input: dig n poly directSum unique.txt and Combined unique poly n.txt.

Output: dig n factorability directSum unique.txt that contains the number of gree-

doid polynomials that can be GM-factorised for rooted digraphs of order n that are

direct sums, and output each of these polynomials.

12. Program name: Factorability unique notDirectSum.py (similar to Algorithm 10)

Input: dig n poly notDirectSum unique.txt and Combined unique poly n.txt.

Output: dig n factorability notDirectSum unique.txt that contains the number of

greedoid polynomials that can be GM-factorised for rooted digraphs of order n that

are not direct sums, and output each of these polynomials.

13. Language: Bash Shell.

Input: Combined poly directSum n-1.txt and dig n poly directSum.txt.

Output: Combined poly directSum n.txt that contains all unique greedoid polyno-

mials of rooted digraphs that are direct sums up to order n.

Command:
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cat Combined poly directSum n-1.txt dig n poly directSum.txt | sort
| uniq > Combined poly directSum n.txt

14. Program name: DirectSum and GM-equivalent.py (see Algorithm 11)

Input: dig n poly notDirectSum.txt and Combined poly directSum n.txt.

Output: dig n poly ndsEquivalent.txt that contains the number of rooted digraphs

of order n that are not direct sums, but they are GM-equivalent to some rooted

digraph up to order n that is a direct sum. Each such polynomial will be printed

out without duplicates in the output file.

15. Language: Bash Shell.

Input: dig n poly factorised.txt.

Output: dig n nonbasic.txt that contains all unique polynomials that have at least

two nonbasic GM-factors (these nonbasic GM-factors might be identical) for rooted

digraphs of order n.

Command:

sed -e ‘s/(1 + t)[^(]∗//; s/(1 + z)[^(]∗//’ dig n poly factorised.txt

| sort | uniq | grep ")\∗(\|)\^\d\+\|([^+]∗ + [^+]∗)"
> dig n nonbasic.txt

16. Language: Bash Shell.

Input: dig n nonbasic.txt.

Output: dig n nonbasic split.txt that contains all unique nonbasic GM-factors that

are split into separate lines for rooted digraphs of order n.

Command:

sed -e ‘s/\∗(/‘$’\n/g; s/(//; s/).∗//’ dig n nonbasic.txt

| tr -d "\r" | sort | uniq > dig n nonbasic split.txt

17. Language: Bash Shell.

Input: dig n poly factorised.txt.

Output: dig n factors.txt that contains all unique GM-factors for greedoid polyno-

mials of rooted digraphs of order n.

Command:

sed -e ‘s/\∗(/‘$’\n/g; /isomorphic/d; s/(//; s/).∗//’
dig n poly factorised.txt | tr -d "\r" | sort | uniq
> dig n factors.txt

18. Language: Bash Shell.

Input: all factors up to order n-1.txt and dig n factors.txt.

Output: all factors up to order n.txt that contains all unique GM-factors for gree-

doid polynomials of rooted digraphs up to order n.

Command:

cat all factors up to order n-1.txt dig n factors.txt | sort | uniq
> all factors up to order n.txt
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19. Language: Bash Shell.

Input: dig n nonbasic split.txt and all factors up to order n-1.txt.

Output: dig n primary.txt that contains all primary GM-factors for greedoid poly-

nomials of rooted digraphs of order n.

Command:

comm -23 dig n nonbasic split.txt all factors up to order n-1

> dig n primary.txt

20. Language: Bash Shell.

Input: dig n primary.txt and dig n poly factorised Numbering.txt.

Output: dig n primaryPoly.txt that contains all greedoid polynomials that have pri-

mary GM-factors for rooted digraphs of order n.

Command:

fgrep -f dig n primary.txt dig n poly factorised Numbering.txt

> dig n primaryPoly.txt

21. Language: Bash Shell.

Input: dig n primaryPoly.txt.

Output: dig n primaryNumbers edgeList.txt that contains the (edge list) numberings

for all rooted digraphs of order n that have primary GM-factors in their greedoid

polynomials.

Command:

awk ‘{print "^"$1}’ dig n primaryPoly.txt | sed ‘/s/...$/)/’

> dig n primaryNumbers edgeList.txt

22. Language: Bash Shell.

Input: dig n primaryPoly.txt.

Output: dig n primaryNumbers.txt that contains the numberings for all greedoid

polynomials that have primary GM-factors for rooted digraphs of order n.

Command:

awk ‘{print "^"$1}’ dig n primaryPoly.txt > dig n primaryNumbers.txt

23. Language: Bash Shell.

Input: dig n primaryNumbers edgeList.txt and dig n edgeList Numbering.txt

Output: dig n primaryGraphs.txt that contains all edge lists for greedoid polynomi-

als that have primary GM-factors for rooted digraphs of order n.

Command:

grep -f dig n primaryNumbers edgeList.txt dig n edgeList Numbering.txt

> dig n primaryGraphs.txt

24. Language: Bash Shell.

Input: dig n primaryNumbers.txt and dig n directSum Numbering.txt

Output: dig n primaryVSdirectSum.txt summarises whether each rooted digraph in

dig n primaryNumbers.txt a direct sum or not a direct sum.

Command:
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grep -f dig n primaryNumbers.txt dig n directSum Numbering.txt

> dig n primaryVSdirectSum.txt

25. Language: Bash Shell.

Input: dig n primaryVSdirectSum.txt

Output: dig n primaryVSdirectSum summary.txt that contains rooted digraphs that

are direct sums in dig n primaryVSdirectSum.txt.

Command:

grep "\tDS" dig n primaryVSdirectSum.txt

> dig n primaryVSdirectSum summary.txt

Part B

From Part A, we know that each rooted digraph (up to order six) that has k ≥ 1 primary

GM-factor in its greedoid polynomial is not a direct sum. We can now compute the number

of greedoid polynomials of these digraphs that are not divisible by 1 + t or 1 + z, which is

also the number of totally k-primary digraphs.

26. Language: Bash Shell.

Input: dig n primaryPoly.txt

Output: dig n totally primaryPoly.txt that contains greedoid polynomials that have

primary GM-factors and are not divisible by 1 + t or 1 + z for rooted digraphs of

order n that are not direct sums.

Command:

grep -v "(1 + t)\|(1 + z)" dig n primaryPoly.txt

> dig n totally primaryPoly.txt

By using a similar method, we compute the number of greedoid polynomials that

contain at least two nonbasic GM-factors and are not divisible by 1 + t or 1 + z, for rooted

digraphs up to order six that are not direct sums.

27. Language: Bash Shell.

Input: dig n nonbasic.txt, dig n poly factorised Numbering.txt and

dig n directSum Numbering.txt

Output: dig n totally nonbasicPoly.txt that contains greedoid polynomials that

contain at least two nonbasic GM-factors and are not divisible by 1 + t or 1 + z for

rooted digraphs of order n that are not direct sums.

Command:

fgrep -f dig n nonbasic.txt dig n poly factorised Numbering.txt |
grep -v "(1 + t)\|(1 + z)" | awk ‘{print "^"$1}’ | grep -f /dev/stdin

dig n directSum Numbering.txt | grep "\tNDS"
> dig n totally nonbasicPoly.txt



Figure A.1: Relationships between files and programs
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Algorithm 1 GreedoidPolynomial

Input: dig n.txt
Output: dig n edgeList.txt, dig n poly.txt, dig n isomorphism.txt, dig n info.txt and

dig n directSum.txt
1: digraphFile ← open the input file
2: edgeListTable ← create an empty list
3: for line in digraphFile do
4: order ← first number of line
5: aList ← create a list that excludes the first two numbers in line
6: edgeList ← create a list of lists that has baList/2c empty lists
7: for i in baList/2c do
8: j ← 2i
9: Append aList[j] followed by aList[j + 1] to edgeList[i]

10: Append edgeList to edgeListTable

11: Create output files: dig n edgeList.txt, dig n poly.txt, dig n isomorphism.txt,
dig n info.txt and dig n directSum.txt

12: vertexList ← generate a vertex list numbered from 0 to order − 1
13: a← 0
14: k ← 0
15: for item in edgeListTable do
16: Write item to dig n edgeList.txt
17: exclude ← create an empty list
18: isomorphicTable ← IsomorphismTest(item,vertexList)
19: if isomorphicTable is not empty then
20: for element in isomorphicTable do
21: `← length of element
22: k ← k + `− 1
23: Write item and element to dig n isomorphism.txt
24: for node in element do
25: Append each node except the first to exclude

26: cutVertexList ← CutVertices(item)
27: for node in exclude do
28: if node in cutVertexList then
29: Remove node from cutVertexList
30: c← length of cutVertexList
31: a← a+ c
32: for vertex in vertexList do
33: if vertex in cutVertexList then
34: Write ‘DS’ to dig n directSum.txt
35: else if vertex in exclude then
36: Write ‘ISO’ to dig n directSum.txt
37: else
38: Write ‘NDS’ to dig n directSum.txt

39: for vertex in vertexList do
40: if vertex in exclude then
41: Write isomorphic to dig n poly.txt
42: else
43: Write DeletionContraction(vertexList,item,vertex ) to dig n poly.txt

44: Write both a and k to dig n info.txt
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Algorithm 2 IsomorphismTest(edgeList,vertexList)

Input: An edge list and a vertex list of a digraph
Output: Return a table where each list in the table contains vertices of the digraph in

which, when vertices in the list are assigned as the root vertex of the digraph, these
rooted digraphs are isomorphic to each other

1: rootList table ← create an empty list
2: isomorphic ← create an empty list
3: checked ← create an empty list
4: for v1 in vertexList do
5: if v1 is not in checked then
6: Append v1 to checked
7: rootList ← create a list that contains v1
8: vertexList new ← create a list that excludes the first element up to v1 in ver-

texList
9: for v2 in vertexList new do

10: if Isomorphism(edgeList,v1,v2 ) is True then
11: Append v2 to both rootList and checked

12: if length of rootList > 1 then
13: Append rootList to rootList table
14: temp← 0
15: for element in rootList table do
16: if rootList is a subset of element then
17: temp← temp+ 1

18: if temp = 1 then
19: Append rootList to isomorphic

20: return isomorphic

Algorithm 3 Isomorphism(edgeList,r1,r2)

Input: An edge list and two vertices of a digraph
Output: Return True if the digraph rooted at r1 is isomorphic to the digraph rooted at

r2, False otherwise
1: Import NetworkX package [44]
2: G1← append a loop incident with r1 in the digraph
3: G2← append a loop incident with r2 in the digraph
4: return nx.is isomorphic(G1,G2)

Algorithm 4 CutVertices(edgeList)

Input: An edge list of a digraph
Output: Return a list of cutvertices of the digraph

1: Import NetworkX package [44]
2: G← create an undirected multigraph using edgeList
3: return nx.articulation points(G)
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Algorithm 5 DeletionContraction(vertexList,edgeList,root)

Input: A vertex list, an edge list and a root vertex of a digraph
Output: Return the greedoid polynomial of the digraph

1: if length of edgeList = 0 then
2: return 1
3: else if Outdegree(edgeList,root) = 0 then
4: r ← length of edgeList
5: return (1 + z)r

6: else
7: edgeList del ← create a copy of edgeList
8: edgeList con ← create a copy of edgeList
9: vertexList con ← create a copy of vertexList

10: feasbile ← FeasibleSet SizeOne(edgeList,root)
11: randomEdge ← choose a random edge from feasbile
12: edgeList del ← remove randomEdge from edgeList del
13: contractedGraph ← contract randomEdge in edgeList con
14: edgeList con ← edge list of contractedGraph
15: vertexList con ← vertex list of contractedGraph
16: rank ori ← RankFunction(vertexList,edgeList,root)
17: rank del ← RankFunction(vertexList,edgeList del,root)
18: k ← rank ori − rank del
19: d ← DeletionContraction(vertexList,edgeList del,root)
20: c ← DeletionContraction(vertexList con,edgeList con,root)
21: return d ∗ tk + c

Algorithm 6 Outdegree(edgeList,root)

Input: An edge list and a root vertex of a digraph
Output: Return the outdegree of the root vertex (loops are excluded)

1: outdegree ← 0
2: for edge in edgeList do
3: if the initial vertex of edge is root and the endvertex of edge is not root then
4: outdegree ← outdegree+ 1

5: return outdegree

Algorithm 7 FeasibleSet SizeOne(edgeList,root)

Input: An edge list and a root vertex of a digraph
Output: Return the feasible set of size one of the digraph

1: feasible ← create an empty list
2: for edge in edgeList do
3: if the initial vertex of edge is root and the endvertex of edge is not root then
4: Append edge to feasible

5: return feasible
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Algorithm 8 RankFunction(vertexList,edgeList,root)

Input: A vertex list, an edge list and a root vertex of a digraph
Output: Return the rank of the digraph

1: vertexList new ← create a copy of vertexList
2: edgeList new ← create a copy of edgeList
3: Remove root from vertexList new
4: rootList ← create a list that contains root
5: k ← length of edgeList
6: for root in rootList do
7: for edge in edgeList do
8: if the initial vertex of edge is root and the endvertex of edge is in vertexList new

then
9: Append the endvertex of edge to rootList

10: Remove the endvertex of edge from vertexList new
11: Remove edge from edgeList new

12: `← length of edgeList new
13: return k − `

Algorithm 9 DirectSum vs NotDirectSum

Input: dig n directSum Numbering.txt and dig n poly factorised Numbering.txt
Output: dig n poly directSum.txt and dig n poly notDirectSum.txt

1: dsFile ← open dig n directSum Numbering.txt
2: polyFile ← open dig n poly factorised Numbering.txt
3: dsPolyFile ← create an output file dig n poly directSum.txt
4: ndsPolyFile ← create an output file dig n poly notDirectSum.txt
5: k ← 1
6: while k ≤ number of lines in dsFile do
7: if kth line in dsFile contains ‘DS’ then
8: Write the kth line in polyList to dsPolyFile
9: else if kth line in dsFile contains ‘NDS’ then

10: Write the kth line in polyList to ndsPolyFile
11: k ← k + 1

Algorithm 10 Factorability Unique

Input: dig n unique poly.txt and Combined unique poly n.txt
Output: dig n factorability unique.txt

1: polyFile ← open dig n unique poly.txt
2: combinedFile ← open Combined unique poly n.txt
3: factorabilityFile ← create an output file dig n factorability unique.txt
4: k ← 0
5: for oriPoly that has more than one factor in polyFile do
6: for poly1 in combinedFile do
7: for poly2 in combinedFile that excludes the first element up to the element

before poly1 do
8: if poly1 ∗ poly2 = oriPoly then
9: Write oriPoly to factorabilityFile

10: k ← k + 1
11: Break and move to the next element in polyFile

12: Write k to factorabilityFile
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Algorithm 11 DirectSum and GM-equivalent

Input: dig n poly notDirectSum.txt and Combined poly directSum n.txt
Output: dig n poly ndsEquivalent.txt

1: ndsPolyFile ← open dig n poly notDirectSum.txt
2: combinedDsPolyFile ← open Combined poly directSum n.txt
3: equivalentFile ← create an output file dig n poly ndsEquivalent.txt
4: f ← 0
5: for ndsPoly in ndsPolyFile do
6: for dsPoly in combinedDsPolyFile do
7: if second column of ndsPoly = second column of dsPoly then
8: Write the second column of ndsPoly to equivalentFile
9: f ← f + 1

10: Break and move to the next element in ndsPolyFile

11: Write f to equivalentFile
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