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Abstract

This thesis explores a broad range of topics in extremal graph theory.
The first area of focus is graph minors. In particular, we focus on the extremal function

for the class of graphs excluding a given minor. We show that every graph with at least
5n−8 edges contains a Petersen graph as a minor, and that this is tight for infinitely many
graphs. As a corollary, we show that every graph with no Petersen minor is 9-colourable.
This is best possible. We also establish an extremal function for general excluded minors.
We show that every graph with average degree at least i + 5.8105q contains every graph
with at most q edges and i isolated vertices as a minor. This improves on a recent result of
Reed and Wood [Combin. Probab. Comput., 2015].

The second area of focus is that of improper graph colourings. An (improper) graph
colouring has defect d if each monochromatic subgraph has maximum degree at most d, and
has clustering c if each monochromatic component has at most c vertices. In particular, we
study defective and clustered list-colourings for graphs with given maximum average degree.
We prove that every graph with maximum average degree less than 2d+2

d+2
k is k-choosable

with defect d. This improves upon a similar result by Havet and Sereni [J. Graph Theory,
2006]. For clustered choosability of graphs with maximum average degree m, no (1− ε)m
bound on the number of colours was previously known. The above result with d = 1 solves
this problem. It implies that every graph with maximum average degree m is b3

4
m + 1c-

choosable with clustering 2. This extends a result of Kopreski and Yu [Discrete Math.,
2017] to the setting of choosability. We then prove two results about clustered choosability
that explore the trade-off between the number of colours and the clustering. In particular,
we prove that every graph with maximum average degree m is b 7

10
m + 1c-choosable with

clustering 9, and is b2
3
m + 1c-choosable with clustering O(m). As an example, the later

result implies that every biplanar graph is 8-choosable with bounded clustering. This is the
first non-trivial result for the clustered choosability version of the earth-moon problem.

The final topic is that of divisorial gonality for graphs. By considering graphs as discrete
analogues of Riemann surfaces, Baker and Norin [Adv. Math., 2007] developed a concept
of linear systems of divisors for graphs. Building on this idea, a concept of gonality for
graphs has been defined and has generated much recent interest. We show that there are
connected graphs of treewidth 2 of arbitrarily high gonality. We also show that there exist
connected graphs G and H such that H ⊆ G and H has strictly lower gonality than G.
These results resolve three open problems posed in a recent survey by Norin [Surveys in
Combinatorics, 2015].
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Chapter 1

Introduction

Bollobás [16] writes “In extremal graph theory one is interested in the values of various
graph invariants, such as order, size, connectivity, minimum degree, maximum degree,
chromatic number and diameter, and also on the values of these invariants which ensure
that the graph has certain properties”. This thesis examines a range of topics in extremal
graph theory, focussing on graph minors, notions of improper graph colouring, and the
parameters of treewidth, number of edges and gonality.

There are three main threads which link these topics together: Hadwiger’s conjecture
and the parameters of maximum average degree and treewidth. The famous conjecture
of Hadwiger proposes a strong link between graph colouring and graph minor theory, and
highlights a large gap in our knowledge of both fields. The parameter of maximum average
degree provides the most obvious connection between graph minors and graph colouring,
since for every graph H the maximum average degree of the class of graphs with no H
minor is bounded, which in turn provides a bound on the chromatic number.

In Chapter 2, we present our first contribution to the field, which is to determine a tight
upper bound on the maximum average degree of graphs with no Petersen graph minor.
In fact, we determine the exact extremal function for Petersen minors, and characterise
the extremal graphs. As an immediate corollary, we prove that the maximum chromatic
number of a graph with no Petersen graph minor equals 9.

In Chapter 3, we consider extremal functions for general excluded minors. For sparse
graphs H, we improve the best known upper bounds on the maximum average degree of
H-minor-free graphs, in terms of the number of vertices and edges of H.

Improper colourings provide one possible approach for attacking Hadwiger’s conjecture.
Indeed, for one form of improper colouring that we examine, namely that of defective
colouring, a weaker version of Hadwiger’s conjecture has been proven. Our main contribu-
tion to this area, which we present in Chapter 4, is to provide upper bounds on both the
clustered chromatic number and the defective chromatic number of graph classes with given
maximum average degree. Our results apply to all graph classes with bounded maximum
average degree, and thus cover a broader range of graph classes than has previously been
studied.

Treewidth has applications in a wide range of areas of graph theory, and is central to
much of our understanding of graph minor theory. The treewidth of a graph also provides
an upper bound on the parameter of gonality, which is known to be tight for a variety of
graph classes. This naturally leads to questions about the extent to which the parameter of
gonality might be related to graph minor theory. In a recent survey on graph minor theory,
Norin [102] poses three questions about the nature of this relationship. In Chapter 5, we
resolve each of these questions, determining that graph gonality is not as closely linked to
treewidth or graph minor theory as other results in the area may have lead us to expect.

1



1.1. GRAPH MINORS

1.1 Graph Minors

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from
G by the following operations: vertex deletion, edge deletion and edge contraction. The
theory of graph minors is at the forefront of research in graph theory. In the seminal work
of Robertson and Seymour, they prove the following theorem, considered by many to be
among the deepest results in mathematics [111–114, 119–137].

Theorem 1 (Graph Minor Theorem). Every infinite set of graphs contains a pair of distinct
graphs H and G such that H is a minor of G.

Their proof of this astounding result appeals to the axiom of choice, and is non-
constructive. The importance of the result is best demonstrated through its application
to minor-closed classes. A graph class is minor-closed if every minor of every graph in
the class is in the class (equivalently, if the class is closed under the operations of edge
contraction, edge deletion and vertex deletion). The Graph Minor Theorem tells us that
every minor-closed class can be characterised in terms of a finite set of excluded minors. For
every graph H, there is a polynomial time algorithm for determining whether a given graph
G contains H as a minor [131]. Thus, for every minor-closed class, there is a polynomial
time algorithm for determining membership in that class (given a graph G, simply check
one by one whether G contains one of the finite number of excluded minors for the class).
Since the proof of the Graph Minor Theorem is non-constructive, we are in the surprising
position of knowing that these algorithms exist without knowing how to construct them.

One of the most famous examples of a minor-closed class is the class of planar graphs,
which consists of all graphs that can be embedded in the plane so that edges do not cross.
Predating the Graph Minor Theorem, the following theorem shows that planar graphs can
be described in terms of only two excluded minors.

Theorem 2 (Kuratowski–Wagner [90, 153]). A graph is planar if and only if it does not
contain a K5 minor and it does not contain a K3,3 minor.

The Graph Minor Theorem tells us that it is not some peculiarity of the plane which
makes a theorem of this type possible. For example, for any surface, there is an associated
minor-closed class consisting of all graphs which can be embedded in the surface such that
edges do not cross. Theorem 1 implies that there is Kuratowski–Wagner type theorem for
every surface, which was unknown prior to the work of Robertson and Seymour.

1.2 Graph Colouring and Hadwiger’s Conjecture

In extremal graph theory, we are interested in exploring the relationship between different
graph properties and parameters. In doing so, we are often forced to deepen our under-
standing of the concepts we are trying to relate, which is why the area is of such great
importance. An excellent starting point for further exploring graph minors is its relation-
ship to graph colouring. A colouring of a graph assigns each vertex a colour so that adjacent
vertices are assigned different colours. The chromatic number of a graph G is the minimum
number of colours in a colouring of G.

Given a minor-closed class, it is interesting to ask what is the maximum chromatic
number of a graph in the class. The fact that such a maximum exists (unless the class
contains all graphs) was first proved by Wagner [154]. The Four Colour Theorem [10, 11,
110] famously answers this question for planar graphs.

Theorem 3 (Four Colour Theorem [10, 11, 110]). Every planar graph is 4-colourable.

2



1.2. GRAPH COLOURING AND HADWIGER’S CONJECTURE

The proof of this simple sounding result eluded graph theorists for many decades, and
is one of the earliest examples of a computer assisted proof. Much research has gone into
generalising this result. For all other surfaces, the maximum chromatic number has long
been known (see [56, 109]). Thus, the Four Colour Theorem completes our knowledge of
the maximum chromatic number of all surfaces. Generalising further, it is interesting to
consider what the Four Colour Theorem tells us about other minor-closed graph classes.
Wagner [153] characterised the class of K5-minor-free graphs in terms of planar graphs.
Given this characterisation, the Four Colour Theorem implies that every K5-minor-free
graph is 4-colourable. Note that this is the broadest minor-closed class of 4-colourable
graphs, since K5 is not 4-colourable. Hadwiger’s Conjecture proposes the following deep
generalisation of this result.

Conjecture 4 (Hadwiger’s Conjecture [58]). Every graph with no Kt-minor is (t − 1)-
colourable.

This conjecture is widely regarded as one of the most important open problems in
graph theory. The Hadwiger number of a graph G is the maximum number of vertices in a
complete graph minor of G. Thus, Hadwiger’s conjecture asserts that the Hadwiger number
of a graph is an upper bound on the chromatic number.

For low values of t, the conjecture is trivial. When t = 2, Kt-minor-free graphs have
no edges, and when t = 3, the conjecture states that every forest is 2-colourable. The first
non-trivial case, when t = 4, was proved by Dirac [45] and by Hadwiger himself [58]. As
mentioned above, the t = 5 case is equivalent to the Four Colour Theorem [153]. Robertson,
Seymour and Thomas [115] proved the t = 6 case. For all t > 7, the conjecture remains
open. However, the conjecture is known to hold when restricted to various graph classes,
for example complements of Kneser graphs [158], line graphs [105], quasi-line graphs [32]
and several families of link graphs [73]. In fact the conjecture is true for almost every graph:
the chromatic number of the random graph G(n, 1

2
) asymptotically almost surely is at most

the Hadwiger number [17].
Regardless of whether the conjecture is true, it highlights a wide gap in our knowledge

of both graph colouring and graph minor theory. It seems unlikely that the conjecture will
be resolved in the affirmative without some breakthrough in both our understanding of
graph colouring and our understanding of complete graph minors. If there are counterex-
amples to the conjecture, it may well be that a computer search will one day discover one
without granting us any profound insight. However, the following weakening of Hadwiger’s
conjecture is also open, and is less vulnerable to such attacks.

Conjecture 5 (Weak Hadwiger’s Conjecture). There exists a constant c such that every
graph with no Kt minor is ct-colourable.

A possible approach for tackling Conjectures 4 and 5 is to find some stronger result from
which they might follow. In this direction, one idea would be to consider a strengthening of
the notion of colouring. We now introduce a widely used example of such a strengthening,
namely list colouring.

1.2.1 List Colouring and Choosability

List colourings are example of a generalisation of a graph colouring. A list-assignment for
a graph G is a function L that assigns a set L(v) of colours to each vertex v ∈ V (G).
A list-assignment L is a k-list-assignment if |L(v)| > k for each vertex v ∈ V (G). An
L-colouring is a colouring of G such that each vertex v ∈ V (G) is assigned a colour in L(v).

3



1.3. EXTREMAL FUNCTIONS FOR SPECIFIC MINORS

A graph is k-choosable if it is L-colourable for every k-list-assignment L. The choosability
of a graph is the minimum integer k such that it is k-choosable.

A k-colouring of a graph G is equivalent to an L-colouring where L is the k-list-
assignment that assigns every vertex of G the same set of k-colours. Thus, the choosability
of a graph is always at least the chromatic number. In some cases, the two values are
the same (for example, complete graphs). However, Alon [4] showed that the choosability
of a graph with minimum degree d is at least (1

2
+ o(1)) log2 d, in contrast to the case of

chromatic number where even bipartite graphs can have arbitrarily high minimum degree.
The list colouring version of Hadwiger’s conjecture is false, since there are Kt-minor-

free graphs which are not (t − 1)-colourable for t > 5 [152]. However, the weak version of
Hadwiger’s conjecture is open even in the setting of choosability. In this setting, Barát,
Joret and Wood [15] have shown that if there is some constant c such that every graph with
no Kt-minor is ct-choosable, then c > 4

3
.

For large values of t, the best known upper bounds on the choosabilty of Kt-minor-free
graphs exhibit the same asymptotic behaviour as the best known upper bounds on the
chromatic numbers of these graphs. The upper bounds in both cases are derived using the
extremal function for excluded minors, which we now introduce.

1.3 Extremal Functions for Specific Minors

The extremal function for excluded minors gives the maximum number of edges in a graph
with n vertices which excludes a specified graph H as a minor. We denote this number by
exm(n,H), by analogy to the well known extremal function for excluded subgraphs ex(n,H),
which gives the maximum number of edges in an n-vertex graph with no H subgraph.

Evaluating exm(n,H) gives an upper bound on the chromatic number for H-minor-free
graphs, as per the following well known lemma (see Section 1.9 for a proof).

Lemma 6. Let H be a graph such that exm(n,H) < cn for some positive integer c. Then
every H-minor-free graph is 2c-choosable, and if |V (H)| 6 2c then every H-minor-free
graph is (2c− 1)-colourable.

Thus, Hadwiger’s conjecture has generated much interest in the extremal function for
excluded complete minors. Trivially, exm(n,K2) = 0 and exm(n,K3) = n − 1, since K2-
minor-free graphs have no edges and K3 minor free graphs are forests. We also know
exm(n,Kt) for t ∈ {4, 5, . . . , 9}, as per Table 1. When t > 10, the precise extremal function
is unknown, but as we discuss in Section 1.4, the asymptotic behaviour of exm(n,Kt) for
large t is known precisely.

Table 1

Excluded Minor (H) exm(n,H) Citation

K4 2n− 3 Wagner 1937 [153] and Dirac 1964 [46]
K5 3n− 6 Wagner 1937 [153] and Dirac 1964 [46]
K6 4n− 10 Mader 1968 [94]
K7 5n− 15 Mader 1968 [94]
K8 6n− 20 Jørgensen 1994 [75]
K9 7n− 27 Song, Thomas 2006 [143]

4



1.3. EXTREMAL FUNCTIONS FOR SPECIFIC MINORS

When t 6 9, not only is exm(n,Kt) known for all values of n, the structure of the extremal
graphs (the Kt-minor-free graphs with the maximum number of edges) is also known. To
describe these extremal graphs, we introduce the notion of cockades.

Let S be a set of graphs, and let k be a non-negative integer. Firstly, every graph in
S is an (S, k)-cockade (or equivalently a k-cockade of graphs in S). A graph G /∈ S is an
(S, k)-cockade if and only if there are (S, k)-cockades G1 and G2, each with strictly fewer
vertices than G, such that G1∪G2 = G and G1∩G2

∼= Kk. For a graph G, a (G, k)-cockade
is just a ({G}, k)-cockade.

Cockades are often useful for constructing extremal graphs for a minor-closed class. The
following well known result (see Section 1.9 for a proof) gives a sufficient condition for a
cockade to be H-minor-free.

Lemma 7. For every (t + 1)-connected graph H and every H-minor-free graph G0, every
(G0, t)-cockade is H-minor-free.

As a simple example, a graph is a (K2, 1)-cockade if and only if it is a tree, and this
is exactly the class of extremal K3-minor-free graphs. In fact, for t ∈ {2, 3, 4}, the class
of extremal Kt-minor-free graphs is exactly the class of (Kt−1, t − 2)-cockades [46]. The
extremal graphs for K5-minor-free graphs are exactly the 3-cockades of edge-maximal planar
graphs [153]. A graph is apex if it can be transformed into a planar graph by deleting at
most one vertex. The extremal graphs for K6-minor-free graphs are exactly the 4-cockades
of edge-maximal apex graphs as well as the graph K2,2,2,3 [74]. A graph is 2-apex if it can
be transformed into a planar graph by deleting at most two vertices. The class of extremal
K7-minor-free graphs consists of all 5-cockades of edge-maximal 2-apex graphs, as well as
the single graph K2,2,2,3 [74].

For t ∈ {2, 3, 4, 5, 6, 7} the extremal function for Kt minors can be written as (t− 2)n−(
t−1

2

)
. This is false for t = 8, due to the K8-minor-free graph K2,2,2,2,2. An n-vertex graph

with no K8 minor has 6n − 20 edges if and only if it is a (K2,2,2,2,2, 5)-cockade [75]. The
extremal function for Kt is also greater than (t−2)n−

(
t−1

2

)
when t = 9, where the extremal

graphs are K2,2,2,3,3 and all (K1,2,2,2,2,2, 6)-cockades [143].
The fact that K2,2,2,3, K2,2,2,2,2 and K2,2,2,2,2,1 are extremal graphs for K7, K8 and K9

minors respectively, is a special case of the following lesser known result due to Cera et al.
[28, 29], who determined exm(n,Kt) for an infinite family of cases when t is close to n. In
particular, exm(n,Kt) = ex(n,K2t−n) if t ∈ [5n+9

8
,max(2n−1

3
, n−24)]∪[2n+3

3
, n]. It is an open

problem to determine the set of ordered pairs (n, t) for which exm(n,Kt) = ex(n,K2t−n).
Computing the extremal function is one of the most fundamental problems to consider

for any minor-closed graph class. As such, the study of extremal functions has not focussed
solely on complete graphs, and the extremal function is known for various other graphs,
including the bipartite graphs K3,3 [59] and K2,t [33], the octahedron K2,2,2 [42], and the
complete graph on eight vertices minus an edge K−8 [142].

1.3.1 Petersen Minors

In Chapter 2, we calculate the extremal function when the excluded minor is the Petersen
graph (see Figure 2), denoted by P . The class of P-minor-free graphs is interesting for
several reasons. As an extension of the 4-colour theorem, Tutte [148] conjectured that
every bridgeless graph with no P-minor has a nowhere zero 4-flow. Edwards, Robertson,
Sanders, Seymour and Thomas [54, 117, 118, 138, 140] have announced a proof that every
bridgeless cubic P-minor-free graph is edge 3-colourable, which is equivalent to Tutte’s
conjecture in the cubic case. Alspach, Goddyn and Zhang [6] showed that a graph has the
circuit cover property if and only if it has no P-minor. It is recognised that determining the

5



1.3. EXTREMAL FUNCTIONS FOR SPECIFIC MINORS

structure of P-minor-free graphs is a key open problem in graph minor theory (see [43, 95]
for example). Our results are a step in this direction.

Figure 2

Our primary result is the following:

Theorem 8 (§2.1).

exm(n,P) =


(
n
2

)
if n 6 9,

5n− 14 if n ∈ {11, 12},
5n− 9 if n ≡ 2 (mod 7),

5n− 12 otherwise.

For n ≡ 2 (mod 7), we in fact completely characterise the extremal graphs (see Theo-
rem 10 below). Theorem 8 and Lemma 6 with c = 5 imply the following Hadwiger-type
theorem for P-minors, which is best possible for P-minor-free graphs with K9 subgraphs.

Theorem 9. Every P-minor-free graph is 9-colourable.

For n > 13, the upper bound in Theorem 8 is implied by the following result, which also
shows that (K9, 2)-cockades are the unique extremal examples of P-minor-free graphs when
n ≡ 2 (mod 7). Indeed, this theorem characterises P-minor-free graphs that are within two
edges of extremal when n ≡ 2 (mod 7).

Theorem 10 (§2.1). Every graph with n > 3 vertices and m > 5n − 11 edges contains a
Petersen minor or is a (K9, 2)-cockade minus at most two edges.

Since (K9, 2)-cockades have connectivity 2, it is interesting to ask for the maximum num-
ber of edges in more highly connected P-minor-free graphs. Hence, we define exm(n,H, k)
to be the maximum number of edges in a k-connected, n-vertex H-minor-free graph. First
note that Theorem 10 implies that 3-connected P-minor-free graphs, with the exception of
K9, have at most 5n− 12 edges. The following result shows that this bound is tight for all
but finitely many values, and also provides the lower bound in Theorem 8 for an infinite
family of cases.

Theorem 11 (§2.3). If n > 13 and n /∈ {16, 17, 22}, then exm(n,P , 3) = 5n− 12.

Exploring the relationship between connectivity and the extremal function further, we
find that there are 5-connected graphs with almost as many edges as the extremal function.

Theorem 12 (§2.3). For n > 10, exm(n,P , 5) > 5n− 15.
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We now show that there are infinitely many 6-connected P-minor-free graphs. Since K3,3

is a minor of P − v for each vertex v, the Petersen graph is not apex and every apex graph
is P-minor-free. An n-vertex graph G obtained from a 5-connected planar triangulation by
adding one universal vertex is 6-connected, P-minor-free, and has 4n− 10 edges. We know
of no infinite families of 6-connected P-minor-free graphs with more edges. We also know
of no infinite families of 7-connected P-minor-free graphs. Indeed, it is possible that every
sufficiently large 7-connected graph contains a P-minor. The following conjecture is even
possible.

Conjecture 13. Every sufficiently large 6-connected P-minor-free graph is apex.

This is reminiscent of Jørgensen’s conjecture [75], which asserts that every 6-connected
K6-minor-free graph is apex. Jørgensen’s conjecture has recently been proved for sufficiently
large graphs [78, 79]. In this respect, K6 and P possibly behave similarly. Indeed, they
are both members of the so-called Petersen family [93, 116, 139]. Note however, that the
extremal functions of K6 and P are different, since exm(n,K6) = 4n− 10 [94].

1.4 Extremal Functions for General Minors

The extremal function for a graph H is the maximum number of edges in an n-vertex graph
not containing H as a minor. It is unlikely that there is a simple way of computing this
function for an arbitrary graph H. Even computing the function for relatively small graphs
is difficult, and for t > 10, the extremal function for Kt remains unknown.

What we can do is find general upper bounds on the extremal function for arbitrary
graphs. The following function which is closely related to the extremal function has received
much attention. For a graph H, let f(H) be the infimum of all non-negative real numbers
c such that every graph with average degree at least c contains H as a minor. Equivalently,
f(H) is the supremum over all positive integers n of (2 exm(n,H))/n (except when H has
no edges, in which case exm(n,H) is generally undefined). Thus, an upper bound on f(H)
is equivalent to a linear upper bound on exm(n,H). For example, the results in Table 1
show that f(Kt) = 2t− 4 for t 6 9.

Tight bounds on the function f are known for various families of graphs, including
general complete graphs Kt [40, 84, 85, 145, 146], unbalanced complete bipartite graphs
Ks,t [86–89, 99], disjoint unions of complete graphs [147], disjoint unions of cycles [38, 60],
general dense graphs [100] and general sparse graphs [61, 106].

As with the extremal function itself, the study of f(Kt) is in part motivated by Had-
wiger’s conjecture. An immediate corollary of Lemma 6 is that every Kt-minor-free graph
is (bf(Kt)c+ 1)-choosable, and bf(Kt)c-colourable whenever f(Kt) > t. Given the results
in Table 1, Lemma 6 implies that, for t ∈ {4, 5, . . . , 9}, every graph with no Kt minor is
(2t − 5)-colourable and (2t − 4)-choosable. This bound is weaker than Hadwiger’s conjec-
ture, but if it held for all values of t, then the Weak Hadwiger Conjecture would be true,
even in the stronger setting of choosability. In fact, any linear upper bound on f(Kt) would
prove the choosabilty version of the Weak Hadwiger Conjecture.

It turns out that there is no linear upper bound on f(Kt). Kostochka [84, 85] showed
that, for large t, there are random graphs with no Kt-minor with average degree of the order
of t
√

log t, and the same was shown independently by de la Vega [40] based on the work of
Bollobás, Catlin and Erdős [17] at around the same time. Kostochka [84, 85] and Thomason
[145] independently also showed the upper bound f(Kt) 6 O(t

√
log t). Finally, Thomason

[146] determined the constant α = 0.638 . . . such that f(Kt) = (α + o(1))t
√

ln t. For large
t, every extremal Kt-minor-free graph consist of essentially disjoint copies of quasi-random
graphs [98, 146].
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Highly connected Kt-minor-free graphs exhibit different behaviour. Norin and Thomas
[101, 144] have announced a proof that, for t > 5 and n� t, every t-connected Kt-minor-
free graph on n-vertices has a set of t−5 vertices whose deletion leaves a planar graph, and
hence exm(n,Kt, t) = (t− 2)n−

(
t−1

2

)
.

Since every t-vertex graph H is a minor of Kt, f(H) 6 O(t
√

log t). Intuitively, if
|E(H)| is small, then we should be able to improve this bound. This leads to the following
definition. Given non-negative integers t and q, the extremal function for general graphs,
denoted f(t, q), is the maximum value of f(H) over all graphs H with at most t vertices
and at most q edges.

1.4.1 Dense Graphs

We call a class of graphs dense if there are positive constants c and τ such that for every
integer n, all n-vertex graphs in the class have at least cn1+τ edges. Much is known about
the behaviour of the extremal function for excluded minors from a dense graph class.

Myers and Thomason [100] introduce a new graph invariant γ, in terms of which they
find the following approximation for the extremal function.

Theorem 14 ([100]). The following holds for every t-vertex graph H, where α = 0.638 . . .
and err is an error function such that max

|V (H)|=t
| err(H)| = o(1).

f(H) = (αγ(H) + err(H))t
√

ln t.

Myers and Thomason note that calculating γ is non-trivial. However, they show that if
H is a t-vertex graph with t1+τ edges, then γ(H) 6

√
τ and γ(H) ≈

√
τ for almost every

graph and for every regular graph.
Theorem 14 implies the following.

Corollary 15 ([100]). If c, τ > 0, then f(t, ct1+τ ) = (α
√
τ + o(1))t

√
ln t, where o(1) → 0

as t→∞.

For any family of graphs on which γ is bounded below by some constant independent of
t, this result gives the asymptotic behaviour of the extremal function. However, note that
on classes of graphs where γ(G) = o(t), Theorem 14 says little.

1.4.2 Sparse Graphs

We call a class of graphs sparse if the average degree of every graph in the class is bounded
from above by a constant. Note that for a sparse graph class, γ(G) will approach 0 as
the size of G increases, so Theorem 14 is not applicable. The extremal function for sparse
minors has previously been studied by Reed and Wood [106], who proved the following
theorem.

Theorem 16 ([106]). There is some d0 such that if H is a graph with average degree d > d0,
then f(H) 6 3.895

√
ln(d))t, where t := |V (H)|.

This theorem is tight up to a constant factor for numerous graphs, due to the above-
mentioned result of Myers and Thomason [100], and if 2c > d0, then f(t, ct) = Θ(

√
ln(c)t).

However, the value of d0 might be extremely large. Determining the behaviour of f(t, q)
when Theorem 16 is not applicable is an interesting problem.

Reed and Wood [106] also provided the first non-trivial results here, proving a number of
inequalities of the form f(H) 6 α|V (H)|+ β|E(H)|, where α and β are explicit constants.
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In particular, they note that the minimum possible value of α in such an inequality is 1,
since f(Kt) = t − 1. Thus, focussing on minimising the value of β in such an inequality,
they prove the following two theorems.

Theorem 17 ([106]). f(t, q) 6 t+ 6.291q.

Theorem 18 ([106]). For every graph H with exactly i isolated vertices and q edges,

f(H) 6 i+ 6.929q.

In Chapter 3, we improve on these results with the following theorem.

Theorem 19 (§3.1). For every graph H with exactly i isolated vertices and q edges,

f(H) 6 i+ 5.8105q.

In terms of the function f(t, q), this implies the following corollary.

Corollary 20. f(t, q) 6 t+ 5.8112q.

It is an interesting open problem to determine the least real number α such that, for all
integers t and q, f(t, q) 6 t + αq. Csóka et al. [38], proved that for every positive integer
k, f(kK3) = 4k − 2. As Reed and Wood [106] observe, this implies that α > 1

3
, which is

the best known lower bound.
It is also interesting to ask for the least real number β such that f(H) 6 i+βq for every

graph H with exactly i isolated vertices and q edges. Since kK3 has no isolated vertices and
exactly 3k edges, the same construction shows that β > 4, which again is the best known
lower bound.

1.5 Improper Graph Colourings

Another possible approach for attacking Hadwiger’s conjecture is through weakening the
notion of colouring. An improper colouring of a graph G is simply a map from the vertex
set of G to another set, where the elements of the second set are referred to as colours.
In a (proper) graph colouring, there is the added restriction that adjacent vertices must
map to different colours, but there are several interesting varieties of improper colourings
where this restriction is in some way relaxed. We shall focus on three in particular. For
simplicity, we occasionally use “colouring” to mean improper colouring. For the remainder
of the thesis, we refer to a colouring in which no pair of adjacent vertices are assigned the
same colour as a “proper colouring”.

1.5.1 Vertex Arboricity

The first variety of improper colouring, which we shall touch on only briefly, is the notion
of vertex arboricity. A proper colouring of a graph G can be thought of as a partition of
V (G) such that each part induces an edgeless subgraph, equivalently a subgraph with no
K2-minor. One way of generalising this is to instead ask for a partition of V (G) such that
each part induces a Kt-minor-free subgraph for some larger value of t. We are interested
in the t = 3 case, but there has been much research into this topic for larger values of t
(see for example [44]). The minimum integer k such that there exist a partition of V (G)
into k sets such that each set induces a K3-minor-free subgraph (equivalently a forest), is
called the vertex arboricity of G. G is d-degenerate if every subgraph of G has a vertex
of degree at most d. Chartrand and Kronk [30] proved that every d-degenerate graph has
vertex arboricity at most dd+1

2
e. By Theorem 8, every P-minor-free graph is 9-degenerate.

Hence, we have the following result, which is best possible for P-minor-free graphs with K9

subgraphs.
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1.5. IMPROPER GRAPH COLOURINGS

Theorem 21. Every P-minor-free graph has vertex arboricity at most 5.

Other classes of graphs for which the maximum vertex arboricity is known include planar
graphs [30], locally planar graphs [141], triangle-free locally planar graphs [141], for each
k ∈ {3, 4, 5, 6, 7} the class of planar graphs with no k-cycles [68, 104], planar graphs of
diameter 2 [1], K5-minor-free graphs of diameter 2 [69], and K4,4-minor-free graphs [76].

1.5.2 Defective and Clustered Colouring

We now define defective and clustered graph colouring, which is the focus of Chapter 4.
Given an improper colouring of a graph G, the monochromatic subgraph of G is the spanning
subgraph consisting of all edges between vertices of the same colour. A monochromatic
component of G is a connected component of the monochromatic subgraph. An improper
graph colouring has defect k if each monochromatic component has maximum degree at
most k; that is, each vertex v is adjacent to at most k vertices of the same colour as v. An
improper graph colouring has clustering k if each monochromatic component has at most
k vertices. Of course, a colouring is proper if and only if it has defect 0 or clustering 1.

Defective and clustered graph colouring has been widely studied on a variety of graph
classes, including bounded maximum degree [5, 63], planar [37, 39, 52], bounded genus
[12, 31, 36, 37, 55, 157], excluding a minor [51, 53, 91, 103, 149], excluding a topological
minor [51, 103], excluding an immersion [149]. See [155] for a survey on defective and
clustered colouring.

The defective chromatic number of a graph class G is the minimum integer k such that
for some integer d, every graph in G is k-colourable with defect d. The clustered chromatic
number of a graph class G is the minimum integer k such that for some integer c, every
graph in G is k-colourable with clustering c.

For the defective chromatic number, a variant of Hadwiger’s conjecture is known to
hold, as follows.

Theorem 22 ([53]). For t > 2, the defective chromatic number of the class of Kt-minor-
free graphs equals t− 1. In particular, every Kt-minor-free graph is (t− 1)-colourable with
defect O(t2 log t).

The O(t2 log t) defect bound in Theorem 22 was improved to O(t) by Van den Heuvel
and Wood [149].

For clustered chromatic number, a proof of the analogous conjecture has been announced
by Dvořák and Norin [51], who present a proof of the first few cases: for t ∈ {2, 3, . . . , 9},
the clustered chromatic number for the class of Kt-minor-free graphs equals t − 1 [51].
Also, Kawarabayashi and Mohar[77] showed that the clustered chromatic number of the
class of Kt-minor-free graphs is O(t), resolving the Weak Hadwiger conjecture for clustered
colouring. The best published upper bound on the clustered chromatic number of the class
of Kt-minor-free graphs is now 2t− 2 [51, 149].

There is a natural way to generalise clustered and defective colouring to clustered and
defective list-colouring, and it is in this setting that we make our contributions to the field.

1.5.3 Defective Choosability

A graph G is k-choosable with defect d if G has an L-colouring with defect d for every
k-list-assignment L of G. The maximum average degree of a graph G, denoted mad(G), is
the maximum average degree of a subgraph of G. Defective choosability with respect to
maximum average degree was previously studied by Havet and Sereni [62], who proved the
following theorem.
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Theorem 23 ([62]). For d > 0 and k > 2, every graph G with mad(G) < k + kd
k+d

is
k-choosable with defect d.

We improve on Theorem 23 as follows:

Theorem 24 (§4.1). For d > 0 and k > 1, every graph G with mad(G) < 2d+2
d+2

k is
k-choosable with defect d.

Note that the two theorems are equivalent for k = 2. But for k > 3, the assumption in
Theorem 24 is weaker than the corresponding assumption in Theorem 23, thus Theorem 24
is stronger than Theorem 23.

Theorem 23 can be restated as follows: every graph G with mad(G) = m is k-choosable

with defect bk(m−k)
2k−m c+1, whereas Theorem 24 says that G is k-choosable with defect b m

2k−mc.
Both results require that 2k > m, and the minimum value of k for which either theorem is
applicable is k = bm

2
c+ 1. In this case, Theorem 24 gives a defect bound of b m

2k−mc, which

is an order of magnitude less than the defect bound of (1 + o(1)) k2

2k−m in Theorem 23. Note
that Havet and Sereni [62] gave a construction to show that no lower value of k is possible.
That is, for m ∈ R+, the defective chromatic number of the class of graphs with maximum
average degree m equals bm

2
c+ 1; also see [155].

See [18–25, 80, 81] for results about defective 2-colourings of graphs with given maximum
average degree, where each of the two colour classes has a prescribed degree bound. Also
note that Dorbec et al. [47] proved a result analogous to Theorems 23 and 24 (with weaker
bounds) for defective colouring of graphs with given maximum average degree, where in
addition, a given number of colour classes are stable sets.

1.5.4 Clustered Choosability

A graph G is k-choosable with clustering c if G has an L-colouring with clustering c for
every k-list-assignment L of G. Prior to the present work, the following theorem, due to
Kopreski and Yu [83], is the only known non-trivial result for clustered colourings of graphs
with given maximum average degree1.

Theorem 25 ([83]). Every graph G is b3
4

mad(G) + 1c-colourable with defect 1, and thus
with clustering 2.

There are no existing non-trivial results for clustered choosability of graphs with given
maximum average degree. The closest such result, due to Dvořák and Norin [51], says that
for constants α, γ, ε > 0, if a graph G has at most (k+1−γ)|V (G)| edges, and every n-vertex
subgraph of G has a balanced separator of order at most αn1−ε, then G is k-choosable with
clustering some function of α, γ and ε. Note that the number of colours here is roughly
half the average degree of G. This result determines the clustered chromatic number of
several graph classes, but for various other classes (that contain expanders) this result is
not applicable because of the requirement that every subgraph has a balanced separator.

Theorem 24 with d = 1 implies the above result of Kopreski and Yu [83] and extends it
to the setting of choosability:

Theorem 26. Every graph G is b3
4

mad(G) + 1c-choosable with defect 1, and thus with
clustering 2.

1Kopreski and Yu [83] actually proved the following stronger result: For a > 1 and b > 0, every graph
G with mad(G) < 4

3a+ b is (a+ b)-colourable, such that a colour classes have defect 1, and b colour classes
are stable sets.
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As an example of Theorem 26, it follows from Euler’s formula that toroidal graphs
have maximum average degree at most 6, implying every toroidal graph is 5-choosable with
defect 1 and clustering 2, which was first proved by Dujmović and Outioua [48]. Previously,
Cowen, Goddard and Jesurum [36] proved that every toroidal graph is 5-colourable with
defect 1.

The following two theorems are our main results for clustered choosability. The first
still has an absolute bound on the clustering, while the second has fewer colours but at the
expense of allowing the clustering to depend on the maximum average degree.

Theorem 27 (§4.4). Every graph G is b 7
10

mad(G) + 1c-choosable with clustering 9.

Theorem 28 (§4.5). Every graph G is b2
3

mad(G)+1c-choosable with clustering 57b2
3

mad(G)c+
6.

Theorem 28 says that the clustered chromatic number of the class of graphs with maxi-
mum average degree m is at most b2m

3
c+ 1. This is the best known upper bound. The best

known lower bound is bm
2
c+ 1; see [155]. Closing this gap is an intriguing open problem.

1.5.5 Generalisation

The above results generalise via the following definition. For a graph G and integer n0 > 1,
let mad(G, n0) be the maximum average degree of a subgraph of G with at least n0 vertices,
unless |V (G)| < n0, in which case mad(G, n0) := 0. The next two results generalise
Theorems 24 and 28 respectively with mad(G) replaced by mad(G, n0), where the number
of colours stays the same, and the defect or clustering bound also depends on n0.

Theorem 29 (§4.1). For integers d > 0, n0 > 1 and k > 1, every graph G with mad(G, n0) <
2d+2
d+2

k is k-choosable with defect d′ := max{dn0−1
k
e − 1, d}.

Theorem 30 (§4.5). For integers d > 0, n0 > 1 and k > 1, every graph G with mad(G, n0) <
3
2
k is k-choosable with clustering c := max{dn0−1

k
e, 57k − 51}.

Note that Theorem 29 with n0 = 1 is equivalent to Theorem 24, and Theorem 30 with
n0 = 1 and k = b2

3
mad(G)c+ 1 is equivalent to Theorem 28.

Graphs on surfaces provide motivation for this extension. The Euler genus of the
orientable surface with h handles is 2h. The Euler genus of the non-orientable surface
with k cross-caps is k. The Euler genus of G is the minimum Euler genus of a surface in
which G embeds. Graphs with Euler genus g can have average degree as high as Θ(

√
g),

the complete graph being one example. But such graphs necessarily have bounded size. In
particular, Euler’s formula implies that every n-vertex m-edge graph with Euler genus g
satisfies m < 3(n+ g). Thus, for ε > 0, if n > 6

ε
g then G has average degree 2m

n
< 6 + ε. In

particular, mad(G, 6g) < 7.
Using this observation, Theorems 29 and 30 respectively imply that graphs with bounded

Euler genus are 4-choosable with bounded defect and are 5-choosable with bounded clus-
tering. Both these results are actually weaker than known results. In particular, several
authors [12, 31, 36, 157] have proved that graphs with bounded Euler genus are 3-colourable
or 3-choosable with bounded defect. And Dvořák and Norin [51] proved that graphs with
bounded Euler genus are 4-choosable with bounded clustering. The proof of Dvořák and
Norin [51] uses the fact that graphs of bounded Euler genus have strongly sub-linear sepa-
rators. The advantage of our approach is that it works for graph classes that do not have
sub-linear separator theorems. Graphs with given g-thickness are such a class [49]. We
explore this direction in Section 4.6.
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1.5.6 Clustered Choosability and Maximum Degree

Alon et al. [5] and Haxell, Szabó and Tardos [63] studied clustered colourings of graphs
with given maximum degree. Haxell, Szabó and Tardos [63] proved that every graph with
maximum degree ∆ is d1

3
(∆ + 1)e-colourable with bounded clustering. Moreover, for some

∆0 and ε > 0, every graph with maximum degree ∆ > ∆0 is b
(

1
3
− ε
)

∆c-colourable with
bounded clustering. For both these results, the clustering bound is independent of ∆.

Clustered choosability of graphs with given maximum degree has not been studied in
the literature (as far as we are aware). As a by-product of our work for graphs with given
maximum average degree we prove the following results for clustered choosability of graphs
with given maximum degree.

Theorem 31 (§4.3). Every graph G with maximum degree ∆ > 3 is d1
3
(∆ + 2)e-choosable

with clustering d19
2

∆e − 17.

Theorem 32 (§4.4). Every graph G with maximum degree ∆ is d2
5
(∆ + 1)e-choosable with

clustering 6.

∆ = 5 is the first case in which the above results for clustered choosability are weaker
than the known results for clustered colouring. In particular, Haxell, Szabó and Tardos [63]
proved that every graph with maximum degree 5 is 2-colourable with bounded clustering,
whereas Theorems 31 and 32 only prove 3-choosability. It is open whether every graph with
maximum degree 5 is 2-choosable with bounded clustering.

1.6 Treewidth

A central concept in the area of graph minor theory is the parameter of treewidth, which
measures how tree-like a graph is. Indeed, a connected graph has treewidth 1 if and only if
it is a tree.

A tree decomposition of a graph G consists of a tree T together with a function B which
assigns each vertex t ∈ V (T ) a set B(t) of vertices of G (henceforth a bag), such that:

1) every vertex of G is in at least one bag,

2) for every edge of G there is at least one bag containing both of its endpoints,

3) for every vertex v ∈ V (G), the set of vertices of T whose bags contain v induces a
connected subgraph of T .

The width of a tree decomposition is the maximum of |B(t)|−1 for t ∈ V (T ). The treewidth
tw(G) of a graph G is the minimum width of a tree decomposition of G.

Treewidth is an extremely important concept in graph minor theory. One simple con-
nection is not too difficult to see: if H is a minor of G, then the treewidth of G is at least
the treewidth of H. In fact, for each of the three graph minor operations, modifying the
tree decomposition in a natural way suffices to show this. This means in particular that
the set of graphs with treewidth at most t forms a minor-closed class. As we have already
mentioned, this class can alternatively be defined as the set of graphs which are subgraphs
of (Kt+1, t)-cockades. This means that many of the questions we have considered for other
minor-closed classes are trivial for this class: the extremal graphs are (Kt+1, t)-cockades,
which have tn−

(
t+1

2

)
edges, and have chromatic number and choosability exactly t+ 1. In

fact, a graph has treewidth at most t if and only if it is a subgraph of a (Kt+1, t)-cockade.
In general, the exact set of excluded minors is unkown.

The relationship between graph minor theory and treewidth is stronger than this, due
to the following theorem of Robertson and Seymour [122].
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Theorem 33 ([122]). For every planar graph H, there is a number k such that every graph
G with tw(G) > k contains H as a minor.

Robertson and Seymour further note that such a number can only be found for planar
graphs, since the k × k rectangular grid has treewidth k and has no non-planar minor. As
an immediate corollary, a minor-closed class has bounded treewidth if and only if it has an
excluded minor which is planar. This result was central to the proof of Theorem 1. In fact,
Robertson and Seymour first prove Theorem 1 for bounded treewidth graphs, and then
prove it for graphs with unbounded treewidth (via the Graph Minor Structure Theorem).

In a similar vein, dividing a problem into the case of graphs with unbounded treewidth
and the case of graphs with bounded treewidth has proven to be a useful technique for other
problems in graph minor theory. For example, this was the approach used by Kawarabayashi
et al. to prove that Jørgensen’s conjecture is true for sufficiently large graphs [78, 79]. The
same approach might well work in the case of Conjecture 13.

Treewidth is an extremely useful concept in a wide range of areas (see [107] for a survey),
but our own interest in treewidth is due to its importance in graph minor theory, and its
connection to the concept of graph gonailty, which we introduce below.

1.7 Gonality

The final topic of this thesis is the notion of divisorial gonality for graphs. This concept
comes to graph theory from the field of algebraic geometry, where the gonality of a curve
is an important and well studied concept. Recently, Baker and Norin [14] developed a
framework for translating concepts from algebraic geometry to analogous concepts about
graph theory and proved an analogue of the well-known Riemann-Roch Theorem. Their
work has led to intensive and fruitful research in this area (see [7, 9, 27, 35, 72, 82] for
example). Within this framework, a concept of gonality for graphs has been defined and
studied [8, 13, 34, 41, 150, 151].

To understand what gonality is, consider the following simple chip firing game, played
on a graph G. First, assign a non-negative number of chips to each vertex. Making a
move in the game consists of selecting a non-empty subset A ⊆ V (G) and for every edge
vw ∈ E(G) with one endpoint v ∈ A and one endpoint w /∈ A, moving one chip from v to
w. In order for a move to be legal, there must be a non-negative number of chips on every
vertex after the move is performed. An initial configuration is winning if for every vertex
v ∈ V (G), it is possible to transfer a chip to v via some (possibly empty) sequence of legal
moves. The gonality of a graph G, denoted by gon(G), is defined as the minimum number
of chips required for a winning chip configuration in G.

The study of graph gonality is in part motivated by possible relationships to other graph
parameters. In a recent survey, Norin [102] discusses the potential relevance of gonality to
graph minor theory. As we have mentioned, treewidth is a central concept in graph minor
theory. Van Dobben de Bruyn and Gijswijt [151] have shown that the treewidth tw(G) of
a graph G is a lower bound for its gonality, and we know of no connected graph that has
been shown to have gonality greater than its treewidth prior to the present work. In his
survey, Norin raises the following questions.

Question 1. Is there some function f such that for every connected graph G, gon(G) 6
f(tw(G))?

Question 2. Is gon(H) 6 gon(G) for every connected graph G and every connected minor
H of G?

14
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Question 3. Is gon(H) 6 gon(G) for every connected graph G and every connected sub-
graph H of G?

In Section 5.2 we answer Question 1 in the negative, proving the following stronger
result.

Theorem 34 (§5.2). For all integers k > 2 and l > k, there exists a k-connected graph G
with tw(G) = k and gon(G) > l.

In terms of relating connectivity, treewidth and gonality, this result is best possible,
as we discuss in Section 5.2. We also show that the answer to Question 2 is “no”, by
considering a special class of graphs of treewidth 2 known as fans, consisting of graphs
constructed by adding a universal vertex to a path. We precisely determine the gonality of
all fans, and in so doing prove that gonality is unbounded on this class. In Section 5.3, we
present a class of graphs that has unbounded gonality, while each is a subgraph of some
connected graph of gonality 2, thus answering Question 3 in the negative. However, in the
special case where the subgraph H has a universal vertex, we show in Section 5.2 that the
answer to Question 3 is “yes”.

1.8 Standard Definitions

All graphs in this thesis are simple, finite and undirected unless otherwise specified. The
components of a graph G are the maximal connected subgraphs of G. For S ⊆ V (G),
the graph G − S is the graph obtained from G by deleting every vertex in S. The graph
G[S] := G− (V (G) \ S) is the subgraph of G induced by S. If G[S] is a complete graph, S
is a clique. If S ⊆ E(G), the graph G− S is the graph with vertex set V (G) and edge set
E(G) \ S. For simplicity, we write G− x for G− {x}. For any subgraph H of G, we write
G−H for G− V (H).

For each vertex v ∈ V (G), the set NG(v) := {w ∈ V (G) : vw ∈ E(G)} is the neigh-
bourhood of v, and NG[v] := {v} ∪ NG(v) is the closed neighbourhood. Similarly, for each
subgraph C of G, the set NG(C) is the set of vertices in G − C that are adjacent in G to
some vertex of C, and NG[C] := V (C) ∪ NG(C). When there is no ambiguity, we write
N(v), N [v], N(C) and N [C] respectively for NG(v), NG[v], NG(C) and NG[C]. A vertex v
is universal in G if NG[v] = V (G), and isolated if NG(v) = ∅.

For a subset A ⊆ V (G) and vertex v ∈ V (G), let NA(v) := NG(v) ∩ A and degA(v) :=
|NA(v)|. We sometimes refer to |V (G)| as |G|.

The operation of contracting the edge vw ∈ E(G) consists of deleting v and w and
adding a new vertex adjacent to (NG(v) ∪NG(w)) \ {v, w}. We denote the graph obtained
from G by contracting an edge e by G/e, and the graph obtained by contracting each of a
set S of edges by G/S. A graph H is a minor of a graph G if a graph isomorphic to H can
be obtained from some subgraph of G by contracting edges, and G is H-minor-free if H is
not a minor of G.

Given a graph H, the operation of subdividing an edge consists of deleting the edge and
replacing it with a new subdivision vertex, whose neighbours are the endpoints of the deleted
edge. A graph H ′ is a subdivision of H if it is obtained from H through a sequence of edge
subdivisions. H is a topological minor of a graph G if some subgraph of G is isomorphic to
a subdivision of H.

For a positive integer k, G is k-connected if |V (G)| > k and for every subset S ⊆ V (G)
of size less than k, G − S is connected. We denote by δ(G), a(G) and ∆(G) respectively
the minimum degree, the average degree and the maximum degree of G. For convenience,
we define all three of these values to be 0 for the graph with no vertices. We denote by
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G∪̇H the disjoint union of two graphs G and H, and by kG the disjoint union of k copies
of G. We denote by G+H the graph formed from G∪̇H by adding an edge between every
vertex of H and every vertex of G. For every positive integer t, [t] is the set {1, 2, . . . , t},
and [0] := ∅.

Given a colouring, the monochromatic subgraph of G is the spanning subgraph consisting
of those edges whose endpoints have the same colour. The defect of a vertex is its degree
in the monochromatic subgraph. Note that a colouring of defect k is also a colouring of
defect k + 1, but a vertex of defect k in a coloured graph is not a vertex of defect k + 1.

G is k-choosable with defect d if G has an L-colouring with defect d for every k-list-
assignment L of G. Similarly, G is k-choosable with clustering c if G has an L-colouring
with clustering c for every k-list-assignment L of G.

1.9 Folklore

For completeness, we now provide proofs of two well known results appealed to previously
in this chapter.

Lemma 6. Let H be a graph such that exm(n,H) < cn for some positive integer c. Then
every H-minor-free graph is 2c-choosable, and if |V (H)| 6 2c then every H-minor-free
graph is (2c− 1)-colourable.

Proof. Let G be an n-vertex H-minor-free graph, and let l be a 2c-list assignment for G.
We proceed by induction on n. The base case with n 6 2c − 1 is trivial. For n > 2c,
|E(G)| < c|V (G)|, implying G has average degree less than 2c. Thus G has a vertex v of
degree at most 2c− 1. By induction, G− v is lG−v-colourable, where lG−v is the restriction
of l to G − v. Some colour in l(v) is not used on the neighbours of v, and this colour can
be assigned to v. Hence G is 2c-choosable.

It remains to prove that G is (2c−1)-colourable under the assumption that |V (H)| 6 2c.
First suppose that deg(v) 6 2c−2. By induction, G−v is (2c−1)-colourable. Some colour is
not used on the neighbours of v, which can be assigned to v. Hence G is (2c−1)-colourable.
Now assume that deg(v) = 2c− 1. There is some pair of non-adjacent vertices x and y in
N(v), as otherwise G contains K2c and hence H (since |V (H)| 6 2c). Let G′ be the graph
obtained from G by contracting the edges vx and vy into a new vertex z. By induction,
G′ is (2c − 1)-colourable. Colour each vertex of G − {v, x, y} by the colour assigned to
the corresponding vertex in G′. Colour x and y by the colour assigned to z. Since every
vertex adjacent to x or y in G − v is adjacent to z in G′, this defines a (2c − 1)-colouring
of G − v. Now v has 2c − 1 neighbours, two of which have the same colour. Thus there
is an unused colour on the neighbours of v, which can be assigned to v. Therefore G is
(2c− 1)-colourable.

Lemma 7. For every (t + 1)-connected graph H and every H-minor-free graph G0, every
(G0, t)-cockade is H-minor-free.

Proof. Let G be a (G0, t)-cockade. We proceed by induction on |V (G)| + |E(G)|. By
assumption, G0 is H-minor-free. Assume that there are (G0, t)-cockades G1 and G2 distinct
from G such that G1∪G2 = G and G1∩G2

∼= Kt. Note that G1 and G2 are proper subgraphs
of G, and hence by induction are H-minor-free. Suppose for contradiction that G contains
an H-minor. Then there is a set of pairwise disjoint connected subgraphs of G such that
if every edge inside one of these subgraphs is contracted and every vertex not in one of
these subgraphs is deleted, then the graph obtained is a supergraph H ′ of H such that
|V (H ′)| = |V (H)|. Each of these subgraphs will contract down to a separate vertex, so
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we call these subgraphs prevertices. There are exactly t vertices in G1 ∩ G2, so the set
S of prevertices that intersect G1 ∩ G2 has size at most t. Since H is (t + 1)-connected,
each prevertex not in S is in the same connected component of G − S. Without loss of
generality, each prevertex not in S is a subgraph of G1. Now, there is no path of G between
two non-adjacent vertices of G1 that is internally disjoint from G1. Hence, by deleting
every vertex of G2 \ G1 and then contracting the remaining edges of the prevertices and
deleting the remaining vertices that are not in any prevertex, we obtain H ′, contradicting
the assumption the G1 contains no H-minor.

17



Chapter 2

Petersen Minors

2.1 Overview

In this chapter we determine the extremal function for Petersen graph minors. Recall that
P is the Petersen graph (see Figure 2), and that exm(n,P) is the maximum number of
edges in an n-vertex P-minor-free graph. Our main result is the following.

Theorem 8.

exm(n,P) =


(
n
2

)
if n 6 9,

5n− 14 if n ∈ {11, 12},
5n− 9 if n ≡ 2 (mod 7),

5n− 12 otherwise.

For n ≡ 2 (mod 7), we in fact completely characterise the extremal graphs which are
within two edges of extremal.

Theorem 10. Every graph with n > 3 vertices and m > 5n− 11 edges contains a Petersen
minor or is a (K9, 2)-cockade minus at most two edges.

The bulk of this chapter (Section 2.2), concerns the proof of Theorem 10, which is
the main element of the proof of Theorem 8. Theorem 10 is also used in the proof of
Theorem 11 in Section 2.3, and Theorems 10 and 11 together suffice to prove Theorem 8
for all but finitely many values of n. The final element of the proof of Theorem 8 is a
computational result, Lemma 36, which we also appeal to in the proof of Theorem 10.

2.2 Proof of Theorem 10

We now sketch the proof of Theorem 10. Assume to the contrary that there is some
counterexample to Theorem 10, and select a minor-minimal counterexample G. Define
L to be the set of vertices v of G such that deg(v) 6 9 and there is no vertex u with
N [u] ( N [v]. For a vertex v ∈ V (G), a subgraph H ⊆ G is v-suitable if it is a component
of G−N [v] that contains some vertex of L.

Section 2.2.1 shows some elementary results that are used throughout the other sections.
In particular, it shows that δ(G) ∈ {6, 7, 8, 9}, and hence that L 6= ∅. Sections 2.2.2
and 2.2.3 respectively show that that no vertex of G has degree 7 and that no vertex of
G has degree 8. Sections 2.2.4 and 2.2.5 show that for every v ∈ L with degree 6 or 9
respectively there is some v-suitable subgraph, and that for each v ∈ L with degree 6 or 9
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2.2. PROOF OF THEOREM 10

and every v-suitable subgraph C of G there is some v-suitable subgraph C ′ of G such that
N(C ′) \N(C) 6= ∅.

Pick u ∈ L and a u-suitable subgraph H of G such that |V (H)| is minimised. By the
definition of u-suitable, there is some v ∈ L ∩ V (H). Let C be a v-suitable subgraph of
G containing u, and let C ′ be a v-suitable subgraph of G such that N(C ′) \ N(C) 6= ∅.
Section 2.2.6 shows that C ′ selected in this way is a proper subgraph of H, contradicting
our choice of H.

The basic idea of our proof is similar to proofs used for example in [143] and [2], with the
major points of difference conceptually being the use of skeletons, defined in Section 2.2.1,
to rule out certain configurations, and the proof in Section 2.2.1 that the minimal coun-
terexample is 4-connected.

We use the following notation throughout the proof. For i ∈ N, we denote by Vi(G) the
set of vertices in G with degree i, and by V>i(G) the set of vertices of G of degree at least
i.

For a tree T and v, w ∈ V (T ), let vTw be the path in T from v to w. A vertex of
T is high degree if it is in V>3(T ). For a path P with endpoints x and y, int(P ) := xy if
E(P ) = {xy} and int(P ) := V (P ) \ {x, y} otherwise.

A subset S of V (G) is a fragment if G[S] is connected. Distinct fragments X and Y are
adjacent if some vertex in X is adjacent to some vertex in Y .

2.2.1 Basic Results

To prove Theorem 10, suppose for contradiction that G is a minor-minimal counterexample
to Theorem 10. That is, G is a graph with the following properties:

(i) |V (G)| > 3,

(ii) |E(G)| > 5|V (G)| − 11,

(iii) G is not a spanning subgraph of a (K9, 2)-cockade,

(iv) P is not a minor of G,

(v) Every proper minor H of G with at least three vertices satisfies |E(H)| 6 5|V (H)|−12
or is a spanning subgraph of a (K9, 2)-cockade.

If H is a (K9, 2)-cockade or K2, then |E(H)| = 5|V (H)| − 9. Hence, (v) immediately
implies:

(vi) Every proper minor H of G with at least two vertices satisfies |E(H)| 6 5|V (H)|− 9.

Lemma 10.1. G has at least 10 vertices.

Proof. Since 5n − 11 >
(
n
2

)
for n ∈ {3, 4, . . . , 8}, every graph satisfying (i) and (ii) has at

least 9 vertices. Every 9-vertex graph is a spanning subgraph of a (K9, 2)-cockade.

A separation of a graph H is a pair (A,B) of subsets of V (H) such that both A \B and
B \ A are non-empty and H = H[A] ∪H[B]. The order of a separation (A,B) is |A ∩ B|.
A k-separation is a separation of order k. A (6 k)-separation is a separation of order at
most k. A graph is k-connected if it has at least k + 1 vertices and no separation of order
less than k.

Let x, y and z be distinct vertices of a graph H. A K3-minor rooted at {x, y, z} is a
set of three pairwise-disjoint, pairwise-adjacent fragments {X, Y, Z} of H such that x ∈ X,
y ∈ Y , z ∈ Z. The following lemma is well known and has been proved, for example, by
Wood and Linusson [156].
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2.2. PROOF OF THEOREM 10

Lemma 10.2. Let x, y and z be distinct vertices of a graph H. There is a K3-minor of
H rooted at {x, y, z} if and only if there is no vertex v ∈ V (H) for which the vertices in
{x, y, z} \ {v} are in distinct components of H − v.

Lemma 10.3. G is 4-connected.

Proof. By Lemma 10.1, |V (G)| > 10. Suppose for contradiction that there is a (6 3)-
separation (A,B) of G. Note that A \B and B \A are both non-empty by definition. We
separate into cases based on |A∩B| and on whether |A \B| is a singleton. Note that while
Case 1 is redundant, it is useful to know that Case 1 does not hold when proving that
Cases 2 and 4 do not hold.

Case 1. There is a (6 3)-separation (A,B) of G such that |A \B| = {v}:

By Lemma 10.1, |B| > 9. Now by (vi) we have

|E(G)| 6 |E(G[B])|+ deg(v) 6 5(|V (G)| − 1)− 9 + 3 = 5|V (G)| − 11.

By (ii), equality holds throughout. In particular deg(v) = 3 and |E(G[B])| = 5|B| − 9 so
G[B] is a (K9, 2)-cockade by (v). For every edge e incident to v, we have E(G/e) = E(G[B])
by (vi). Hence, |A ∩ B| is a clique, and is therefore contained in a subgraph H ∼= K9 of
G[B]. Then P ⊆ H ∪G[A] ⊆ G contradicting (iv).

Case 2. There is a (6 1)-separation (A,B) of G:

If either |A \ B| = 1 or |B \ A| = 1 then we are in Case 1. Otherwise, |A| > 2 and
|B| > 2, so by (v) we have |E(G[A])| 6 5|A| − 9, with equality if and only if G[A] ∼= K2 or
G[A] is a (K9, 2)-cockade, and the same for B. Now

|E(G)| = |E(G[A])|+ |E(G[B])| 6 5(|V (G)|+ 1)− 9− 9 = 5|V (G)| − 13,

contradicting (ii).

Case 3. There is a 2-separation (A,B) of G:

If there is a component C of G − (A ∩ B) such that N(C) 6= A ∩ B, then G has a
(6 1)-separation, and we are in Case 2. Otherwise, let CB be a component of G − A
and let GA be the graph obtained from G by contracting G[N [CB]] down to a copy of K2

rooted at A ∩ B and deleting all other vertices of B. Let GB be defined analogously. If
|E(GA)| 6 5|A| − 12, then

|E(G)| 6 |E(GA)|+ |E(GB)| − 1 6 5(|V (G)|+ 2)− 12− 9− 1 = 5|V (G)| − 12,

contradicting (ii). Hence, |E(GA)| > 5|A| − 11, and by (v), GA is a spanning subgraph
of a (K9, 2)-cockade HA. By symmetry, GB is a spanning subgraph of a (K9, 2)-cockade
HB. Then G is a spanning subgraph of the (K9, 2)-cockade formed by gluing HA and HB

together on A ∩B, contradicting (iii).

Case 4. There is a 3-separation (A,B) of G:

First, suppose that G[A] does not contain a K3 minor rooted at A ∩ B. Then there
exists a vertex v such that the vertices in A ∩ B are in distinct components of G[A] − v
by Lemma 10.2. Recall that |A \ B| > 1, so there is a vertex w 6= v in A \ B. Let C be
the component of G[A] − v containing w. Then there is a (6 2)-separation (A′, B′) of G
where A′ \ B′ = V (C) \ (A ∩ B), so we are in either Case 2 or Case 3. Hence, there is a
K3 minor of G[A] rooted at A ∩B, and by the same argument a K3 minor of G[B] rooted
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at A ∩ B. Let GA be obtained from G by contracting G[B] down to a triangle on A ∩ B,
and let GB be obtained from G by contracting G[A] down to a triangle on A∩B. Suppose
|E(GA)| > 5|A| − 11. Since G satisfies (v), we have that GA is a spanning subgraph of a
(K9, 2)-cockade, and so GA is a (K9, 2)-cockade minus at most two edges. Since A∩B is a
clique of GA, there is some set S of nine vertices in A, containing A∩B, such that GA[S] is
K9 minus at most two edges. Let C be a component of G−A, and note that N(C) = A∩B,
or else we are in Case 2 or Case 3. Now it is quick to check that the graph obtained from
G[S ∪ V (C)] by contracting C to a single vertex contains P as a subgraph, contradicting
(iv). Hence, |E(GA)| 6 5|A| − 12, and by symmetry |E(GB)| 6 5|B| − 12. Now

|E(G)| 6 |E(GA)|+ |E(GB)| − 3 6 5(|V (G)|+ 3)− 12− 12− 3 = 5|V (G)| − 12,

contradicting (ii).

Lemma 10.4. δ(G) ∈ {6, 7, 8, 9} and every edge is in at least five triangles.

Proof. Suppose for contradiction that some edge vw is in t triangles with t 6 4. Now

|E(G/vw)| > |E(G)| − t− 1 > 5|V (G)| − 12− t > 5|V (G/e)| − 11.

SinceG satisfies (v), G/vw is a spanning subgraph of some (K9, 2)-cockadeH. By Lemma 10.3,
G is 4-connected, which implies G/vw is 3-connected, so G/vw is K9 minus at most two
edges. It follows from (ii) that G is a 10-vertex graph with at most six non-edges, and so
P ⊆ G by Lemma 36 (a) (this is the only reference to Lemma 36 in the proof of Theorem 10).

Hence, every edge of G is in at least five triangles. By Lemma 10.3, G has no isolated
vertex, and δ(G) > 6.

Let e be an edge of G. By (vi), |E(G − e)| 6 5|V (G)| − 9, so |E(G)| 6 5|V (G)| − 8,
and hence δ(G) 6 9.

Recall that L is the set of vertices v of G such that deg(v) 6 9 and there is no vertex u
with N [u] ( N [v]. By Lemma 10.4, every vertex of minimum degree is in L, and L 6= ∅.

The following result is the tool we use for finding v-suitable subgraphs.

Lemma 10.5. If (A,B) is a separation of G of order k 6 6 such that there is a vertex
v ∈ B \ A with A ∩B ⊆ N(v), then there is some vertex u ∈ (A \B) ∩ L.

Proof. We may assume that every vertex in A ∩B has a neighbour in A \B.
Let u be a vertex in A\B with minimum degree in G. Suppose for a contradiction that

degG(u) > 10. It follows that every vertex in A \B has degree at least 10 in G[A]. Hence,
G[A] has at most six vertices of degree less than 10, so G[A] is not a spanning subgraph of
a (K9, 2)-cockade. Now |A| > |N [u]| > 11, so by (v),∑
w∈A∩B

degG[A](w) = 2|E(G[A])| −
∑

w∈A\B

degG[A](w) 6 2(5|A| − 12)− 10|A \B| = 10k − 24.

(2.1)
Let X be the set of edges of G with one endpoint in A∩B and the other endpoint in A\B.
It follows from Lemma 10.3 that there are a pair of disjoint edges e1 and e2 in X, since
deleting the endpoints of an edge e1 ∈ X from G does not leave a disconnected graph and
|A \ B| > |N [u]| − k > 5. By Lemma 10.4, e1 is in at least five triangles. Each of these
triangles contains some edge in X \ {e1, e2}, so |X| > 7. By (2.1),

δ(G[A ∩B]) 6
1

k

∑
w∈A∩B

degG[A∩B](w) =
1

k

(( ∑
w∈A∩B

degG[A](w)

)
− |X|

)
6

1

k
(10k − 31).

21



2.2. PROOF OF THEOREM 10

Since k 6 6, some vertex x ∈ A ∩ B has degree at most 4 in G[A ∩ B]. Let G′ :=
G[A ∪ {v}]/vx. Then |E(G′)| > |E(G[A])| + (k − 5). Recall that every vertex in A \ B
has degree at least 10 in G[A]. Further, every vertex in A ∩ B is incident with some
edge in X, and hence has at least six neighbours in A by Lemma 10.4. Hence |E(G′)| >
1
2
(10|A \ B| + 6k) + (k − 5) > 1

2
(10|A| − 4k) + k − 5 > 5|A| − 11. Then G′ is a spanning

subgraph of a (K9, 2)-cockade by (v), and so G[A] is a spanning subgraph of a (K9, 2)-
cockade, a contradiction.

Hence, degG(u) 6 9. Suppose for contradiction that N [w] ( N [u] for some vertex w.
Then w ∈ N(u) and degG(w) < degG(u), so w ∈ A ∩ B. But N [w] ⊆ N [u], so w /∈ N(v),
which contradicts the assumption that A ∩B ⊆ N(v). Therefore u ∈ L, as required.

For an induced subgraph H of G, a subtree T of G[N [H]] is a skeleton of H if V1(T ) =
N(H).

Lemma 10.6. Let S be a fragment of G, let T be a skeleton of G[S], and let v and w be
distinct vertices of T . If vw /∈ E(T ) and T 6= vTw, then there is a path P of G[N [S]]−{v, w}
from vTw to T − vTw with no internal vertex in T .

Proof. G−{v, w} is connected by Lemma 10.3, so there is a path in G−{v, w} from vTw
to T − vTw. Let P be a vertex-minimal example of such a path with endpoints x in vTw
and y in T − vTw.

Suppose to the contrary that there is some internal vertex z of P in T . Then either
z is in vTw and the subpath of P from z to y contradicts the minimality of P , or z is in
T − vTw and the subpath of P from x to z contradicts the minimality of P .

Suppose to the contrary that there is some vertex z in P −N [S]. The subpath P ′ of P
from x to z has one end in S and one end in G−N [S], so there is some internal vertex z′ of
P ′ in N(S). But N(S) ⊆ V (T ), so z′ is an internal vertex of P in T , a contradiction.

Lemma 10.7. If (A,B) is a separation of G such that N(A \ B) = A ∩ B, |A \ B| > 2
and G[A \B] is connected, then there is a skeleton of G[A \B] with at least two high degree
vertices.

Proof. There is at least one subtree of G[A] in which every vertex of A ∩B is a leaf, since
we can obtain such a tree by taking a spanning subtree of G[A \B] and adding the vertices
in A∩B and, for each vertex in A∩B, exactly one edge e ∈ E(G) between that vertex and
some vertex of A\B. We can therefore select T a subtree of G[A] such that A∩B ⊆ V1(T )
and such that there is no proper subtree T ′ of T such that A ∩ B ⊆ V1(T ′). There is
no vertex v in V1(T ) \ B, since for any such vertex T − v is a proper subtree of T and
A ∩ B ⊆ V1(T − v), a contradiction. Hence, V1(T ) = A ∩ B. If |V>3(T )| > 2 then we are
done, so we may assume there is a unique vertex w in V>3(T ).

Suppose that for some x ∈ A ∩ B there is some vertex in int(xTw). By Lemma 10.6,
there is a path P of G[A]−{x,w} from xTw to T −xTw with no internal vertex in T . Let y
be the endpoint of P in xTw and let z be the other endpoint. Then T ′ := (T∪P )−int(zTw)
is a skeleton of G[A \B] that has a vertex of degree exactly 3. Since |V1(T ′)| = |A∩B| > 4
by Lemma 10.3, T ′ has at least two high degree vertices, (namely y and w).

Suppose instead that V (T ) = {w} ∪ (A ∩ B). By Lemma 10.3 G is 4-connected, so
(A \ B,B ∪ {w}) is not a separation of G, so there is some vertex y in A \ (B ∪ {w})
adjacent to some vertex x in A ∩ B. Let P1 be a minimal length path from y to A ∩ B
in G − {x,w} (and hence in G[A] − {x,w}), and let z be the endpoint of P1 in A ∩ B.
Let P ′1 be the path formed by adding the vertex x and the edge xy to P1. Since G[A \ B]
is connected, we can select a minimal length path P2 of G[A \ B] from P1 to w. Then
(T ∪P ′1 ∪P2)−{xw, zw} is a skeleton of G[A \B] that has a degree 3 vertex, and therefore
at least two high degree vertices, (namely the endpoints of P2).
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2.2. PROOF OF THEOREM 10

For any graph H a table of H is an ordered 6-tuple X := (X1, . . . , X6) of pairwise
disjoint fragments of H such that X5 is adjacent to X1, X2 and X6, and X6 adjacent to X3

and X4. For any subset S of V (H), X is rooted at S if |Xi ∩ S| = 1 for i ∈ {1, 2, 3, 4} and
X5 ∩ S = X6 ∩ S = ∅.

Lemma 10.8. If (A,B) is a separation of G such that N(A \ B) = A ∩ B, |A ∩ B| > 4,
|A \B| > 2 and G[A \B] is connected, then there is a table of G[A] rooted at A ∩B.

Proof. By Lemma 10.7, there is some skeleton T of G[A \ B] such that |V>3(T )| > 2. Let
w and x be distinct vertices in V>3(T ). Let w1, w2 and w′ be three neighbours of w in T ,
and let x′, x3 and x4 be three neighbours of x in T , labelled so that w′ and x′ are both in
V (xTw). For i ∈ {1, 2} let Xi be the vertex set of a path from wi to a leaf of T in the
component subtree of T − w that contains wi, and for i ∈ {3, 4} let Xi be the vertex set
of a path from xi to a leaf of T in the component subtree of T − x that contains xi. Since
V1(T ) = A ∩ B, |Xi ∩ B| = 1 for i ∈ {1, 2, 3, 4}. Let X5 := V (wTx′) and let X6 := {x}.
Then X := (X1, . . . , X6) satisfies our claim.

2.2.2 Degree 7 Vertices

In this section we show that V7(G) = ∅.

Claim 10.9. If v ∈ V7(G), then there is no isolated vertex in G−N [v].

Proof. Suppose for contradiction that there is some isolated vertex u in G − N [v]. By
Lemma 10.4, |N(u)| > 6. By Lemma 10.1, there is some component C of G − N [v] not
containing u. Since |N(C)| > 4 by Lemma 10.3 and |N(u) ∪ N(C)| 6 |N(v)| = 7, there
is some vertex v1 in N(u) ∩ N(C). Let v1, v2 and v3 be distinct vertices in N(C), and
let v4 and v5 be distinct vertices in N(u) \ {v1, v2, v3}. Let v6 and v7 be the remaining
vertices of N(v). By Lemma 10.4, for i ∈ {1, 2, . . . , 7}, N(vi) ∩ N(v) > 5. If some vertex
in {v2, v3}, say v2, is not adjacent to some vertex in {v4, v5}, say v5, then v2 and v5 are
both adjacent to every other vertex in N(v), and in particular v2v4 and v3v5 are edges in G.
Hence, there are two disjoint edges between {v2, v3} and {v4, v5}. Without loss of generality,
{v2v4, v3v5} ⊆ E(G). We now consider two cases depending on whether v6v7 ∈ E(G).

Case 1. v6v7 ∈ E(G):

Since v1 is adjacent to all but at most one of the other neighbours of v, either v1v6 ∈ E(G)
or v1v7 ∈ E(G), so without loss of generality v1v6 ∈ E(G). Since v7 is adjacent to all but at
most one of the other neighbours of v, either {v7v2, v7v5} ⊆ E(G) or {v7v3, v7v4} ⊆ E(G),
so without loss of generality {v7v2, v7v5} ⊆ E(G). Let G′ be obtained from G by contracting
C to a single vertex. Then P ⊆ G′ (see Figure 3a), contradicting (iv).

Case 2. v6v7 /∈ E(G):

Then v6 and v7 are both adjacent to every other neighbour of v. Let G′ be obtained
from G by contracting C to a single vertex. Then P ⊆ G′ (see Figure 3b), contradicting
(iv).

The following is the main result of this section.

Lemma 10.10. V7(G) = ∅.
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2.2. PROOF OF THEOREM 10

a)

C

v1

uv4

v2 v3
v6

v5v

v7

b)

C

v1

uv4

v2 v3
v

v5v6

v7

c)

v

X4

X6X5

X1 v5
v7

X3X2

v6

Figure 3

Proof. Suppose for contradiction that there is some vertex v ∈ V7(G). By Lemma 10.1,
there is a non-empty component C of G − N [v]. By Lemma 10.3, |N(C)| > 4 and by
Claim 10.9, |V (C)| > 2. Hence, by Lemma 10.8 with A := N [C] and B := V (G−C), there
is a table X := (X1, . . . , X6) of G[N [C]] rooted at N(C).

Let {v1, . . . , v7} := N(v), with vi ∈ Xi for i ∈ {1, 2, 3, 4}. By Lemma 10.4, |N(vi) ∩
N(v)| > 5 for i ∈ {1, 2, . . . , 7}. We consider two cases depending on whether v5v6v7 is a
triangle of G.

Case 1. v5v6v7 is a triangle of G:

Let Q be the bipartite graph with bipartition V := {v1, v2, v3, v4}, W := {v5, v6, v7} and
E(Q) := {xy : xy /∈ E(G), x ∈ V, y ∈ W}. Then ∆(Q) 6 1, so without loss of generality
E(Q) ⊆ {v1v5, v2v6, v3v7}. Let G′ be obtained from G by contracting G[Xi] to a single
vertex for each i ∈ {1, 2, . . . , 6}. Then P ⊆ G′ (see Figure 3c), contradicting (iv).

Case 2. v5v6v7 is not a triangle of G:

We may assume without loss of generality that v5v6 /∈ E(G). Then v5 and v6 are both
adjacent to every other neighbour of v. At most one neighbour of v is not adjacent to v7,
so v7 has some neighbour in {v1, v2}, say v2, and some neighbour in {v3, v4}, say v4. Let G′

be obtained from G by contracting G[Xi] to a single vertex for each i ∈ {1, 2, . . . , 7}. Then
P ⊆ G′ (see Figure 3c), contradicting (iv).

2.2.3 Degree 8 Vertices

We now prove that V8(G) = ∅. Note that the following lemma applies to any graph, not
just G. This means we can apply it to minors of G, which we do in Claims 10.20 and 10.22.

Claim 10.11. If H is a graph that contains a vertex v such that deg(v) = 8, |N(v′) ∩
N(v)| > 5 for all v′ ∈ N(v), and C is a component of H \N [v] with |NH(C)| > 3, then P
is a minor of H unless all of the following conditions hold:

1. K3 is an induced subgraph of H[N(v) \N(C)],

2. C4 is an induced subgraph of H[N(v)],

3. H[N(C)] ∼= K3.

Proof. By assumption, δ(H[N(v)]) > 5. Let H ′ be an edge-minimal spanning subgraph of
H[N(v)] such that δ(H ′) > 5. Every edge e in H ′ is incident to some vertex of degree 5,
since otherwise δ(H ′ − e) > 5, contradicting the minimality of H ′. Hence, the vertices of
degree at most 1 in H ′ form a clique in H ′. Now ∆(H) 6 2, since |V (H ′)| = deg(v) = 8
and δ(H ′) > 5. It follows that H ′ is the disjoint union of some number of cycles, all on
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2.2. PROOF OF THEOREM 10

at least three vertices, and a complete graph on at most two vertices. Let x, y and z be
three vertices in N(C), and let 1, 2, . . . , 5 be the remaining vertices of N(v). Colour x, y,
and z white and colour 1, 2, . . . , 5 black. In Table 4 we examine every possible graph H ′,
up to colour preserving isomorphism. We use cycle notation to label the graphs, with an
ordered pair representing an edge and a singleton representing an isolated vertex. In each
case we find P as a subgraph of the graph G′ obtained from G by contracting C to a single
vertex, except in the unique case where K3 is an induced subgraph of H ′ − {x, y, z}, C4 is
an induced subgraph of H ′ and {x, y, z} is an independent set of vertices in H ′.

Table 4

x
y

z

1
2

3

4

5

C

z

v1

x y
5

43

2

x
y

1

z
2

3

4

5

C

z

v1

x y
5

43

2

(wwwbbbbb) (wwbwbbbb)

x
y

1

2
z

3

4

5

C

z

v1

x y
5

43

2

x
1

y

2
z

3

4

5

C

z

12

x y
v

54

3

(wwbbwbbb) (wbwbwbbb)

x
1

y

2
3

z

4

5

C

z

13

x y
2

54

v

x
y

z

1
2

3

4

5

C

z

v1

x y
5

43

2

(wbwbbwbb) (wwwbbbb)(b)

x
y

1

z
2

3

4

5

C

z

v1

x y
5

43

2

x
y

1

2
z

3

4

5

C

z

v1

x y
5

43

2

(wwbwbbb)(b) (wwbbwbb)(b)
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Table 4 (continued)

x
y

1

2
3

4

5

z

C

z

v1

x y
5

43

2

x
1

y

2
z

3

4

5

C

z

1v

x y
5

43

2

(wwbbbbb)(w) (wbwbwbb)(b)

x
1

y

2
3

4

5

z

C

z

1v

x y
5

43

2

x
1

2

y
3

4

5

z

C

z

v3

x y
5

41

2

(wbwbbbb)(w) (wbbwbbb)(w)

x
y

z

1
2

3

4

5

C

z

3v

x y
5

41

2

x
y

1

z
2

3

4

5

C

z

31

x y
5

4v

2

(wwwbbb)(bb) (wwbwbb)(bb)

x
y

1

2
3

4

z

5

C

z

31

x y
4

5v

2

x
1

y

2
z

3

4

5

C

z

1v

x y
4

53

2

(wwbbbb)(wb) (wbwbwb)(bb)

x
1

y

2
3

4

z

5

C

z

13

x y
4

5v

2

x
1

2

y
3

4

z

5

C

z

13

x y
4

5v

2

(wbwbbb)(wb) (wbbwbb)(wb)
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Table 4 (continued)

x
1

2

3
4

5

y

z

C

z

13

x y
4

5v

2

x
y

z

1
2

3

4

5

C

z

23

x y
4

5v

1

(wbbbbb)(ww) (wwwbb)(bbb)

x
y

1

z
2

3

4

5

C

z

v3

x y
4

52

1

x
y

1

2
3

z

4

5

C

z

15

x y
2

3v

4

(wwbwb)(bbb) (wwbbb)(wbb)

x
1

y

2
3

z

4

5

C

z

15

x y
2

3v

4

x
1

2

3
4

y

z

5

C

z

15

x y
2

34

v

(wbwbb)(wbb) (wbbbb)(wwb)

1
2

3

4
5

x

y

z

C

z

1v

x y
2

34

5

x
y

z

1
2

3

4

5

C

z

35

x y
2

1v

4

(bbbbb)(www) (wwwb)(bbbb)

x
y

1

2
z

3

4

5

C

z

15

x y
2

v3

4

x
1

y

2
z

3

4

5

C

z

15

x y
2

v3

4

(wwbb)(wbbb) (wbwb)(wbbb)
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Table 4 (continued)

x
y

z

1
2

3

4

5

C

z

35

x y
v

12

4

x
y

1

2
z

3

4

5

C

z

v3

x y
1

25

4

(wwwb)(bbb)(b) (wwbb)(wbb)(b)

x
y

1

2
3

4

5

z

C

z

3v

x y
1

25

4

x
1

y

2
z

3

4

5

C

z

23

x y
1

5v

4

(wwbb)(bbb)(w) (wbwb)(wbb)(b)

x
1

y

2
3

4

5

z

1., 2. and 3. hold.

x
1

2

3
y

z

4

5

C

z

2v

x y
1

53

4

(wbwb)(bbb)(w) (wbbb)(wwb)(b)

x
1

2

3
y

4

5

z

C

z

25

x y
1

v3

4

1
2

3

4
x

y

z

5

C

z

25

x y
1

43

v

(wbbb)(wbb)(w) (bbbb)(www)(b)

1
2

3

4
x

y

5

z

C

z

v1

x y
5

23

4

x
y

z

1
2

3

4

5

C

z

v1

x y
3

25

4

(bbbb)(wwb)(w) (www)(bbb)(bb)
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Table 4 (continued)

x
y

1

z
2

3

4

5

C

z

v5

x y
1

23

4

x
y

1

2
3

4

z

5

C

z

25

x y
1

v3

4

(wwb)(wbb)(bb) (wwb)(bbb)(wb)

x
1

2

y
3

4

z

5

C

z

35

x y
1

2v

4

x
1

2

3
4

5

y

z

C

z

5v

x y
1

23

4

(wbb)(wbb)(wb) (wbb)(bbb)(ww)

It follows that if N(C) = {x, y, z}, then the claim holds. Suppose to the contrary that
P is not a minor of H and |N(C)| > 4. As Table 4 shows, H ′ contains both K3 and C4 as
induced subgraphs. Since ∆(H ′) 6 2, no vertex of H ′ is in more than one cycle, so there is a
unique triangle in H ′. For any subset S ⊆ N(C) of size 3, S is a set of independent vertices
in H ′, disjoint from the unique triangle of H ′ by the case analysis in Table 4. Hence, N(C)
is an independent set of at least four vertices in H ′, disjoint from the unique triangle of H ′.
However, given the structure of H, there is no such set, a contradiction.

The following is the main result of this section.

Lemma 10.12. V8(G) = ∅.

Proof. Suppose to the contrary that v ∈ V (G) has degree 8. By Lemma 10.4, |N(v′) ∩
N(v)| > 5 for all v′ ∈ N(v). By Lemma 10.1, G−N [v] has some non-empty component C.
By Lemma 10.3, |N(C)| > 4, so G[N(C)] 6∼= K3. Hence, by Claim 10.11, P is a minor of
G, contradicting (iv).

2.2.4 Degree 6 Vertices

In this section we focus on vertices of degree 6 in G. Recall that for a given vertex v of our
minimal counterexample G, a subgraph H of G is v-suitable if it is a component of G−N [v]
that contains some vertex of L. The main result of this section is that if v ∈ V6(G), then for
any v-suitable subgraph H there is a v-suitable subgraph H ′ such that N(H ′) \N(H) 6= ∅
(see Lemma 10.17).

Claim 10.13. If v ∈ V6(G), then N [v] is a clique.

Proof. By definition, v is dominant in G[N [v]]. Let w be a vertex in N(v). Then w is
adjacent to each of the five other vertices in N(v), by Lemma 10.4 applied to the edge
vw.
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2.2. PROOF OF THEOREM 10

This result is useful because it means that for an induced subgraph H of P on seven
or fewer vertices, H ⊆ G[N [v]]. Throughout this section we show that certain statements
about the structure of G imply P is a minor of G, and are therefore false. When illustrating
this, the vertices of N [v] will be coloured white, for ease of checking.

Claim 10.14. If v ∈ V6(G) and C is a component of G − N [v] with |N(C)| > 5, then
|V (C)| = 1.

Proof. Suppose for contradiction that |V (C)| > 1. By Lemma 10.7 with A := N [C] and
B := V (G − C), there is a skeleton T of C with at least two high degree vertices. The
handshaking lemma implies

∞∑
i=3

(i− 2) · |Vi(T )| = |V1(T )| − 2. (2.2)

Note that |V1(T )| = |N(C)| and |N(C)| ∈ {5, 6}, so |V1(T )| − 2 ∈ {3, 4}. Hence either
|V>3(T )| ∈ {3, 4} (Case 2 below), V3(T ) = ∅ and |V4(T )| = 2 (Cases 3 and 4 below), or
|V3(T )| = 1 and |V>4(T )| = 1 (Case 5).

Case 1. |V (C)| = 2:

Since C is connected, the two vertices w and x of C are adjacent. By Lemma 10.4 applied
to wx, w and x have at least five common neighbours, v1, . . . , v5. By w

x

v1C ′

v2 v3
v4

v′′v′

v

Figure 5

Lemma 10.1, |V (G − N [v] − C)| > 1, so there is some component
C ′ 6= C of G − N [v]. By Lemma 10.3, |N(C ′)| > 4. Both N(C ′)
and {v1, . . . , v5} are subsets of N(v) and |N(v)| = 6, so |N(C ′) ∩
{v1, . . . , v5}| > 3. Assume without loss of generality that N(C ′) ⊇
{v1, v2, v

′}, where v′ is neither v3 nor v4. Let v′′ be the unique vertex
in N(v)\{v1, v2, v3, v4, v

′}. Let G′ be obtained from G by contracting
C ′ to a single vertex. Then P ⊆ G′ by Claim 10.13 (see Figure 5),
contradicting (iv).

Case 2. C has a skeleton T with at least three high degree vertices :

By repeatedly contracting edges of T ∩C, we can obtain a minor T ′ of T such that T ′ is
a tree, V1(T ′) = N(C), there are at least three vertices in V>3(T ′) and |V>3(T ′/e)| 6 2 for
every edge e ∈ E(T ′−V1(T ′)). Contracting an edge of T ′−V1(T ′) can only reduce |V>3(T ′)|
by 1, and only if both endpoints of the edge are in |V>3(T ′)|. Hence, there are exactly three
vertices of T ′ − V1(T ), and each has degree at least 3 in T ′. Now w

x

yv5

v1 v2
v3

v4v6

v

Figure 6

T ′ − V1(T ) is a tree on three vertices, and hence is a path wxy.
Since w, x and y all have degree at least 3 in T ′, there are distinct
vertices v1, . . . , v5 such that w is adjacent to v1 and v2 in T ′, y is
adjacent to v4 and v5 in T ′, and x is adjacent to v3 in T ′. Let v6 be
the remaining vertex in N(v), and recall that G[N [v]] is a complete
subgraph of G by Claim 10.13. Let E be the set of edges that were
contracted to obtain T ′, and let G′ := G/E. Then P ⊆ G′ (see
Figure 6), contradicting (iv).

Case 3. There is a skeleton T of C with |V4(T )| = 2 and with some y ∈ V2(T ):

Let w and x be the vertices in V4(T ).
First, suppose that y is in xTw. Then by Lemma 10.6, there is a path P of G[N [C]] from

xTw to T −xTw with no internal vertex in T . Let a be the endpoint of P in xTw and let b
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2.2. PROOF OF THEOREM 10

be the other endpoint. Without loss of generality, w /∈ V (xTb). Let R := (T∪P )−int(xTb).
Then R is a skeleton of C and V>3(R) = {x,w, a}, so we are in Case 2.

Suppose instead that y is not in xTw. Without loss of generality, y is in the component
of T − int(xTw) containing x. Let z be the leaf of T such that y is in xTz. By Lemma 10.6,
there is a path P of G[N(C)]− {x, z} from xTz to T − xTz with no internal vertex in T .
Let a be the endpoint of P in xTz and let b be the other endpoint. If w /∈ V (xTb) or w = b,
then let R := (T ∪ P )− int(xTb). Otherwise, let R := (T ∪ P )− int(wTb). In either case,
R is a skeleton of C and V>3(R) = {x,w, a}, so we are in Case 2.

Case 4. There is a skeleton T of C with |V4(T )| = 2 and V2(T ) = ∅:

Since T is a skeleton of C, |V1(T )| = |N(C)| 6 6. It then follows from (2.2) that
V (T )\V1(T ) = V4(T ), and |V1(T )| = 6. We may assume that we are not in Case 1, so there
is some vertex in C − V4(T ). Since C is connected, there is some vertex y in C − V4(T )
adjacent to some vertex x in V4(T ). Let w be the other vertex of V4(T ). By Lemma 10.3,
there is a path of G− x from y to T . Let P be a vertex-minimal example of such a path,
and note that int(P ) is disjoint from T . Also, since N(C) ⊆ V (T ), every vertex of P is in
N [C]. Let P ′ be the path formed from P by adding x and the edge xy, and let b be the
other endpoint of P ′.

Suppose that either b = w or w /∈ V (bTx). Let R := (T ∪ P ′)− int(bTx). Then R is a
skeleton of C with |V4(T )| = 2 and y ∈ V2(T ), so we are in Case 3.

Suppose instead that w ∈ int(bTx). Note that V (T ) = {x,w} ∪ V1(T ), and hence
xTw = xw. Hence, by Lemma 10.4, x and w have at least five common neighbours. If
some common neighbour z of x and w is in C, then R := (T ∪wzx)− int(xTw) is a skeleton
of C with |V4(R)| = 2 and z ∈ V2(R) and we are in Case 3. We may therefore assume
that N(x) ∩ N(w) ⊆ N(C). Let v1, . . . , v5 be distinct vertices in N(x) ∩ N(w), and let
v6 be the remaining vertex of N(C). Let w1, w2 and w3 be distinct neighbours of w in
{v1, . . . , v6} \ {b}, with w1 = v6 if possible. Since {v1, . . . , v5} ⊆ N(x) and at least one of
w and x is adjacent to v6, x has two neighbours x1 and x2 in {v1, . . . , v6} \ {b, w1, w2, w3}.
Let V (R) := {x,w, v1, . . . , v6}∪V (P ) and E(R) := {ww1, ww2, ww3, xx1, xx2, xw}∪E(P ′).
Then R is a skeleton of C with V4(R) = {x,w} and y ∈ V2(R), and we are in Case 3.

Case 5. There is a skeleton T of C with exactly one vertex x ∈ V3(T ) and exactly one
vertex w ∈ V>4(T ):

Since degT (x) = 3 there are distinct leaves v1 and v2 such that w /∈ V (v1Tv2). Let
v3, v4, . . . , vk be the remaining leaves of T , where k = |N(C)|. Let C ′ be the component
of C − w containing x, and note that N(C ′) ⊆ N(C) ∪ {w}. Since G is 4-connected by
Lemma 10.3, there is some vertex in N(C ′) ∩ (N(C) \ {v1, v2}), and hence some path P
of G[N [C] \ {w, v1, v2}] from x to N(C) \ {v1, v2}. Let P ′ be a subpath of P of shortest
possible length while having an endpoint a in the component T − w containing x and an
endpoint b in some other component of T − w. Note that P ′ ⊆ G[N [C] − {w, v1, v2}] and
no internal vertex of P ′ is in T . Let R := (T ∪P ′)− int(bTw), and note that R is a skeleton
of C. If a 6= x, then V>3(R) = {a, x, w}, and we are in Case 2. If a = x and w ∈ V5(T ),
then V4(R) = {x,w}, and we are in Case 3 or Case 4. Hence, we may assume x = a and
w ∈ V4(T ), meaning |N(C)| = 5. We now consider two subcases, depending on whether
xw ∈ E(T ).

Case 5a. wx /∈ E(T ):

By Lemma 10.6, there is a path Q of G[N [C]]− {x,w} from xTw to T − xTw with no
internal vertex in T . Let c be the endpoint of Q in xTw, and let d be the other endpoint.
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Suppose first that Q intersects P ′. Let Q′ be the subpath of Q from c to P ′ that is
internally disjoint from P ′, and let d′ be the endpoint of Q′ in P ′. Let S := (R ∪ Q′) −
int(d′Rx). Then S is a skeleton of C with V>3(S) = {x, c, w}, and we are in Case 2.

Suppose instead that Q is disjoint from P ′. If x /∈ V (dTw), then let S := (T ∪ Q) −
int(dTw). Otherwise, let S := (R ∪ Q) − int(dRx). Then S is a skeleton of C with
V>3(S) = {x, c, w}, and we are in Case 2.

Case 5b. xTw = xw:

By Lemma 10.4 applied to the edge xw, |N(x) ∩N(w)| > 5.
Suppose there is some vertex y ∈ (N(x)∩N(w)) \N(C). If y ∈ (N(x)∩N(w)) \ V (T ),

then let S := (T ∪ xyw) − xw. Then S is a skeleton of C with exactly one vertex x ∈
V3(S) and exactly one vertex w ∈ V>4(S) and xw /∈ E(S), so we are in Case 5a. If
y ∈ N(x)∩N(w)∩V (xTvi− vi) for some i ∈ {1, 2}, then let S be the graph obtained from
R by adding the edge wy and deleting the edge wx. If y ∈ N(x) ∩ N(w) ∩ V (xTvi − vi)
for some i ∈ {3, 4, 5}, then let S be the graph obtained from T by adding the edge xy and
deleting the edge wx. Then S is a skeleton of C with V>3(S) = {x, y, w}, and we are in
Case 2.

Suppose instead that N(x)∩N(w) ⊆ N(C). Since |N(C)| = 5, we have N(x)∩N(w) =
N(C). We may assume we are not in Case 1, so by Lemma 10.3, there is some vertex
y in C − {x,w} adjacent to some vertex in N(C). Since {x,w} is complete to N(C),
assume without loss of generality that v5 ∈ N(y). Since C is connected, there is a path
Q of C from y to {w, x}. Choose Q to be of shortest possible length, so that int(Q) is
disjoint from {x,w}, and without loss of generality assume x is an endpoint of Q (since
{x,w} is complete to N(C)). Let S be the skeleton with V (S) := {w, v1, . . . , v5} ∪ V (Q)
and E(S) := {wv1, wv2, wv3, wx, xv4, yv5} ∪ E(Q). By Lemma 10.6, there is a path Q′ of
G[N [C]]−{x, v5} from xSv5 to S−xSv5, internally disjoint from S. Let c be the endpoint
of Q′ in xSv5 and let d be the other endpoint. If d ∈ {v1, v2, v3}, then let S ′ := (S∪Q′)−dw.
Then S ′ is a skeleton of C with V>3(S ′) = {w, x, c}, and we are in Case 2. If either d = w
and there is some vertex in int(Q′), or d = v4, then let S ′ := (S ∪ Q′) − dx. Then S ′ is
a skeleton of C with exactly one vertex c ∈ V3(S ′) and exactly one vertex w ∈ V>4(S ′),
and cw /∈ E(S), so we are in Case 5a. If d = w and there is no vertex in int(Q′), then
either c ∈ N(x) ∩ N(w), contradicting the assumption that N(x) ∩ N(w) ⊆ N(C), or
|V (ySc ∪Q′)| < |V (Q)|, contradicting our choice of Q.

Claim 10.15. If v ∈ V6(G) and C is a component of G − N [v], then V (C) 6= ∅ and
|N(C)| = 4.

Proof. By Lemma 10.1, V (G) \ N [v] is non-empty, so V (C) 6= ∅. Hence |N(C)| > 4 by
Lemma 10.3. Suppose for contradiction that |N(C)| > 5. Then |V (C)| = 1 by Claim 10.14.
Hence, by Lemma 10.4, |N(C)| > 6, so N(C) = N(v).

Suppose that there is some component C ′ of G−N [v] with |N(C ′)| = 4. By Lemma 10.4,
|V (C ′)| > 3. Hence, by Lemma 10.8 with A := N [C ′] and B := V (G−C ′), there is a table
X := (X1, . . . , X6) of G[N [C ′]] rooted at N(C ′). For i ∈ {1, 2, 3, 4}, let vi be the unique
vertex in Xi ∩ N(C ′). Let v5 and v6 be the remaining vertices of N(v). By Claim 10.13,
G[N [v]] ∼= K7. Let G′ be obtained from G by contracting G[Xi] to a single vertex for each
i ∈ {1, 2, . . . , 6}. Then P ⊆ G′ (see Figure 7a), contradicting (iv).

Suppose instead that every component C ′ of G − N [v] satisfies |N(C ′)| > 5. Then by
Claim 10.14 every component of G − N [v] is an isolated vertex and by Lemma 10.4 each
component C ′ of G−N [v] satisfies N(C ′) = N(v). Now by Lemma 10.1 there are at least
three distinct components C, C ′ and C ′′ of G−N [v]. Hence, by Claim 10.13, P ⊆ G (see
Figure 7b), contradicting (iv).
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Claim 10.15 and Lemma 10.5 immediately imply the following corollary, which we use
in the final step of the proof, in Section 2.2.6.

Corollary 10.16. For every vertex v ∈ V6(G), there is at least one v-suitable subgraph.

We now prove the main result of this section.

Lemma 10.17. If v ∈ V6(G) and H is a v-suitable subgraph of G, then there is some
v-suitable subgraph H ′ of G such that N(H ′) \N(H) 6= ∅.

Proof. By Claim 10.15, |N(H)| = 4. Suppose for contradiction that there exist distinct
vertices w, x ∈ N(v) such that N [x] ⊆ N [v] and N [w] ⊆ N [v]. Let G′ := G−{v, w, x}. By
(ii),

|E(G′)| > |E(G)| − 3− 3(4) > (5|V (G)| − 11)− 15 = 5|V (G′)| − 11.

By (v), G′ is a (K9, 2)-cockade minus at most two edges. Every (K9, 2)-cockade has at least
nine vertices of degree exactly 8, so |V8(G′)| > 5. Then some vertex in V (G′) \ N [v] has
degree exactly 8 in G, contradicting Lemma 10.12.

Hence there is at most one vertex w in N(v) such that N [w] ⊆ N [v], so there is some
vertex x in N(v) \N(H) with some neighbour y in G−N [v]. Let H ′ be the component of
G−N [v] that contains y. The vertex x is in N(H ′), so N(H ′)\N(H) 6= ∅. By Claim 10.15
and Lemma 10.5, H ′ is v-suitable, as required.

2.2.5 Degree 9 Vertices

In this section, we focus on vertices in V9(G) ∩ L. For each such vertex v, the minimum
degree of G[N(v)] is at least 5, by Lemma 10.4 applied to each edge incident to v. Let
Hv be the complement of an edge-minimal spanning subgraph of G[N(v)] with minimum
degree 5.

The main result of this section, Lemma 10.23, states that for each component C of
G−N [v], there is some v-suitable subgraph C ′ with a neighbour not in the neighbourhood
of C. We argue for this claim directly when each component C ′ of G−N [v] has |N(C ′)| = 4.
Otherwise, we first look at the case where the maximum distance between two vertices of
degree 3 in Hv is at most 2. Then we consider the case where there are two vertices of degree
3 at distance at least 3 in Hv. A useful technique is that a graph obtained by contracting
some edge in G[N(v)] must violate some condition of Claim 10.11.

Claim 10.18. If v ∈ V9(G)∩L, then ∆(Hv) = 3 and the vertices of Hv with degree at most
2 form a clique.

Proof. Since |V (Hv)| = |N(v)| = 9, if a vertex u has degree greater than 3 in Hv, then u
has degree less than 5 in Hv, a contradiction. If two non-adjacent vertices x and y in Hv
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both have degree at most 2 in Hv, then Hv − xy is a spanning subgraph of G[N(v)] with
minimum degree at least 5, contradicting the definition of Hv. Thus the vertices of degree
at most 2 form a clique of size at most 3, so there is indeed a vertex of degree 3 in Hv.

The following claim guarantees that |V (G)| > 11 if we find a vertex v ∈ V9(G)∩L, and
hence that the components of G−N [v] are non-empty.

Claim 10.19. If v ∈ V9(G) ∩ L, then V (G−N [v]) 6= ∅.

Proof. By (iv), P 6⊆ G[N [v]], so G[v] 6∼= K10. Hence, there is some vertex w ∈ N(v) such
that N [w] 6= N [v]. By the definition of L, there is some vertex x ∈ N [w] \ N [v] and
x ∈ V (G−N [v]).

A graph is cubic if every vertex has degree exactly 3.

Claim 10.20. If v ∈ V9(G) ∩ L, then there are vertices x and y in V3(Hv) such that
distHv(x, y) > 3, unless either |N(C)| = 4 for every component C of G − N [v] or Hv

∼=
K3,3∪̇K3.

Proof. Suppose for contradiction that distHv(x, y) 6 2 whenever {x, y} ⊆ V3(Hv), there is
some component C of G−N [v] such that |N(C)| 6= 4 and Hv � K3,3∪̇K3. By Claim 10.19,
V (C) 6= ∅, so by Lemma 10.3, |N(C)| > 5. Let S := V0(Hv) ∪ V1(Hv) ∪ V2(Hv). By
Claim 10.18, S is a clique, so |S| 6 3. Since |V (Hv)| = 9, the number of vertices of odd
degree in Hv is even and V (Hv) \ S = V3(Hv), we have S 6= ∅. We consider five cases
depending on S and whether there is any triangle in Hv.

Case 1. |S| = 3:

In this case, S = V2(Hv) and Hv[S] ∼= K3, and there is no edge in Hv from a vertex in S
to a vertex not in S. Hence, Hv − S is a 6-vertex cubic graph. By assumption, Hv � K3,3.
There is only one other 6-vertex cubic graph, so Hv is the graph depicted in Figure 8. Then
P ⊆ G[N [v]] (see Figure 8b), contradicting (iv).

b)a)

a1 b1 c1

a2 b2

a3 b3
c2 c3

a3

c2

a2b3

c1 b1
b2

vc3

a1

Figure 8

Case 2. |S| = 2:

Since |V (Hv)| is odd, there are an odd number of vertices of even degree in Hv. Since
S is a clique, δ(Hv) > 1. Hence, by Claim 10.18, there is a unique vertex x ∈ V2(Hv), and
since |S| = 2, there is some vertex v1 ∈ V3(Hv) adjacent to x in Hv. Let v2 and v3 be the
other neighbours of v1 in Hv, and note that {v2, v3} ⊆ V3(Hv). Since distHv(v1, y) 6 2 for
every vertex y in V3(Hv), each of the four remaining vertices of Hv−S is adjacent to {v2, v3}.
Since v2 and v3 each have only three neighbours in Hv, v2v3 /∈ E(Hv). Let G′ be obtained
from G by deleting every edge in G ∩Hv and then contracting v2v3. Now v ∈ V8(G′). Let
v′ be a vertex in NG′(v). If v′ ∈ S, then |NG′(v′)∩NG′(v)| > 8− degHv

(v′)− 1 > 5. If v′ is
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in Hv− (S∪{v2, v3}), then |NG′(v′)∩NG′(v)| = 8−degHv
(v′) = 5. If v′ is the new vertex of

G′, then |NG′(v′)∩NG′(v)| = 8−|NHv(v2)∩NHv(v3)|−1 = 6. Hence, |NG′(v′)∩NG′(v)| > 5
for any vertex v′ ∈ NG′(v). Finally, |NG′(C)| > |NG(C)| − 1 > 4, so G′[NG′(C)] � K3.
Hence P is a minor of G by Claim 10.11, contradicting (iv).

Case 3. There is some triangle v1v2v3 of Hv and S = V0(Hv) = {x}:

Let {v4, v5, . . . , v8} be the other vertices of Hv, where v4v1 ∈ E(Hv). For every vertex y
in Hv−S we have distHv(v1, y) 6 2 by assumption, so y is either adjacent to v1 or adjacent
to a neighbour of v1. Since {v2, v3, v4} ⊆ V3(Hv), we may assume without loss of generality
that {v2v5, v3v6, v4v7, v4v8} ⊆ E(Hv). Since ∆(Hv) = 3 and distHv(vi, vj) 6 2 for i ∈ {2, 3}
and j ∈ {7, 8}, Hv is the graph depicted in Figure 9a. Then P ⊆ G[NG[v]] (see Figure 9b),
contradicting (iv).

b)a)
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v4

v7v5
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Case 4. There is no triangle of Hv and S = V0(Hv) = {x}:

So Hv − x is a cubic, triangle-free graph, with diameter 2 and exactly eight vertices.
We now show that there is exactly one such graph, namely the Wagner graph. Let v1

be a vertex of Hv − S, and let v2, v3 and v4 be its neighbours in Hv. Since Hv contains
no triangle, {v2, v3, v4} is an independent set in Hv. Let {v5, v6, v7, v8} be the remaining
vertices of Hv − S. If v2, v3 and v4 all share some common neighbour, say v5, in Hv, then
there are six edges in Hv[{v1, . . . , v5}], and at most three other edges in Hv incident to
some vertex in {v1, . . . , v5}. By the handshaking lemma, E(Hv − S) = E(Hv) = 12, since
S = V0(Hv) and V (Hv − S) = V3(Hv). Hence v6v7v8 is a triangle of Hv, a contradiction.
If for every pair i, j ∈ {2, 3, 4} vi and vj share a neighbour in Hv distinct from v1, then
|NHv [v2]∪NHv [v3]∪NHv [v4]| 6 3(4)−3(2) + 1 = 7 by inclusion-exclusion, contradicting the
assumption that distHv(v1, y) for each of the 8 vertices y in V3(Hv). Hence, without loss of
generality, v2 and v3 have no common neighbour in Hv, and {v2v5, v2v6, v3v7, v3v8} ⊆ E(Hv).
Without loss of generality v8 ∈ NHv(v4), since {v5, v6, v7, v8} ∩ NHv(v4) 6= ∅. Since v7v3v8

is a path in Hv and Hv contains no triangle, the other vertex adjacent to v8 is either v5 or
v6, so without loss of generality v8v6 ∈ E(Hv). Since v5v2v6 and v4v8v6 are paths in Hv,
the remaining vertex adjacent to v6 is v7. Since V3(Hv) = V (Hv) \ {x} and x ∈ V0(Hv), the
remaining two vertices adjacent to v5 are v7 and v4. Hence Hv is the Wagner Graph, plus
a single isolated vertex, as illustrated in Figure 10a. Then P ⊆ G[NG[v]] (see Figure 10b),
contradicting (iv).

Case 5. S = {x} and x /∈ V0(Hv):

The number of vertices of odd degree in Hv is even, so x ∈ V2(Hv). By contracting an
edge of Hv incident to x, we obtain a cubic graph on eight vertices with diameter at most 2.
In Cases 3 and 4 we showed that there are only two such graphs (one with and one without
a triangle), so Hv is a copy of one of these in which exactly one edge is subdivided exactly
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once. It is quick to check that the only such graph in which dist(x′, y′) 6 2 whenever x′

and y′ both have degree 3 is the graph depicted in Figure 11a. Then P ⊆ G[NG[v]] (see
Figure 11b), contradicting (iv).

a)

v1
v2

v3

v4
v5

v6

v7

v8

x

b)

x

v6

v4v7

v5 v
v3

v2v1

v8

c)

a1

c2

b3b2

b1 a2
a3

vc3

c1

Figure 11

Claim 10.21. If v ∈ V9(G)∩L and Hv
∼= K3,3∪̇K3, then for each component C of G−N [v],

there is some v-suitable subgraph C ′ with N(C ′) \N(C) 6= ∅.

Proof. Let {a1, a2, a3, b1, b2, b3, c1, c2, c3} := V (Hv), with aibj ∈ E(Hv) for i, j ∈ {1, 2, 3},
and cicj ∈ E(Hv) for distinct i, j ∈ {1, 2, 3}. Suppose for contradiction that there is a path
P of G from ai to bj with no internal vertex in N [v] for some i, j ∈ {1, 2, 3}. Without loss of
generality, i = j = 1. Let G′ be obtained from G by contracting all but one edge of P . Then
P ⊆ G′ (see Figure 11c), contradicting (iv). Hence, there is no such path P . In particular,
no vertex v′ in {a1, a2, a3, b1, b2, b3} is adjacent to every vertex of N(v) \ {v′}. Hence, since
v ∈ L, for each v′ ∈ {a1, a2, a3, b1, b2, b3} there is some component C of G−N [v] such that
v′ ∈ N(C). However, there is no component C such that N(C) contains some vertex in
{a1, a2, a3} and some vertex in {b1, b2, b3}. Hence, for each component C of G−N [v] there
is a component C ′ of G−N [v] with N(C ′) \N(C) 6= ∅. Suppose for contradiction that C ′

is not v-suitable. By Lemma 10.5 |N(C ′)| > 7. Since G[N(C ′)] ⊆ Hv, there is some vertex
in {a1, a2, a3} ∩ N(C ′) and some vertex in {b1, b2, b3} ∩ N(C ′), a contradiction. Hence C ′

satisfies our claim.

Claim 10.22. If v ∈ V9(G) ∩ L and there are two vertices x and y in V3(Hv) such that
distHv(x, y) > 3 and there is some component C of G − N [v] with |N(C)| > 5, then for
each component C ′ of G−N [v] there is a v-suitable subgraph C ′′ with N(C ′′) \N(C ′) 6= ∅.

Proof. By Claim 10.19, V (C) 6= ∅. Choose x and y, if possible, so that

NHv(x) ∪NHv(y) ⊆ V3(Hv). (2.3)
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Let G′ := G/xy, let x′ be the new vertex of G′, and let H ′ = Hv − {x, y}. Note that
degG′(v) = 8. Since |NG(C)| > 5, we have |NG′(C)| > 4, and hence G′[NG′(C)] � K3. By
Claim 10.11 and (iv), G′ does not satisfy |NG′(v′) ∩NG′(v)| > 5 for all v′ ∈ NG′(v).

Now {x, y} ⊆ V3(Hv) and distHv(x, y) > 3, so |NHv(x) ∩ NHv(y)| = 6. Also, since
G[N(v)] ⊆ Hv, there is no common neighbour of x and y in G[N(v)], so x′ is dominant in
G′[NG′ [v]], and |NG′(x′) ∩NG′(v)| = 7 > 5.

By Claim 10.18, ∆(Hv) = 3. If v′ ∈ NHv(x) ∪ NHv(y), then since v′ is not adjacent to
both x and y in Hv, we have |NG′(v′) ∩NG′(v)| > |NHv

(v′)| > 8− 3 = 5.
Hence, the unique vertex z in H ′ − (NHv(x) ∪ NHv(y)) satisfies |NG′(z) ∩ NG′(v)| 6 4.

Thus z has at most three neighbours in G′[N(v)\{x, y}] and hence |NH′(z)| > 7−1−3 = 3.
Since ∆(H ′) 6 ∆(Hv) = 3, we have degHv

(z) = 3.
There are an even number of vertices, including z, with odd degree in H ′. We have

degH′(v′) 6 ∆(Hv) − 1 = 2 for the six vertices v′ in NHv(x) ∪ NHv(y) = V (H ′ − z), so
there are an odd number of vertices in V1(H ′). Each vertex in V1(H ′) has degree at most
2 in Hv since x and y have no common neighbour in Hv. So V1(H ′) is a clique of Hv by
Claim 10.18, and hence a clique of H ′. Since |V1(H ′)| is odd, there is a unique vertex w
in V1(H ′). By the same argument, the vertices of V0(H ′) ∪ V1(H ′) form a clique of H ′. No
vertex in V0(H ′) is adjacent in H ′ to w, so V0(H ′) = ∅. Hence, V1(H ′) = {w}, V3(H ′) = {z}
and V2(H ′) = V (H ′ − {w, z}).

Now w is one of the six vertices of NHv(x)∪NHv(y), and degHv
(w) 6 degH′(w) + 1 6 2.

In particular x and y do not satisfy (2.3), so no such pair satisfy (2.3). This means, there
are no two vertices x′ and y′ in V3(Hv) that satisfy (2.3) such that distHv(x′, y′) > 3.

We consider four cases depending on whether H ′ is connected and on the components
of G−N [v].

Case 1. H ′ is not connected :

Since each connected component of H ′ has an even number of vertices of odd degree,
z and w are in the same component, and each other component is a cycle. Since |V (H ′) \
NH′ [z]| = 3, there is a unique component D of H ′ not containing z and D is a triangle.
Since |V2(H ′)| = 5, there is some vertex x0 of degree 2 not in D and not adjacent to w.
Assume without loss of generality that x0 is adjacent to x in Hv. Since x ∈ V3(Hv), there
is some vertex y0 in D such that y0x /∈ E(Hv). Now y0 is adjacent to no neighbour of x0 in
Hv, so distHv(x, y) > 3. But the vertices adjacent to {x0, y0} in Hv are all in V3(Hv) since
w is adjacent to neither x0 nor y0 in Hv. Therefore x0 and y0 satisfy (2.3), a contradiction.

For the remaining cases, H ′ is a connected graph such that |V1(H ′)| = |V3(H ′)| = 1 and
every other vertex has degree 2. Hence, H ′ is composed of a path P from z to w and a
cycle Q of size at least 3 containing z, with V (P ∩Q) = {z}. Let z0 be the neighbour of z
in the path from z to w, and let z1 and z2 be the other neighbours of z in H ′.

Case 2. H ′ is connected and there is some component D of G−N [v] such that z ∈ N(D)
and |N(D) ∩NH′(z)| > 2:

At least one vertex is in {z1, z2} ∩ N(D), so without loss of generality z1 ∈ N(D).
Either z0 or z2 is also in N(D). Since V (Q) ⊆ V (H ′) \ {w}, we have 3 6 |V (Q)| 6 6. Let
G′′ := G′/E(D). The diagrams in Table 12 demonstrate that P ⊆ G′′, contradicting (iv).

Case 3. H ′ is connected and there is some component D of G−N [v] such that z0 ∈ N(D),
N(D) ∩ {z1, z2} 6= ∅ and N(D) ∩ {x, y} 6= ∅:

Without loss of generality, z1 ∈ N(D). Note that {z1, z0, x
′} ⊆ NG′(D), and let G′′ :=

G′/E(D). The diagrams in Table 13 demonstrate that P ⊆ G′′, contradicting (iv).
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|V (Q)| = 5, z2 ∈ N(D) |V (Q)| = 5, z0 ∈ N(D)
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|V (Q)| = 6, z2 ∈ N(D) |V (Q)| = 6, z0 ∈ N(D)

Case 4. H ′ is connected and there is no component D of G−N [v] such that either z ∈ N(D)
and |N(D) ∩NH′(z)| > 2 or z0 ∈ N(D), N(D) ∩ {z1, z2} 6= ∅ and N(D) ∩ {x, y} 6= ∅:

Recall that |NG′(z)∩NG′(v)| 6 4. Hence z has at least three non-neighbours in G′[N(v)].
Since G′[N(v) \ {x, y}] ⊆ H ′ and x′ is dominant in G′[NG′(v)], z is non-adjacent in G′ to
each vertex in NH′(z). Hence, for every vertex z′ ∈ NH′ [z] there is a component Cz′ of
G−N [v] such that z′ ∈ N(Cz′), since v ∈ L.

By Lemma 10.5, each component Cz′ of G−N [v] satisfying |N(Cz′)| 6 6 is v-suitable.
Recall that C ′ is an arbitrary component of G − N [v]. We now show that, for some

z′ ∈ NHv [z], Cz′ is v-suitable and N(Cz′) \N(C ′) 6= ∅, as required.
Suppose first that there is no component D of G−N [v] such that z ∈ N(D) and |N(D)∩

NH′(z)| > 1. Then |N(Cz)| 6 6. Furthermore, z /∈ N(Cz0) and either N(Cz0)∩{z1, z2} = ∅
or N(Cz0) ∩ {x, y} = ∅ since Case 3 does not apply, so |N(Cz0)| 6 6. Hence, Cz and Cz0
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Table 13
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|V (Q)| = 5 |V (Q)| = 6

are both v-suitable. By assumption, N(C) does not contain both z and z0, so z′ /∈ N(C)
for some vertex z′ ∈ {z, z0}. Hence, N(Cz′) \N(C ′) 6= ∅, and the claim holds.

Now assume that there is some component D of G − N [v] such that z ∈ N(D) and
|N(D) ∩ NH′(z)| > 1. Since Case 2 does not apply, |N(D) ∩ NH′(z)| = 1. Let {z′, z′′} :=
NH′(z) \ N(D). If |N(Cz′)| 6 6 and |N(Cz′′)| 6 6 (in which case Cz′ and Cz′′ are both
v-suitable), and {z′, z′′} * N(C ′), then the claim holds. So we may assume that either
D′ := C ′ satisfies {z′, z′′} ⊆ N(D′) or some D′ ∈ {Cz′ , Cz′′} satisfies |N(D′)| > 7. Now
D′ is distinct from D since N(D′) ∩ {z′, z′′} 6= ∅, and |NG′(D′)| > 3 since |N(D′)| > 4 by
Lemma 10.3. Let G′′ be obtained from G′ by contracting D onto z. Then v ∈ V8(G′′),
|NG′′(v) ∩ NG′′(v′)| > 5 for every vertex v′ ∈ NG′′(v), and |NG′′(D′)| = |NG′(D′)| > 3.
Furthermore, there is at most one cycle in G′′[N(v)], namely Q, so K3 and C4 are not both
induced subgraphs of G′′[N(v)]. Hence by Claim 10.11, P ⊆ G′′, contradicting (iv).

We finally reach the main result of this section.

Lemma 10.23. If v ∈ V9(G) ∩ L and C is a component of G − N [v], then there is some
v-suitable subgraph C ′ such that N(C ′) \N(C) 6= ∅.

Proof. Suppose first that each component C ′ of G − N [v] has |N(C ′)| = 4. Then every
component of G−N [v] is v-suitable by Lemma 10.5. Suppose for contradiction that there
is no v-suitable subgraph C ′ such that N(C ′) \N(C) 6= ∅. Then N(C ′) ⊆ N(C) for every
component C ′ of G − N [v], so there are at least five vertices in N(v) with no neighbour
outside of N [v]. Since v ∈ L, each of these vertices is dominant in G[N [v]]. Let G′

be obtained from G by contracting C onto some vertex x of N(C) and then deleting all
other components of G − N [v]. There are at most three non-dominant vertices in G′, so
|E(G′)| >

(
10
2

)
− 3 = 42 = 5|V (G′)| − 8, contradicting (vi).

Suppose instead that there is some component C ′ of G − N [v] with |N(C ′)| > 5. By
Claims 10.20 and 10.21, we may assume that there are two vertices x and y in V3(Hv) such
that distHv(x, y) > 3. The result then follows directly from Claim 10.22.

Lemma 10.23 immediately implies the following corollary, which we use in Section 2.2.6.
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Corollary 10.24. For every vertex v ∈ V9(G) there is at least one v-suitable subgraph.

2.2.6 Final Step

We now complete the proof sketched at the start of this chapter.

Proof of Theorem 10. Let G be the minimum counterexample defined at the start of Sec-
tion 2.2.1. By Lemmas 10.4, 10.10 and 10.12, L ⊆ V6(G)∪V9(G), so for every vertex v ∈ L
there is some v-suitable subgraph of G by Corollaries 10.16 and 10.24. Choose v ∈ L and
H a v-suitable subgraph of G so that |V (H)| is minimised. Let u be a vertex of L in H.
Since u ∈ V (H) and H is a component of G−N [v], u is not adjacent to v, so v is in some
component C of G−N [u]. Since v ∈ L, C is u-suitable. By Lemmas 10.17 and 10.23, there
is some u-suitable subgraph C ′ of G with N(C ′) \N(C) 6= ∅.

Now N(C ′) ⊆ N(u), so v /∈ N(C ′). Since N(C ′) \ N(C) 6= ∅, we have that C and
C ′ are distinct (and thus disjoint), so v /∈ N [C ′] and C ′ is disjoint from N [v]. Hence
G[V (C ′)∪ (N(C ′)\N(C))∪{u}] is a connected subgraph of G−N [v], and thus a subgraph
of H. But u ∈ V (H) \ V (C ′), so |V (C ′)| < |V (H)|, contradicting our choice of v and H.
This contradiction shows that in fact there are no counterexamples to Theorem 10.

2.3 Wrapping Up

We finish off this chapter by presenting two results relating to the function exm(n,P , k)
(which gives the maximum number of edges in a k-connected, n-vertex graph with no P
minor), as well as a computational lemma and finally the proof of Theorem 8.

We first prove a sufficient condition for a graph to be P-minor-free. For a graph G, we
call a subset S of V (G) special if |S| 6 3, every component of G−S has size at most 6, and
every 6-vertex component of G − S contains a vertex that is non-adjacent in G to every
vertex in S.

Lemma 35. If G is graph with a special set of vertices, then G is P-minor-free.

Proof. It is quick to check that the operations of deleting vertices, deleting edges and
contracting edges preserve the property of having a special set, so every minor of G has a
special set.

Suppose for contradiction that P has a special set S. Since |S| 6 3, |V (P − S)| > 7, so
P − S is disconnected by the definition of a special set. It follows that S = N(v) for some
vertex v of P , and so P − S has a 6-vertex component. However, the maximum distance
between a pair of vertices in P is 2, so every vertex in this component is adjacent to some
vertex in N(v). This contradicts the definition of a special set, so P has no special set and
hence is not a minor of G.

The following theorem relies on Theorem 10, and is used to prove Theorem 8.

Theorem 11. If n > 13 and n /∈ {16, 17, 22}, then exm(n,P , 3) = 5n− 12.

Proof. The upper bound is an immediate corollary of Theorem 10, since a 3-connected
subgraph of a (K9, 2)-cockade has at most nine vertices.

If n > 13 and n /∈ {16, 17, 22}, then there is at least one pair of non-negative integers c5

and c6 such that n = 5c5 + 6c6 + 3. To see this, first note that n− 3 = 5k+ t, for some pair
of non-negative integers k and t such that t 6 4. Since n = 5k + t + 3 = 5(k − t) + 6t + 3
and k − t > 0 for the specified values of n, we may set c5 := k − t and c6 := t.

Let G be the (n− 3)-vertex graph consisting of c5 disjoint copies of K5 and c6 disjoint
copies of K6. Let G′ be the n-vertex graph obtained from G by marking exactly one vertex
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in each K6 component of G and adding a set S of three new vertices, each adjacent to
every unmarked vertex of G and to the other vertices in S. By construction, S is a special
set for G′, so G′ is P-minor-free by Lemma 35. G′ is 3-connected since every separating
set of vertices in G′ either contains every vertex in S or every unmarked vertex of some
component of G. The number of edges in G′ is

3 + 3(5(c5 + c6)) + |E(G)| = 3 + 15c5 + 15c6 + (10c5 + 15c6) = 5n− 12.

We now show that there are 5-connected P-minor-free graphs with almost as many
edges as (K9, 2)-cockades.

Theorem 12. For n > 10, exm(n,P , 5) > 5n− 15.

Proof. Consider the class C of all graphs G with a vertex cover of size at most 5. C is
minor-closed, and P is not in C. Let G := K5 + Kn−5. Then G is 5-connected with
|E(G)| = 5n− 15, and G is in C and thus is P-minor-free.

Part (a) of the following computational lemma was used in the proof of Theorem 10.
Parts (b) and (c) allow us to compute exm(11,P) and exm(12,P) respectively.

Lemma 36.

a) Every 10-vertex graph with 39 edges has a subgraph isomorphic to P,

b) Every 11-vertex graph with 42 edges has a subgraph isomorphic to P,

c) Every 12-vertex graph with 47 edges has a subgraph isomorphic to P.

This lemma was verified by computer search. The program nauty [96] was used to
generate all non-isomorphic 10-vertex graphs with 39 edges, 11-vertex graphs with 42 edges
and 12-vertex graphs with 47 edges and minimum degree at least 6. A program written
by Michael Gill was used to find P-subgraphs in all graphs generated. Note that given
(b), checking all 12-vertex graphs with 47 edges and minimum degree at least 6 suffices to
prove (c), since a 12-vertex graph with 47 edges and minimum degree at most 5 contains
an 11-vertex graph with 42 edges as a subgraph. The time taken to verify Lemma 36 was
under half an hour.

We now determine the extremal function for Petersen minors.

Proof of Theorem 8.

Case 1. If n 6 9, then exm(n,P) =
(
n
2

)
.

Kn is a P-minor-free graph with
(
n
2

)
edges, and there are no n-vertex graphs with more

edges.

Case 2. If n ≡ 2 (mod 7), then exm(n,P) = 5n− 9.

Let n = 7t + 2. Note that if t ∈ {0, 1}, then
(
n
2

)
= 5n− 9. If t > 1, then there is some

(K9, 2)-cockade of order n (for example the graph K2 + tK7). Since |V (P)| > 9, K9 is P-
minor-free, and since P is 3-connected, every (K9, 2)-cockade is P-minor-free by Lemma 7.
The number of edges in an n-vertex (K9, 2)-cockade is t

(
9
2

)
− (t − 1) = 35t + 1 = 5n − 9.

By Theorem 10, this is the extremal number of edges.

Case 3. If n ∈ {11, 12}, then exm(n,P) = 5n− 14.

41



2.3. WRAPPING UP

The upper bound is given by Lemma 36.
The graph K2 +(K7∪̇K2) is an 11-vertex graph with 41 edges, and since it is a subgraph

of (K9, 2)-cockade, it is P-minor-free.
The graph K3 + (K4∪̇K5) is a 12-vertex graph with 46 edges, and contains a special set,

since K4∪̇K5 has no component with more than five vertices. Hence, by Lemma 35, it is
P-minor-free.

Case 4. If n ∈ {10, 17, 22}, then exm(n,P) = 5n− 12.

The upper bound is given by Theorem 10, since there are no (K9, 2)-cockades on 10, 17 or
22 vertices. The graph H1 := K2 + (K1∪̇K7) is a 10-vertex graph with 38 edges. The graph
H2 := K2 +(K1∪̇2K7) is a 17-vertex graph with 73 edges. The graph H3 := K2 +(K6∪̇2K7)
is a 22-vertex graph with 98 edges. Since H1 ⊆ H2 ⊆ H3 and H3 is a subgraph of a (K9, 2)-
cockade, all three graphs are P-minor-free.

Case 5. If n > 13, n /∈ {17, 22} and n 6≡ 2 (mod 7), then exm(n,P) = 5n− 12.

By definition, exm(n,P) > exm(n,P , 3), so the lower bound follows from Theorem 11.
Since n 6≡ 2 (mod 7), there are no (K9, 2)-cockades of order n, and the upper bound follows
from Theorem 10.
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Chapter 3

Sparse Minors

3.1 Overview

Recall that f(H) is the infimum of all non-negative real numbers c such that every graph
with average degree at least c contain H as a minor. The following theorem is the main
result of this chapter.

Theorem 19. For every graph H with exactly i isolated vertices and q edges,

f(H) 6 i+ 5.8105q.

Our proof closely follows the proof of a similar result by Reed and Wood [106]. It relies
on the following result, which we prove in Section 3.3.

Theorem 37. If G is an n-vertex graph with average degree at least 5.8105t and H is a
2-degenerate graph on at most t vertices, then H is a minor of G.

This result in turn follows from the following lemmas, which we prove in Section 3.4
and Section 3.5 respectively.

Lemma 38 (§3.4). Let t and n be positive integers with n > t and let α and β be positive
real numbers. Let G be an n-vertex graph such that

|E(G)| > α2(n2 − t2)

2
+

(
α2

2
+ (α + 1)βt− 1

)
(n− t) +

(
t

2

)
.

G has a minor G0 such that either G0
∼= Kt or δ(G0) > α|V (G0)|+ βt− 1.

Lemma 39 (§3.5). Let n be a positive integer and let G be an n-vertex graph with minimum
degree δ and let H be a t-vertex, 2-degenerate graph. If δ(G) > 0.421344n+ 0.735998t− 1,
then H is a topological minor of G.

Lemma 39 is our major innovation, and it is this lemma that allows us to improve on
the results of Reed and Wood.

3.2 Sparse Minors in Graphs of High Average Degree

The following lemma is well known, but we prove it here for completeness.

Lemma 40. Let G be a graph with minimum degree δ and let T be a tree with t > 2 vertices.
If δ > t− 1, then T ⊆ G.
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Proof. We proceed by induction on t. If t = 2, the result is trivial.
Suppose t > 3. Let v be a leaf of T . By induction, T − v is a subgraph of G, since

T − v is a t− 1 vertex tree and δ > t− 2. This mean there is an injective function φ from
V (T ) to V (G) such that for every pair of adjacent vertices x and y in H, φ(x) and φ(y) are
adjacent in G.

Let w be the neighbour of v in T . Now

degG(φ(w)) > δ > t− 1 > |φ(V (T − v)) \ {φ(w)}|,

so φ(w) has some neighbour v′ /∈ φ(T − v). Setting φ(v) := v′, we find T ⊆ G.

Proof of Theorem 19. We prove by on induction on |V (H)| + |V (G)| that if G is a graph
with average degree at least 5.8105q + i and H is a graph with exactly q edges and i
isolated vertices, then H is a minor of G. When |V (H)| = 0 (and, in particular, when
|V (H)|+ |V (G)| = 0), the result is trivial.

Suppose that i > 1. Let v be an isolated vertex of H, let w be a vertex of minimum
degree in G, and let G′ := G− w. Now,

a(G′) =
2(|E(G)| − δ(G))

|V (G)| − 1
>
a(G)n− 2a(G)

n− 1
> a(G)− 1.

Thus, G′ has average degree at least 5.8105q+ i−1 and H−v has q edges and i−1 isolated
vertices. By induction H − v is a minor G− w, and hence H is a minor of G.

Suppose instead that i = 0 and some component C of H is a tree with at least two
vertices. Let c := |V (C)|. If G has a vertex v of degree at most 1

2
a(G), then a(G−v) > a(G)

and so H is a minor of G − v by induction. Hence, we may assume that δ(G) > 1
2
a(G).

Since a(G) > 5.81128|E(C)|, we have δ(G) > c− 1. Thus, G has a subgraph T isomorphic
to C by Lemma 40. Let G′ := G− T .

a(G′) >
2(|E(G)| − n|V (T )|)

n− |V (T )|
>
a(G)− 2n|V (T )|

n
= a(G)− 2|V (T )|.

Since C is a tree with at least one edge, H − C is a graph with at most q − c
2

edges (and
no isolated vertices by assumption). Since G′ has average degree at least a(G) − 2c >
5.81128q − 2c > 5.81128(q − c

2
), H − C is a minor of G′ by induction, and hence H is a

minor of G
Now suppose that no component of H is a tree. For every component C of H, let HC

be a graph obtained from a spanning subtree of H by adding one edge of H[C] that is not
already in the subtree. Since this graph is one edge away from being 1-degenerate, it is
2-degenerate. Let H0 be the union of the subgraphs HC of all components C of H. Since
every component of H0 is 2-degenerate, H0 is 2-degenerate. Let H ′ be obtained from H by
subdividing every edge not in H0. Then H ′ is a 2-degenerate graph with t+ (q − |E(H0)|)
vertices, and by our choice of H0, t + (q − |E(H0)|) = q. Hence, H ′ is a minor of G by
Theorem 37, and so H is a minor of G.

3.3 2-Degenerate Minors in Graphs of High Average Degree

We now prove Theorem 37 from Lemma 38 and Lemma 39. Theorem 37 gives the best
known upper bound for the extremal function for general 2-degenerate minors.

Theorem 37. If G is an n-vertex graph with average degree at least 5.8105t and H is a
2-degenerate graph on at most t vertices, then H is a minor of G.
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Proof. We proceed by induction on n. If n 6 5.8105t then no n-vertex graph has average
degree 5.8105t, so the result holds vacuously.

Now suppose that n > 5.8105t and G is a graph with average degree at least 5.8105t.
Let v be a vertex of minimum degree in G, and note that deg(v) 6 5.8105t. If v is an
isolated vertex, then G − v has average degree at least 5.8105t, and the result holds by
induction. Let G′ := G[N [v]], let n′ := |V (G′)| = δ(G) + 1 and let δ′ := δ(G′). Let w be
a vertex distinct from v with degree δ′ in G′. If δ′ 6 1

2
(5.8105t), then G/vw has average

degree

2|E(G/vw)|
n− 1

=
2(|E(G)| − δ′)

n− 1
>

5.8105tn− 5.8105t

n− 1
= 5.8105t,

and the result holds by induction.
Now suppose δ′ > 2.90525t. Note that n′ > δ′ > 2.90525t. Also, since δ(G) 6 5.8105t,

5.8105t + 1 > n′ and −(n′t − t)/5.8105 > −t2. Let α := 0.421344 and let β := 0.735998.
Now

|E(G′)| > 1

2
(2.90525tn′)

>

(
α2

2
(5.8105) + (α + 1)β − 0.63487

5.8105

)
tn′

>
α2

2
(5.8105t+ 1)n′ + (α + 1)βn′t− 0.63487

(
n′t− t
5.8105

)
− α2n

2
− 0.63487t

5.8105

>
α2n′2

2
+ (α + 1)βn′t− (

α2

2
+ (α + 1)β − 1

2
)t2 − α2n′

2
− 0.11t

>
α2(n′2 − t2)

2
+ (α + 1)βt(n′ − t) +

t2

2
− α2n′

2
− 0.11t+ (1− α2)(2.90525t− n′)

>
α2(n′2 − t2)

2
+

(
α2

2
+ (α + 1)βt− 1

)
(n′ − t) +

(
t

2

)
.

Hence, by Lemma 38, G′ has a minor G0 such that either G0
∼= Kt or δ(G0) > α|V (G0)|+

βt − 1. If G0
∼= Kt, then H ⊆ G0 since |V (H)| = t, so H is a minor of G. If δ(G0) >

α|V (G0)|+ βt− 1 then the result then follows from Lemma 39.

3.4 Minors of High Minimum Degree

The following lemma allows us to find a minor with high minimum degree (at least some
linear function of the number of vertices), in a graph of high average degree, as per the
proof of Theorem 37.

Lemma 38. Let t and n be positive integers with n > t and let α and β be positive real
numbers. Let G be an n-vertex graph such that

|E(G)| > α2(n2 − t2)

2
+

(
α2

2
+ (α + 1)βt− 1

)
(n− t) +

(
t

2

)
.

G has a minor G0 such that either G0
∼= Kt or δ(G0) > α|V (G0)|+ βt− 1.

Proof. We proceed by induction on n. If n = t, then |E(G)| >
(
t
2

)
. Hence Kt

∼= G, and we
are done.

Now suppose n > t. Let v be a vertex of degree δ(G). If δ(G) = 0, then |E(G −
v)| = |E(G)|, and so by induction G − v has a minor G0 such that either G0

∼= Kt or
δ(G0) > α|V (G0)|+ βt− 1. Since G− v is a minor of G, G0 is a minor of G.
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If δ(G) > 1, let d := δ(G[N [v]]) and let w be a vertex distinct from v with degree d in
G[N(v)] (note that if deg(v) = d, then G[N [v]] ∼= Kd+1). Let G′ := G/vw. Now

|E(G′)| = |E(G)| − d

>
α2(n2 − t2)

2
+

(
α2

2
+ (α + 1)βt− 1

)
(n− t) +

(
t

2

)
− d

=
α2((n− 1)2 − t2)

2
+

(
α2

2
+ (α + 1)βt− 1

)
(n− 1− t) +

(
t

2

)
+ (α2n+ (α + 1)βt− 1)− d.

If d 6 α2n + (α + 1)βt − 1, then by induction G′ (and hence G) has a minor G0 such
that either G0

∼= Kt or δ(G0) > α|V (G0)|+ βt− 1.
Now suppose d > α2n+(α+1)βt−1, and let G0 := G[N [v]]. Recall that deg(v) = δ(G).

We may assume δ(G) < αn+βt− 1 since G is a minor of itself. Hence, |V (G0)| < αn+βt,
and so

δ(G0) = d > α2n+ (α + 1)βt− 1 > α|V (G0)|+ βt− 1.

3.5 2-Degenerate Minors in Graphs of High Minimum Degree

In this section we prove Lemma 39, which is a major component of the proof of Theorem 37
and hence of Theorem 19. This lemma is the main innovation of this chapter, and is what
enables us to improve on the results of Reed and Wood [106].

If a graph H ′ is a subdivision of a graph H then every edge e of H will be represented
by a path in H ′. We define the depth of e in H ′ to be the number of internal (subdivision)
vertices in the path representing e (so every non-subdivided edge has depth 0).

Lemma 39. Let n be a positive integer and let G be an n-vertex graph with minimum
degree δ and let H be a t-vertex, 2-degenerate graph. If δ(G) > 0.421344n+ 0.735998t− 1,
then H is a topological minor of G.

To prove Lemma 39, suppose for contradiction that δ > 0.421344n+ 0.735998t− 1 and
H is an edge-maximal, 2-degenerate, t-vertex graph that is not a topological minor of G.
Note that every 2-degenerate graph is a subgraph of an edge-maximal 2-degenerate graph,
and that if G contains H as a topological minor then G contains every subgraph of H as a
topological minor.

Define H0, H1, H2, . . . , Ht to be induced subgraphs of H and (v1, v2, . . . , vt) an ordering
of V (H) so that Ht = H, and for i ∈ [t] the vertex vi has degree at most 2 in Hi and
Hi−1 = Hi − vi. Thus, H0 is the empty graph. Note that such an ordering is possible since
H is 2-degenerate. Also, since H is edge-maximal, for i > 3 vi has degree exactly 2 in Hi,
or else adding an edge from vi to either v1 or v2 will produce a 2-degenerate graph with
more edges.

If H ′ is a subdivision of Hi and j ∈ [i], the depth of vj in H ′ is the sum of the depths of
the edges incident to vj in Hj. The depth of H ′ is the maximum depth of a vertex of Hi in
H ′. Let H be the union over i ∈ [t] of the sets of all subdivisions of Hi.

For i ∈ [t] and H ′ ∈ H a subdivision of Hi and j ∈ [i], define H ′j to be the subdivision
of Hj given by the combination of vertices and paths of H ′ corresponding to the vertices
and edges of Hj. For every non-negative integer k, define dk(H

′) to be the maximum j ∈ [i]
such that H ′j has depth at most k. Fix H ′ ∈ H to be a subdivision which lexicographically
maximises (d0(H ′), d1(H ′), d2(H ′), . . . ), subject to the restriction that G has a subgraph
isomorphic to H ′.
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Claim 39.1. For every subgraph G′ of G with at least one vertex,

d0(H ′) > 2(δ(G′) + 1)− |V (G′)|.

Proof. By our choice of H ′, d0(H ′) is the maximum i ∈ [t] such that Hi is a subgraph of
G. We prove by induction on i that, if δ(G′) > 1

2
(|V (G′)|+ i− 2), then Hi is a subgraph of

G′. The result is trivial for i = 1, since G′ has at least one vertex, and also for i = 2, since
δ(G′) > 1

2
(|V (G′)|+ i− 2) > 0.

Now suppose i > 3. By induction, Hi−1 ⊆ G′, meaning there is an injective function φ
from V (Hi−1) to V (G) such that for every pair of adjacent vertices x and y in Hi−1, φ(x)
and φ(y) are adjacent in G′.

Since i > 3 and H is an edge-maximum 2-degenerate graph, vi has exactly two neigh-
bours va and vb in Hi. Now |N(φ(va))∩N(φ(vb))| > 2δ(G′)−|V (G′)| > i−2. In particular,
since {φ(va), φ(vb)} ∩ (N(φ(va)) ∩N(φ(vb))) = ∅ and |φ(V (Hi−1)) \ {φ(va), φ(vb)}| = t− 3,
there is some common neighbour v′ of φ(va) and φ(va) that is not in φ(V (Hi−1)). Setting
φ(vi) := v′, we find Hi ⊆ G′. Hence, if δ(G′) > 1

2
(|V (G′)|+ i− 2), then Hi is a subgraph of

G, which means d0(H ′) > 2(δ(G′) + 1)− |V (G′)|.

The next claim is the basis for the proof of Lemma 39. It provides a recursive formula for
dk(H

′), the number of consecutive vertices, starting from v1, that have depth at most k in
H ′. The proof of this claim rests on the assumption that no subdivision of H is isomorphic
to a subgraph of G. Using Claim 39.2, we prove Claim 39.3. This allows us to show that
dn(H ′) > t, which means H ′ is a subdivision of H that is a subgraph of G, a contradiction.

Claim 39.2. For every positive integer k,

dk(H
′) >

1

k + 1

(
(5 · 2k − 1)(δ + 1)− (2k+1)n

2k+1 − 1
+

k−1∑
i=1

di(H
′)

)
.

Proof. Let m := dk(H
′). By the definition of H ′, G has some subgraph isomorphic to H ′,

so there is an injective function φ from V (H ′m) to V (G) such that for every pair of adjacent
vertices x and y in H ′m, φ(x) and φ(y) are adjacent in G. By assumption, n > 1 and
since H is not a topological minor of G, t > 1. Hence, δ > 0.4 + 0.7 − 1 > 0, so G has
a subgraph isomorphic to K2, and hence d0(H ′) > 2 by our choice of H ′. By definition,
dk(H

′) > d0(H ′), so m > 2.
Since H is not a topological minor of G, m 6 t − 1. Since H is an edge-maximal

2-degenerate graph, vm+1 has exactly two neighbours s and t in Hm+1. Let s′ := φ(s), let
t′ := φ(t) and let U := φ(V (H ′m)).

If i is a non-negative integer and l ∈ [di(H
′)], then we have |V (H ′l) \ V (H ′l−1)| 6 i + 1,

since H ′l is a subdivision of depth at most i. Hence,

|U | = |V (H ′m)| 6 d0(H ′) +
k∑
i=1

(i+ 1)(di(H
′)− di−1(H ′)) = (k + 1)m−

k−1∑
i=0

di(H
′). (3.1)

If H ′′ is a graph obtained from H ′m by adding a path (internally disjoint from H ′m) with
at least one internal vertex and at most k + 1 internal vertices, then H ′′ is isomorphic to
subdivision of Hm+1 of depth at most k. By our choice of H ′, H ′′ is not isomorphic to a
subgraph of G. Hence there is no path P from s′ to t′ in G such that P is internally disjoint
from U and 3 6 |V (P )| 6 k + 3.
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Let T := N(t′) \ U , let S0 := N(s′) \ U and for i ∈ [k − 1], let Si := N [Si−1] \ U . Let
Sk := V (G) \ (U ∪ T ), and for i ∈ [k], let S ′i := Si \ Si−1. Suppose for contradiction that
some vertex in Sk−1 is adjacent to some vertex in T ∪{t′}. Then there is a path P from s′ to
t′ in G of length at most k+ 2, with at least one internal vertex and with no internal vertex
in U , a contradiction. Hence, for i ∈ {0, 1, . . . , k− 1}, we have N(Si) ⊆ (U ∪S ′i+1) \T . Let
j be the maximum value in [k] such that |S ′j| 6 2k−j|Sk \ S0|/(2k − 1). The existence of j
is guaranteed, since otherwise

|Sk \ S0| =
k∑
i=1

|S ′k| >
k∑
i=1

2k−i

2k − 1
|Sk \ S0|,

a contradiction.
Let G′ := G[Sj−1], n′ := |Sj−1|. Suppose that n′ = 0. In particular, |S0| = 0. This

means δ + 1− |U | 6 0, since |S0| = |N [s′] \ U |. Hence, by (3.1),

0 > δ + 1−

(
(k + 1)m−

k−1∑
i=0

di(H
′)

)
.

By Claim 39.1, d0(H ′) > 2(δ + 1)− n. Hence,

m >
1

k + 1

(
3(δ + 1)− n+

k−1∑
i=1

di(H
′)

)

=
1

k + 1

(
(6 · 2k − 3)(δ + 1)− (2k+1 − 1)n

2k+1 − 1
+

k−1∑
i=1

di(H
′)

)

>
1

k + 1

(
(5 · 2k − 1)(δ + 1)− (2k+1)n

2k+1 − 1
+

k−1∑
i=1

di(H
′)

)
,

as required.
Suppose instead that n′ > 0, and let δ′ := δ(G′). By Lemma 39.1, d0(H ′) > 2δ′+2−n′ >

2(δ − |U | − |S ′j|) + 2− |Sj−1|. By our choice of j,

2|S ′j|+ |Sj−1| 6 (|Sk| −
k∑

i=j+1

|S ′i|) + |S ′j| 6 |S0|+ |Sk \ S0|(
2k−j

2k − 1
+ 1−

k∑
i=j+1

2k−i

2k − 1
)

= |S0|+ (
2k

2k − 1
)|Sk \ S0|.

Note that |Sk \ S0| = n − |S0| − |T | − |U | and |S0| = |N [s′] \ U | > δ + 1 − |U |. Similarly,
|T | > δ + 1− |U |. Hence, by (3.1),

0 > −d0(H ′) + 2(δ − |U | − |S ′j|) + 2− |Sj−1|

> −d0(H ′) + 2δ + 2− 2|U | − (|S0|+ (
2k

2k − 1
)|Sk \ S0|)

> −d0(H ′) + 2δ + 2− 2|U | − |S0| − (
2k

2k − 1
)(n− |S0| − |T | − |U |)

> −d0(H ′) + 2δ + 2− 2|U | − (
2k

2k − 1
)(n− |U |) +

2k + 1

2k − 1
(δ + 1− |U |)

> −d0(H ′) +
3 · 2k − 1

2k − 1
(δ + 1)− (

2k

2k − 1
)n− 2k+1 − 1

2k − 1

(
(k + 1)m−

k−1∑
i=0

di(H
′)

)
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>
3 · 2k − 1

2k − 1
(δ + 1)− (

2k

2k − 1
)n− 2k+1 − 1

2k − 1

(
(k + 1)m−

k−1∑
i=1

di(H
′)

)
+

2k

2k − 1
(2δ + 2− n)

>
5 · 2k − 1

2k − 1
(δ + 1)− (

2k+1

2k − 1
)n+

2k+1 − 1

2k − 1

(
k−1∑
i=1

di(H
′)

)
− 2k+1 − 1

2k − 1
(k + 1)dk(H

′),

from which the result follows.

We now convert the recursive formula in Claim 39.2 into a form which is easier to use.

Claim 39.3.

dk(H
′) >

(5 · 2k − 1)(δ + 1)− (2k+1)n

(k + 1)(2k+1 − 1)
+

k−1∑
i=1

(5 · 2i − 1)(δ + 1)− (2i+1)n

(i+ 1)(i+ 2)(2i+1 − 1)

Proof. For j > 1, define

aj :=
(5 · 2j − 1)(δ + 1)− (2j+1)n

2j+1 − 1
.

By Claim 39.2, we have

dk(H
′) >

1

k + 1

(
ak +

k−1∑
i=1

di(H
′)

)
. (3.2)

We now prove by induction on i that

di(H
′) >

ai
i+ 1

+

(
i−1∑
j+1

aj
(j + 1)(j + 2)

)
. (3.3)

When i = 1, (3.3) follows immediately from (3.2). Now suppose (3.3) holds for all i < k.
Hence, by (3.2), we have

dk(H
′) >

ak
k + 1

+
1

k + 1

k−1∑
i=1

(
ai
i+ 1

+
i−1∑
j=1

aj
(j + 1)(j + 2)

)

=
ak

k + 1
+

1

k + 1

((
k−1∑
i=1

ai
i+ 1

)
+

k−2∑
j=1

k−1∑
i=j+1

aj
(j + 1)(j + 2)

)

=
ak

k + 1
+

1

k + 1

((
k−1∑
i=1

ai
i+ 1

)
+

k−2∑
j=1

aj(k − 1− j)
(j + 1)(j + 2)

)

=
ak

k + 1
+

1

k + 1

(
ak−1

k
+

k−2∑
i+1

ai(i+ 2) + ai(k − 1− i)
(i+ 1)(i+ 2)

)

=
ak

k + 1
+

k−1∑
i+1

ai
(i+ 1)(i+ 2)

.

Thus the result holds by induction.

We are now ready to prove Lemma 39. Recall that we are assuming for contradiction
that δ > 0.421344n + 0.735998t − 1 and that H is not a topological minor of G. By our
choice of H ′, this means that dk(H

′) 6 t− 1 for every non-negative integer k.
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Proof of Lemma 39. First, note that H ′ is a subdivision of depth less than n, since G has
a subgraph isomorphic to H ′ and hence H ′ has at most n vertices. This means that for
k > n, we have dk(H

′) = dn(H ′), since |V (H ′)| 6 |V (G)| = n. Thus, by Claim 39.3, we
have

dn(H ′) > lim
k→∞

(5 · 2k − 1)(δ + 1)− (2k+1)n

(k + 1)(2k+1 − 1)
+

k−1∑
i=1

(5 · 2i − 1)(δ + 1)− (2i+1)n

(i+ 1)(i+ 2)(2i+1 − 1)

>

(
100∑
i=1

(5 · 2i − 1)(δ + 1)− (2i+1)n

(i+ 1)(i+ 2)(2i+1 − 1)

)
+

(
5(δ + 1)

2
− 2101n

2101 − 1

) ∞∑
i=101

1

(i+ 1)(i+ 2)

=

(
100∑
i=1

(5 · 2i − 1)(δ + 1)− (2i+1)n

(i+ 1)(i+ 2)(2i+1 − 1)

)
+

(
5(δ + 1)

2
− 2101n

2101 − 1

)
1

102

> 1.3587(δ + 1)− 0.57248n.

By definition, dn(H ′) 6 |V (H)|, so t > 1.3587(δ + 1) − 0.57248n. This is a contradiction,
since δ > 0.421344n+ 0.735998t− 1 > 1

1.3587
(t+ 0.57248n)− 1 by assumption.
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Chapter 4

Improper Colourings

4.1 Defective Choosability and Maximum Average Degree

In this section we prove the following theorem, via a stronger result (Theorem 29 below).

Theorem 24. For d > 0 and k > 1, every graph G with mad(G) < 2d+2
d+2

k is k-choosable
with defect d.

The following lemma is essentially a special case of an old result of Lovász [92].

Lemma 41. If L is a list-assignment for a graph G, such that

degG(v) + 1 6 |L(v)|(d+ 1)

for each vertex v of G, then G is L-colourable with defect d.

Proof. Colour each vertex v in G by a colour in L(v) so that the number of monochromatic
edges is minimised. Suppose that some vertex v coloured α is adjacent to at least d + 1
vertices also coloured α. Since deg(v) < |L(v)|(d+1), some colour β ∈ L(v)\{α} is assigned
to at most d neighbours of v. Recolouring v by β reduces the number of monochromatic
edges. This contradiction shows that no vertex v is adjacent to at least d + 1 vertices of
the same colour as v. Thus the colouring has defect d.

Corollary 42. Every graph G with ∆(G) + 1 6 k(d+ 1) is k-choosable with defect d.

The next lemma is a key idea of this chapter. It provides a sufficient condition for a
partial list-colouring to be extended to a list-colouring of the whole graph.

Lemma 43. Let L be a k-list-assignment of a graph G. Let A,B be a partition of V (G),
where G[A] is L-colourable with defect d′. If d 6 d′ and for every vertex v ∈ B,

(d+ 1) degA(v) + degB(v) + 1 6 (d+ 1)k,

then G is L-colourable with defect d′.

Proof. Let φ be an L-colouring of G[A] with defect d′. For each vertex v ∈ B, let L′(v) :=
L(v) \ {φ(x) : x ∈ NA(v}. Thus |L′(v)| > k − degA(v) > (degB(v) + 1)/(d+ 1). Lemma 41
implies that G[B] is L-colourable with defect d. By construction, there is no monochromatic
edge between A and B. Thus G is L-colourable with defect d′.

We now prove our first main result, which is equivalent to Theorem 24 when n0 = 1.
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Theorem 29. For integers d > 0, n0 > 1 and k > 1, every graph G with mad(G, n0) <
2d+2
d+2

k is k-choosable with defect d′ := max{dn0−1
k
e − 1, d}.

Proof. We proceed by induction on |V (G)|. Let L be a k-list-assignment for G. For the
base case, suppose that |V (G)| 6 n0 − 1. For each vertex v of G, choose a colour in L(v)

so that each colour is used at most d |V (G)|
k
e times. We obtain an L-colouring with defect

dn0−1
k
e − 1. Now assume that |V (G)| > n0.

Let v1, . . . , vp be a maximal sequence of vertices in G, such that if Ai := {v1, . . . , vi−1}
and Bi := V (G) \ Ai, then (d+ 1) degAi

(vi) + degBi
(vi) > (d+ 1)k.

First suppose that p < |V (G)|. Let A := {v1, . . . , vp} and B := V (G)\A. By induction,
G[A] is L-colourable with defect d′. By the maximality of v1, . . . , vp, for every vertex v ∈ B,
we have (d + 1) degA(v) + degB(v) + 1 6 (d + 1)k. By Lemma 43, G is L-colourable with
defect d′, and we are done.

Now assume that p = |V (G)|. Thus, each vertex vi satisfies d degAi
(vi) + degG(vi) >

(d+ 1)k. Hence

(d+ 2)|E(G)| =
|V (G)|∑
i=1

d degAi
(vi) + degG(vi) > (d+ 1)k|V (G)|.

Since |V (G)| > n0, we have mad(G, n0) > 2|E(G)|
|V (G)| >

2d+2
d+2

k, which is a contradiction.

4.2 Using Independent Transversals

This section introduces a useful tool, called “independent transversals”, which have been
previously used for clustered colouring by Alon et al. [5] and Haxell, Szabó, and Tardos
[63]. Haxell [64] proved the following result.

Lemma 44 ([64]). Let G be a graph with maximum degree at most ∆. Let V1, . . . , Vn be
a partition of V (G), with |Vi| > 2∆ for each i ∈ [n]. Then G has a stable set {v1, . . . , vn}
with vi ∈ Vi for each i ∈ [n].

Lemma 45. Let ∆ > 3 and let G be a graph of maximum degree at most ∆. If H is a
subgraph of G with ∆(H) 6 2, then there is a stable set S ⊆ V (H) of vertices of degree 2
in H with the following properties:

1. every subpath of H with at least 3∆− 6 vertices that contains a vertex with degree 1
in H contains at least one vertex in S,

2. every subpath of H with at least 5∆− 9 vertices that contains a vertex with degree 1
in H contains at least two vertices in S,

3. every connected subgraph C of H with at least d19
2

∆e − 16 vertices contains at least
three vertices in S.

Proof. Consider each cycle component C of H with |C| > 8∆−12. Say |C| = (2∆−3)a+b,
where a > 4 and b ∈ [0, 2∆ − 4]. Partition C into subpaths A1B1A2B2 . . . AaBa where
|Ai| = 2∆− 4 and |Bi| ∈ [1, 1 + d b

a
e] for i ∈ [a]. Note that |Bi| 6 1 + d b

a
e 6 d1

2
∆e.

Now consider each path component P ofH with |P | > 2∆−4. Say |P | = (2∆−3)a+b−1,
where a > 1 and b ∈ [0, 2∆ − 4]. Partition P into subpaths B0A1B1 . . . AaBa where
|Ai| = 2∆− 4 for i ∈ [a], |Bi| = 1 for i ∈ [a− 1], and |Bi| 6 d b2e.

Let A be the set of all such paths Ai taken over all the components of H. Let G′ :=
G[
⋃
A∈A V (A)] − E(H). Then A gives a partition of V (G′) into paths, each of which has
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exactly 2∆ − 4 vertices, and ∆(G′) 6 ∆ − 2. By Lemma 44, G′ has a stable set S that
contains exactly one vertex in each path in A. By construction, every vertex in S has
degree 2 in H and S is a stable set in H, so S is a stable set in G.

Let P be a path in H that contains a vertex of degree 1 in H. Then H is subpath
of some component path P ′ of H. If P contains at least 3∆ − 6 vertices, then |P | =
(2∆ − 3)a + b − 1 where a > 1 and b ∈ [0, 2∆ − 4]. Now, using our previous notation,
|B0A1| 6 ∆− 2 + 2∆− 4 = 3∆− 6 6 |P | and |AaBa| 6 ∆− 2 + 2∆− 4 = 3∆− 6 6 |P |,
so P is not a proper subpath of B0A1 or of BaAa. Hence P contains every vertex of Ai for
some i ∈ {1, a}, so P contains a vertex in S.

If P contains at least 5∆ − 9 vertices, then |P ′| = (2∆ − 3)a + b − 1 where a > 2
and b ∈ [0, 2∆ − 4]. Now, |B0A1B1A2| 6 ∆ − 2 + 2(2∆ − 4) + 1 = 5∆ − 9 6 |P |
and |Aa−1Ba−1AaBa| 6 5∆ − 9 6 |P |, so P is not a proper subpath of B0A1B1A2 or of
Aa−1Ba−1AaBa. Hence P contains every vertex Ai and of Ai+1 for some i ∈ {1, a − 1}, so
P contains two vertices in S.

Suppose for contradiction there is a connected subgraph C of H on d19
2

∆e− 16 vertices
with at most two vertices in S. By the definition of S, there are at most two paths
Ai ∈ A with V (Ai) ⊆ V (C). If C is contained in some path component of H, then C
is a proper subpath of AjBjAj+1Bj+1Aj+2Bj+2Aj+3 for some j ∈ {0, . . . , a − 3}, where
we take A0 and Aa+1 to be the empty path for simplicity (so |A0B0| = |B0| 6 ∆ − 2 and
|BaAa+1| = |Ba| 6 ∆−2). Now |AjBjAj+1Bj+1Aj+2Bj+2Aj+3| 6 4(2∆−4)+3 6 d19

2
∆e−16.

If C is contained in some cycle component ofH, we may assume without loss of generality
that C is a subpath of the path A1B1A2B2A3B3A4, and does not contain every vertex of
A1 and does not contain every vertex of A4. Thus, |V (C)| 6 |A1B1A2B2A3B3A4| − 2 6
4(2∆− 4) + 3d1

2
∆e − 2 6 d19

2
∆e − 17, a contradiction.

4.3 Clustered Choosability and Maximum Degree

This section proves our first result about clustered choosability of graphs with given max-
imum degree (Theorem 31). The preliminary lemmas will also be used in subsequent
sections.

Lemma 46. If L is a list-assignment for a graph G, such that degG(v)+2 6 3|L(v)| for each
vertex v of G, and φ is an L-colouring of G that minimises the number of monochromatic
edges, then φ has defect 2. Moreover, for each vertex v with defect 2 under φ, there is a
colour βv ∈ L(v) \ {φ(v)}, such that at most two neighbours of v are coloured βv under φ.

Proof. Suppose that some vertex v coloured α is adjacent to at least three vertices also
coloured α. Since deg(v) < 3|L(v)|, some colour β ∈ L(v) \ {α} is assigned to at most two
neighbours of v. Recolouring v by β reduces the number of monochromatic edges. This
contradiction shows that every vertex has defect at most 2.

Consider a vertex v coloured α with defect 2. Suppose that v has at least three neigh-
bours coloured β for each β ∈ L(v) \ {α}. Thus deg(v) > 2 + 3(|L(v)| − 1), implying
deg(v) + 1 > 3|L(v)|, which is a contradiction. Thus some colour β ∈ L(v)\{α} is assigned
to at most two neighbours of v.

Given a colouring φ of a graph G, let G[φ] denote the monochromatic subgraph of G
given φ. The idea for the following lemma is by Haxell, Szabó, and Tardos [63, Lemma 2.6],
adapted here for the setting of list-colourings.

Lemma 47. If H is a bipartite graph with bipartition (X, Y ) and L is a list-assignment for
H such that |L(v)| = 2 for all v ∈ X and |L(v)| = 1 for all v ∈ Y and every L-colouring
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φ has defect 2, then H has an L-colouring φ such that every connected subgraph of H[φ] at
most two vertices in X.

Proof. We begin by orienting the edges of H so that for every vertex v ∈ V (H) and every
colour c ∈ L(v), v has at most one out-neighbour w with c ∈ L(w) and v has at most one
in-neighbour w with c ∈ L(w). Let L(H) be the union of the lists of all vertices of H. For
each colour c ∈ L(H), let Hc be the subgraph of H induced by the vertices w ∈ V (H)
with c ∈ L(w). There is an L-colouring which assigns each vertex of Hc the colour c, so
∆(Hc) 6 2. Also, since every edge of H has an endpoint y ∈ Y and |L(y)| = 1, evey edge of
H is in E(Hc) for at most one c ∈ L(H). For each c ∈ L(H), orient the edges of Hc so that
no vertex has more than one in-neighbour or out-neighbour (possible since ∆(Hc) 6 2).
Orient all remaining edges of H arbitrarily.

We now construct an L-colouring φ. First, colour each vertex in Y with the unique
colour in its list. Now run the following procedure, initialising i := 1.

1: If i > |X|, then exit.

2: Select vi ∈ X \ {vi : i ∈ [i − 1]} and select φ(vi) ∈ L(vi) arbitrarily. Increment i by 1
and go to 3.

3: If there is a directed path vi−1yx such that x ∈ X \ {vi : i ∈ [i− 1]} and φ(vi−1) = φ(y)
and φ(vi−1) ∈ L(x), let vi := x, select φ(vi) ∈ L(vi) \ {φ(vi−1)}, increment i by 1 and go
to 3. Otherwise go to 4.

4: If there is a directed path xyvi−1 such that x ∈ X \ {vi : i ∈ [i− 1]} and φ(vi−1) = φ(y)
and φ(vi−1) ∈ L(x), let vi := x, select φ(vi) ∈ L(vi) \ {φ(vi−1)}, increment i by 1 and go
to 3. Otherwise go to 1.

Suppose for contradiction that some component C of H[φ] has at least three vertices in
S. Since φ is an L-colouring, C has a directed subpath x1y1x2y2x3 such that {x1, x2, x3} ⊆
X. If x1 was the first vertex in {x1, x2} to be coloured, then x2 was coloured next and
φ(x2) 6= φ(x1), a contradiction. If x2 was the first vertex in {x2, x3} to be coloured, then
x3 was coloured next and φ(x3) 6= φ(x2), a contradiction. Hence, x2 was coloured before
x1 and after x3. But then x1 was coloured immediately after x2 and φ(x1) 6= φ(x2), a
contradiction.

We now prove our first result for clustered choosability of graphs with given maximum
degree.

Theorem 31. Every graph G with maximum degree ∆ > 3 is d1
3
(∆ + 2)e-choosable with

clustering d19
2

∆e − 17.

Proof. Let k := d∆+2
3
e. Let L be a k-list-assignment for G. Let φ be an L-colouring

of G that minimises the number of monochromatic edges. By Lemma 46, φ is an L-
colouring with defect 2. Moreover, for each vertex v with defect 2 under φ, there is a colour
βv ∈ L(v) \ {φ(v)}, such that at most two neighbours of v are coloured βv under φ. Let
L′(v) := {φ(v), βv} for each vertex v with defect 2.

Let M be the monochromatic subgraph of G. Thus ∆(M) 6 2. By Lemma 45, there is
a set S ⊆ V (M), such that S is stable in G, every vertex in S has defect 2 under φ, and
the following hold:

1. every subpath of M with at least 3∆− 6 vertices that contains a vertex with degree
1 in M contains at least one vertex in S,
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2. every subpath of M with at least 5∆− 9 vertices that contains a vertex with degree
1 in M contains at least two vertices in S, and

3. every connected subgraph C of M on at least d19
2

∆e − 16 vertices contains at least
three vertices in S.

Define a subpath of M to have type 1 if it contains no vertex in S and at least one
vertex of degree at most 1 in M . Define a subpath of M to have type 2 if it contains at
most one vertex in S and at least one vertex of degree at most 1 in M . Note that every
path of type 1 is also of type 2, and every path of type 2 or 1 that contains a vertex of
degree 0 in M has only one vertex. By the definition of S, every path of type 1 has at most
3∆− 7 vertices and every path of type 2 has at most 5∆− 10 vertices.

Let T be the set of connected components of M −S. Let H be the bipartite graph with
V (H) := {S, T }, where s ∈ S is adjacent to T ∈ T if and only if s is adjacent to T in G,
and the colour of the vertices of T is in L′(s). Define L′H so that L′H(s) := L′(s) for every
s ∈ S, and L′H(T ) is the singleton containing the colour assigned to the vertices of T for
every T ∈ T .

Let φ′H be an arbitrary L′H-colouring of H, and let φ′ be the corresponding L-colouring
of G. Note that every vertex of v ∈ S is assigned a colour in L′(v) and every other vertex
is assigned its original colour in φ. Since S is a stable set and by the definition of L′, the
number of monochromatic edges given φ′ is at most the number of monochromatic edges
given φ. Hence by our choice of φ, no L-colouring yields fewer monochromatic edges than
φ′. Hence the monochromatic subgraph M ′ of G given φ′ satisfies ∆(M ′) 6 2. Let M ′

H be
the graph obtained from M ′ by contracting each T ∈ T to a single vertex. Then M ′

H is
isomorphic to the monochromatic subgraph of H given φ′H . Since M ′

H is a minor of M ′, we
have ∆(M ′

H) 6 2. Hence, every L′H-colouring of H has defect 2.
By Lemma 47, H has an L′H-colouring φ′H such that no component of the monochromatic

subgraph has more than two vertices in S. Let φ′ be the corresponding L-colouring of G,
and note that no component of the monochromatic subgraph M ′ of G given φ′ has more
than two vertices in S. Vertices of G− S keep their colour from φ, and vertices v ∈ S get
a colour from L′(v), so φ′ is an L-colouring that minimises the number of monochromatic
edges.

Suppose for contradiction that some vertex in V (G − S) has degree 2 in M and is
adjacent in M ′ to some vertex s ∈ S which is not its neighbour in M (so φ′(s) 6= φ(s)).
Then the L′-colouring obtained from φ by recolouring s with φ′(s) is not 2-defective, a
contradiction.

It follows that the largest possible monochromatic component C of M ′ is obtained either
from three disjoint paths in M of type 1 linked by two vertices in S, or is obtained from
a path of type 1 and a path of type 2 linked by a vertex of S, or is a subgraph of M that
contains at most two vertices in S. In each case, we have |V (C)| 6 d19

2
∆e − 17.

4.4 Clustered Choosability with Absolute Bounded Clustering

This section proves our results for clustered choosability of graphs with given maximum
average degree (Theorem 27) or given maximum degree (Theorem 32), where the clustering
is bounded by an absolute constant. The following lemma is the heart of the proof. With
I = ∅, it immediately implies Theorem 32.

Lemma 48. If I is a stable set of vertices in a graph G and L is a list-assignment for G
such that 5|L(v)| > 2(deg(v) + 1) for all v ∈ V (G − I) and 5|L(v)| > 2 deg(v) + 1 for all
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v ∈ I, then G has an L-colouring with clustering 9. Furthermore, if I = ∅, then G has an
L-colouring with clustering 6.

Proof. Let C be the class of L-colourings φ that minimise the number of monochromatic
edges. Given φ ∈ C and v ∈ V (G), let L(φ, v) be the set of colours c ∈ L(v) such the
colouring φ′ obtained from φ by recolouring v with c is in C. Note that in particular
φ(v) ∈ L(φ, v), and that a colour c ∈ L(v) is in L(φ, v) if and only if |{w ∈ N(v) : φ(w) =
c}| = degG[φ](v).

Claim 48.1. If φ ∈ C, then ∆(G[φ]) 6 2.

Proof. Let v be a vertex of maximum degree in G[φ]. If for some colour c ∈ L(v) we have
|{w ∈ NG(v) : φ(w) = c}| < degG[φ](v), the colouring φ′ obtained from φ by changing the
colour of v to c satisfies |E(G[φ′])| < |E(G[φ])|, contradicting the assumption that φ ∈ C.
Hence, degG(v) > degG[φ](v)|L(v)|. By assumption |L(v)| > 1

5
(2 degG(v)+1), and the result

follows.

Claim 48.2. If {φ, φ′} ⊆ C, v ∈ V (G− I) and degG[φ](v) = degG[φ′](v) = 2, then |L(φ, v)∩
L(φ′, v)| > 2.

Proof. Suppose for contradiction that |L(φ, v)∩L(φ′, v)| 6 1. Note that L(φ, v)∪L(φ′, v) ⊆
L(v). Given that |L(φ, v)|+ |L(φ′, v)| = |L(φ, v)∪L(φ′, v)|+ |L(φ, v)∩L(φ′, v)| 6 |L(v)|+1,
we have |L(φ, v)| 6 (|L(v)|+ 1)/2 without loss of generality. Since φ ∈ C, for every colour
c ∈ L(v), v has at least two neighbours in G coloured c by φ (or else recolouring v with c
would yield a colouring φ′ with |E(G[φ′])| < |E(G[φ])|). For every colour c ∈ L(v) \ l(φ, v),
v has at least three neighbours coloured c by φ. Hence, deg(v) > 3|L(v)| − (|L(v)|+ 1)/2,
meaning |L(v)| 6 1

5
(2 deg(v) + 1), a contradiction.

Choose φ0 ∈ C and S ⊆ V (G − I) such that S is a stable set in G[φ0], every vertex
in S has degree 2 in G[φ], and subject to this |S| is maximised. let S := {s1, s2, . . . , st}.
For i ∈ [t], define φi recursively so that φi(v) = φi−1(v) for v ∈ V (G) \ {si} and φi(si) ∈
(L(φ0, si) ∩ L(φi−1, si)) \ {φ0(si)}. Such L-colourings exist by Claim 48.2.

Define L′(v) := {φ0(v), φt(v)} for all v ∈ V (G).

Claim 48.3. If φ is an L′-colouring of G and s ∈ S, then |NG[φ](s) \ S| = 2.

Proof. Note that L′(v) = {φ0(v)} for v ∈ V (G)\S. Hence |NG[φ](s)\S| = |NG[φ0](s)\S| = 2
if φ(v) = φ0(v). Now suppose that φ(s) = φt(s). By construction, φt(s) ∈ L(φ0, s), so the
colouring φ′ obtained from φ0 by changing the colour of s to φt(s) is in C. Now ∆(G[φ′]) 6 2
by Claim 48.1, so no vertex s′ ∈ S is adjacent to s in G[φ′], since s′ already has two
neighbours in G[φ] − S and hence in G[φ′] − S. Since |E(G[φ′])| = |E(G[φ0])|, we have
degG[φ′](s) = degG[φ0](s) = 2. Hence |NG[φ](s) \ S| = |NG[φ′](s) \ S| = degG[φ′](s) = 2.

Claim 48.4. If φ is an L′-colouring of G, then φ ∈ C.

Proof. Suppose for contradiction that for some {v, w} ⊆ S, vw ∈ E(G[φ]). Since S is a
stable set in G[φ0], either φ(v) = φt(v) or φ(w) = φt(w).

If φ(v) = φt(v) and φ(w) = φt(w), then v has three neighbours in G[φt] by Claim 48.3.
But since φi(si) ∈ l(φi−1, si) for i ∈ [t], we have φt ∈ C, a contradiction.

Hence, without loss of generality, φ(v) = φ0(v) and φ(w) = φt(w). Now φt(w) ∈ l(φ0, w),
so the colouring φ′ obtained from φ0 by recolouring w with φt(w) is in C. Note vw ∈ E(G[φ′])
by assumption. By Claim 48.3, |NG[φ′](v) \ S| = |NG[φ0](v) \ S| = 2, so degG[φ′](v) = 3,
contradicting Claim 48.1.

Now |E(G[φ])| = |E(G[φ] − S)]| + 2|S| by Claim 48.3. But G[φ] − S = G[φ0] − S, so
|E(G[φ])| = |E(G[φ0])|, and φ ∈ C.
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Let T be the set of components of G[φ0] − S. Let H be the bipartite graph with
bipartition (S, T ) such that s ∈ S is adjacent to T ∈ T if s is adjacent to T in G and the
colour assigned to the vertices of T by φ0 is in L′(s). Let L′H be the natural restriction
of L′ to H. Note that an L′H-colouring φH of H corresponds to an L′-colouring of G, and
H[φH ] is a minor of G[φ], which means ∆(H[φH ]) 6 2 by Claims 48.1 and 48.4. Hence, by
Lemma 47, H has an L′H-colouring φH such that no component of H[φH ] has more than
two vertices in S. Let φ be the corresponding L′-colouring of G. Note that each component
of G[φ] has at most two vertices in S.

Suppose for contradiction that some component C of G[φ] has at least ten vertices. Now
∆(G[φ]) 6 2 by Claims 48.1 and 48.4, so C is a cycle or a path. Hence C has an induced
subpath P := p1p2 . . . p8 such that every vertex of P has degree 2 in G[φ]. Since I is a
stable set in G, at most one vertex in each of {p1, p2}, {p4, p5} and {p7, p8} is in I, so C− I
contains a stable set SC of size 4 such that every vertex of SC has degree 2 in G[φ]. Define
S ′ := (S \ V (C)) ∪ SC . Since |S ∩ V (C)| 6 2, we have |S ′| > |S|. However S ′ ⊆ V (G− I),
S ′ is a stable set in G[φ], and every vertex of S ′ has degree 2 in G[φ], contradicting our
choice of φ0 and S.

Finally, suppose for contradiction that I = ∅ and some component C of G[φ] has at
least seven vertices. As before, C is either a cycle or a path, so there is a stable set SC in C
of size 3 such that every vertex in SC has degree 2 in G[φ]. Define S ′ := (S \ V (C)) ∪ SC .
Since |S ∩V (C)| 6 2, we have |S ′| > |S|. However S ′ ⊆ V (G− I), S ′ is a stable set in G[φ]
and every vertex of S ′ has degree 2 in G[φ], contradicting our choice of φ0 and S.

Corollary 49. Let (A,B) be a partition of the vertex set of a graph G, let I ⊆ B be a
stable set, and let L a list-assignment for G. If 5(|L(v)| − degA(v)) > 2(degB(v) + 1) for
all v ∈ B \ I and 5(|L(v)| − degA(v)) > 2 degB(v) + 1 for all v ∈ I, then every L-colouring
of G[A] with clustering 9 can be extended to an L-colouring of G with clustering 9.

Proof. Let φ be an arbitrary L-colouring of G[A], and let L′ be the list-assignment for
G[B] such that, for every vertex v in B, L′(v) := L(v) \ {φ(w) : w ∈ (NG(v) ∩ A)}.
Note that every L′-colouring of G[B] is also an L-colouring, and that for all v ∈ B, we
have |L′(v)| > |L(v)| − degA(v). Hence, by Lemma 48, G[B] has an L′-colouring φ′ with
clustering 9. By our choice of L′, the combination of φ and φ′ is an L-colouring of G with
clustering 9.

Theorem 27. Every graph G is b 7
10

mad(G) + 1c-choosable with clustering 9.

Proof. Let k := b 7
10

mad(G)c+ 1. We proceed by induction on |V (G)|. The claim is trivial
if |V (G)| 6 8. Assume that |V (G)| > 9. Let L be a k-list-assignment for G.

Let p be the maximum integer for which there are pairwise disjoint sets X1, . . . , Xp ⊆
V (G), such that for each i ∈ [p], we have |Xi| ∈ {1, 2}, and if Ai := X1 ∪ · · · ∪ Xi−1 and
Bi := V (G) \ Ai, then at least one of the following conditions holds:

� Xi = {vi} and 5|L(vi)| 6 5 degAi
(vi) + 2 degBi

(vi), or

� Xi = {vi, wi} and viwi ∈ E(G) and 5|L(vi)| 6 5 degAi
(vi) + 2 degBi

(vi) + 1 and
5|L(wi)| 6 5 degAi

(wi) + 2 degBi
(wi) + 1.

First suppose that X1 ∪ · · · ∪Xp 6= V (G). Let A := X1 ∪ · · · ∪Xp and B := V (G) \ A.
We now show that Corollary 49 is applicable. By the maximality of p, each vertex v ∈ B
satisfies 5|L(v)| > 5 degA(v) + 2 degB(v) + 1. Let I be the set of vertices v ∈ B for
which 5|L(v)| = 5 degA(v) + 2 degB(v) + 1. By the maximality of p, I is a stable set.
Since mad(G[A]) 6 mad(G), by induction, G[A] is L-colourable with clustering 9. By
Corollary 49, G is L-colourable with clustering 9.
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Now assume that X1 ∪ · · · ∪Xp = V (G). Let R := {i ∈ [p] : |Xi| = 1} and S := {i ∈
[p] : |Xi| = 2}. Thus

5k|V (G)| 6
∑
i∈R

(3 degAi
(vi) + 2 degG(vi))+∑

i∈S

(3 degAi
(vi) + 2 degG(vi) + 1 + 3 degAi

(wi) + 2 degG(wi) + 1)

6 3
∑
i∈R

degAi
(vi) + 3

∑
i∈S

(degAi
(vi) + degAi

(wi) + 1) + 2
∑

v∈V (G)

degG(v)

= 7|E(G)|.

Hence 10
7
k 6 2|E(G)|

|V (G)| 6 mad(G), implying k 6 7
10

mad(G), which is a contradiction.

4.5 Clustered Choosability and Maximum Average Degree

This section proves our final results for clustered choosability of graphs with given maximum
average degree (Theorems 28 and 30).

Lemma 50. If I is a stable set in a graph G of maximum degree ∆ > 3, and L is a list-
assignment of G, and 3|L(v)| > degG(v)+1 for each vertex v ∈ I, and 3|L(v)| > degG(v)+2
for each vertex v ∈ V (G) \ I, then G is L-colourable with clustering 19∆− 32.

Proof. Let φ be an L-colouring of G that minimises the number of monochromatic edges.
By Lemma 46, φ is an L-colouring with defect 2. Moreover, for each vertex v with defect
2 under φ, there is a colour βv ∈ L(v) \ {φ(v)}, such that at most two neighbours of v are
coloured βv under φ. Let L′(v) := {φ(v), βv} for each vertex v with defect 2.

Let M be the monochromatic subgraph of G. Thus ∆(M) 6 2. Each component of
M is a cycle or path. Orient each cycle component of M to become a directed cycle, and
orient each path component of M to become a directed path.

Let G′ be obtained from G as follows: first delete all non-monochromatic edges incident
to all vertices in I. Note that vertices in I now have degree at most 2. Now if vx is a
directed monochromatic edge in G with x ∈ I and x having defect 2, then contract vx
into a new vertex v′. Note that v ∈ V (G) \ I since I is a stable set. Note also that
∆(G′) 6 ∆(G) 6 ∆. Consider v′ to be coloured by the same colour as v. Let MG′ be
the monochromatic subgraph of G′. Then MG′ is obtained from M by the same set of
contractions that formed G′ from G, and MG′ is an induced subgraph of G′ with maximum
degree at most 2.

By Lemma 45, there is a set S ⊆ V (MG′), such that S is stable in G, every vertex in S
has defect 2 under φ, and the following hold:

1. every subpath of MG′ with at least 3∆− 6 vertices that contains a vertex with degree
1 in M contains at least one vertex in S,

2. every subpath of MG′ with at least 5∆− 9 vertices that contains a vertex with degree
1 in M contains at least two vertices in S, and

3. every connected subgraph C of MG′ with at least d19
2

∆e−16 vertices contains at least
three vertices in S.

Let S be obtained from S ′ by replacing each vertex v′ (arising from a contraction) by
the corresponding vertex v in G. Thus S ∩ I = ∅. By construction, S is a stable set in G,
every vertex in S has defect 2 under φ, and each of the following hold:
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1. every subpath of M with at least 6∆− 12 vertices contains a vertex with degree 1 in
M contains at least one vertex in S,

2. every subpath of M with at least 10∆ − 18 vertices contains a vertex with degree 1
in M contains at least two vertices in S,

3. every connected subgraph C of M with at least 19∆ − 31 vertices contains at least
three vertices in S.

Define a subpath of M to have type 1 if it contains no vertex in S and at least one vertex
of degree at most 1 in M . Define a subpath of M to have type 2 if it contains at most one
vertex in S and at least one vertex of degree at most 1 in M . Note that every path of type
1 is also of type 2, and that any path of type 2 or 1 that contains a vertex of degree 0 in
M has only one vertex. By the definition of S, every path of type 1 has at most 6∆ − 13
vertices and every path of type 2 has at most 10∆− 19 vertices.

Let T be the set of connected components of M − S, and define a bipartite graph H
with V (H) := {S, T }, where s ∈ S is adjacent to T ∈ T if and only if s is adjacent to T
in G, and the colour of the vertices of T is in L′(s). Define L′H so that L′H(s) := L′(s) for
every s ∈ S, and L′H(T ) is the singleton containing the colour assigned to the vertices of T
for every T ∈ T .

Let φ′H be an arbitrary L′H-colouring of H, and let φ′ be the corresponding L-colouring
of G. Note that every vertex of v ∈ S is assigned a colour in L′(v) and every other vertex
is assigned its original colour in φ. Since S is a stable set and by the definition of L′, the
number of monochromatic edges given φ′ is at most the number of monochromatic edges
given φ. Hence by our choice of φ, no L-colouring yields fewer monochromatic edges than
φ′. Hence the monochromatic subgraph M ′ of G given φ′ satisfies ∆(M ′) 6 2. Let M ′

H be
the graph obtained from M ′ by contracting each T ∈ T to a single vertex. Then M ′

H is
isomorphic to the monochromatic subgraph of H given φ′H . Since M ′

H is a minor of M ′, we
have ∆(M ′

H) 6 2. Hence, every L′H-colouring of H has defect 2.
By Lemma 47, H has an L′H-colouring φ′H such that no component of the monochromatic

subgraph has more than two vertices in S. Let φ′ be the corresponding L-colouring of G,
and note that no component of the monochromatic subgraph M ′ of G given φ′ has more
than two vertices in S. Vertices of G− S keep their colour from φ, and vertices v ∈ S get
a colour from L′(v), so φ′ is an L-colouring which minimises the number of monochromatic
edges.

Suppose for contradiction that some vertex in V (G − S) has degree 2 in M and is
adjacent in M ′ to some vertex s ∈ S which is not its neighbour in M (so φ′(s) 6= φ(s)).
Then the L′-colouring obtained from φ by recolouring s with φ′(s) is not 2 defective, a
contradiction.

It follows that the largest possible monochromatic component C of M ′ is obtained either
from three disjoint paths in M of type 1 linked by two vertices in S, or is obtained from
a path of type 1 and a path of type 2 linked by a vertex of S, or is a subgraph of M that
contains at most two vertices in S. In each case, we have |V (C)| 6 19∆− 32.

Lemma 51. For a graph G, let A,B be a partition of V (G) with ∆ := ∆(G[B]) > 3,
and let I be a stable set of G contained in B. Let L be a list-assignment for G and let c
be an integer such that c > 19∆ − 32, G[A] is L-colourable with clustering c, 3|L(v)| >
3 degA(v) + degB(v) + 1 for each vertex v ∈ I, and 3|L(v)| > 3 degA(v) + degB(v) + 2 for
each vertex v ∈ B \ I. Then G is L-colourable with clustering c.

Proof. Let φ be an L-colouring of G[A] with clustering c. For each vertex v ∈ B, let
L′(v) := L(v) \ {φ(x) : x ∈ NA(v}. Thus |L′(v)| > |L(v)| − degA(v), implying 3|L′(v)| >
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degB(v) + 1 for each vertex v ∈ I, and 3|L′(v)| > degB(v) + 2 for each vertex v ∈ B \ I.
Lemma 50 implies that G[B] is L-colourable with clustering 19∆ − 32. By construction,
there is no monochromatic edge between A and B. Thus G is L-colourable with clustering
c.

We now prove Theorem 30, which implies Theorem 28 when n0 = 1.

Theorem 30. For integers d > 0, n0 > 1 and k > 1, every graph G with mad(G, n0) < 3
2
k

is k-choosable with clustering c := max{dn0−1
k
e, 57k − 51}.

Proof. We first prove the k = 1 case. Let G be a graph with mad(G, n0) < 3
2
. Every

component of a graph with maximum average degree less than 3
2

has at most three vertices.
Thus every component of G has at most max{n0 − 1, 3} vertices. Hence, every 1-list-
assignment has clustering max{n0 − 1, 3} 6 c. Now assume that k > 2.

We proceed by induction on |V (G)|. Let L be a k-list-assignment for G. If |V (G)| 6
n0 − 1, then colour each vertex v by a colour in L(v), so that each colour is used at
most dn0−1

k
e times. We obtain an L-colouring with clustering dn0−1

k
e. Now assume that

|V (G)| > n0.
Let p be the maximum integer for which there are pairwise disjoint sets X1, . . . , Xp ⊆

V (G), such that for each i ∈ [p], we have |Xi| ∈ {1, 2}, and if Ai := X1 ∪ · · · ∪ Xi−1 and
Bi := V (G) \ Ai, then at least one of the following conditions hold:

� Xi = {vi} and 3|L(vi)| 6 3 degAi
(vi) + degBi

(vi), or

� Xi = {vi, wi} and viwi ∈ E(G) and 3|L(v)| 6 3 degAi
(v)+degBi

(v)+1 and 3|L(w)| 6
3 degAi

(w) + degBi
(w) + 1.

First suppose that X1 ∪ · · · ∪Xp 6= V (G). Let A := X1 ∪ · · · ∪Xp and B := V (G) \ A.
Since mad(G[A], n0) 6 mad(G, n0), by induction, G[A] is L-colourable with clustering c.
We now show that Lemma 51 is applicable. By the maximality of p, for each v ∈ B,

3k = 3|L(v)| > 3 degA(v) + degB(v) + 1 > degB(v) + 1.

Let ∆ := 3k − 1. Then ∆(G[B]) 6 3k − 1 = ∆. Since k > 2, we have ∆ > 5 and
19∆ − 32 = 19(3k − 1) − 32 = 57k − 51 6 c. Let I be the set of vertices v ∈ B for which
3|L(v)| = 3 degA(v) + degB(v) + 1. By the maximality of p, I is a stable set. Lemma 51
thus implies that G is L-colourable with clustering c.

Now assume that X1 ∪ · · · ∪Xp = V (G). Let R := {i ∈ [p] : |Xi| = 1} and S := {i ∈
[p] : |Xi| = 2}. For i ∈ R, condition (A) holds, implying 3k 6 2 degAi

(vi) + degG(vi). For
i ∈ S, condition (B) holds, implying 3k 6 2 degAi

(vi)+degG(vi)+1 and 3k 6 2 degAi
(wi)+

degG(wi) + 1. Thus

3k|V (G)| 6
∑
i∈R

(2 degAi
(vi) + degG(vi))+∑

i∈S

(2 degAi
(vi) + degG(vi) + 1 + 2 degAi

(wi) + degG(wi) + 1)

= 2
∑
i∈R

degAi
(vi) + 2

∑
i∈S

(degAi
(vi) + degAi

(wi) + 1) +
∑

v∈V (G)

degG(v)

= 4|E(G)|.

Hence 3
2
k 6 2|E(G)|

|V (G)| 6 mad(G), and |V (G)| > n0 implying k 6 2
3

mad(G, n0), which is a
contradiction.
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4.6. EARTH-MOON COLOURING AND THICKNESS

4.6 Earth-Moon Colouring and Thickness

The union of two planar graphs is called an earth-moon (or biplanar) graph. The famous
earth-moon problem asks for the maximum chromatic number of earth-moon graphs [3, 26,
57, 70, 71, 108]. It follows from Euler’s formula that every earth-moon graph has maximum
average degree less than 12, and is thus 12-colourable. On the other hand, there are 9-
chromatic earth-moon graphs [26, 57]. So the maximum chromatic number of earth-moon
graphs is 9, 10, 11 or 12.

Defective and clustered colourings provide a way to attack the earth-moon problem.
First consider defective colourings of earth-moon graphs. Since the maximum average de-
gree of every earth-moon graph is less than 12, Theorem 23 by Havet and Sereni [62] implies
that every earth-moon graph is k-choosable with defect d, for (k, d) ∈ {(7, 18), (8, 9), (9, 5),
(10, 3), (11, 2)}. This result gives no bound with at most 6 colours. Ossona de Mendez
et al. [103] went further and showed that every earth-moon graph is k-choosable with
defect d, for (k, d) ∈ {(5, 36), (6, 19), (7, 12), (8, 9), (9, 6), (10, 4), (11, 2)}. Examples show
that 5 colours is best possible [103]: the defective chromatic number of earth-moon graphs
equals 5. Theorem 24 implies that every earth-moon graph is k-choosable with defect d for
(k, d) ∈ {(7, 6), (8, 3), (9, 2), (11, 1)}. These results improve the best known bounds when
k ∈ {7, 8, 9, 11}.

Now consider clustered colouring of earth-moon graphs. Wood [155] describes examples
of earth-moon graphs that are not 5-colourable with bounded clustering. Thus the clustered
chromatic number of earth-moon graphs is at least 6. Theorem 25 of Kopreski and Yu [83]
proves that earth-moon graphs are 9-colourable with clustering 2. Other results for clustered
colouring do not work for earth-moon graphs since they can contain expanders [49], and thus
do not have sub-linear separators. Since every earth-moon graph has maximum average
degree strictly less than 12, Theorems 26 and 28 imply the following:

Theorem 52. Every earth-moon graph is:

� 9-choosable with clustering 2.

� 8-choosable with clustering 405.

It is open whether every earth-moon graph is 6 or 7-colourable with bounded clustering.
Earth-moon graphs are generalised as follows. The thickness of a graph G is the min-

imum integer t such that G is the union of t planar subgraphs; see [97] for a survey. It
follows from Euler’s formula that graphs with thickness t are (6t− 1)-degenerate and thus
6t-colourable. For t > 3, complete graphs provide a lower bound of 6t − 2. It is an open
problem to improve these bounds; see [70]. Ossona de Mendez et al. [103] studied defective
colourings of graphs with given thickness, and proved the following result.

Theorem 53 ([103]). The defective chromatic number of the class of graphs with thickness
t equals 2t+ 1. In particular, every such graph is (2t+ 1)-choosable with defect 2t(4t+ 1).

Now consider clustered colourings of graphs with given thickness. Obviously, the clus-
tered chromatic number of graphs with thickness t is at most 6t, and Wood [155] proved
a lower bound of 2t + 2. Since every graph with thickness t has maximum average degree
strictly less than 6t, Theorems 26 to 28 imply the following improved upper bounds.

Theorem 54. Every graph with thickness t is:

� d9
2
te-choosable with defect 1 and clustering 2,

� d21
5
te-choosable with clustering 9,
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� 4t-choosable with clustering 228t− 51.

Thickness is generalised as follows; see [71, 103, 155]. For an integer g > 0, the g-
thickness of a graph G is the minimum integer t such that G is the union of t subgraphs
each with Euler genus at most g. Ossona de Mendez et al. [103] determined the defective
chromatic number of this class as follows (thus generalising Theorem 53).

Theorem 55 ([103]). For integers g > 0 and t > 1, the defective chromatic number of
the class of graphs with g-thickness t equals 2t + 1. In particular, every such graph is
(2t+ 1)-choosable with defect 2tg + 8t2 + 2t.

Now consider clustered colourings of graphs with g-thickness t. Wood [155] proved
that every such graph is (6t + 1)-choosable with clustering max{g, 1}. Euler’s formula
implies that every n-vertex graph with g-thickness t has less than 3t(n+ g − 2) edges (for
n > 3), implying mad(G, 4tg − 8t + 1) < 6t + 3

2
. Hence, Theorem 30 implies the following

improvement to this upper bound.

Theorem 56. For g > 0 and t > 1, every graph with g-thickness t is (4t + 1)-choosable
with clustering max{d4tg−8t

4t+1
e, 228t+ 6}.

This result highlights the utility of considering mad(G, n0).

4.7 Stack and Queue Layouts

This section applies our results to graphs with given stack- or queue-number. Again, previ-
ous results for clustered colouring do not work for graphs with given stack- or queue-number
since they can contain expanders [49], and thus do not have sub-linear separators.

A k-stack layout of a graph G consists of a linear ordering v1, . . . , vn of V (G) and a
partition E1, . . . , Ek of E(G) such that no two edges in Ei cross with respect to v1, . . . , vn
for each i ∈ [1, k]. Here edges vavb and vcvd cross if a < c < b < d. A graph is a k-stack
graph if it has a k-stack layout. The stack-number of a graph G is the minimum integer k for
which G is a k-stack graph. Stack layouts are also called book embeddings, and stack-number
is also called book-thickness, fixed outer-thickness and page-number. Dujmović and Wood
[50] showed that the maximum chromatic number of k-stack graphs is in {2k, 2k+1, 2k+2}.

A k-queue layout of a graph G consists of a linear ordering v1, . . . , vn of V (G) and
a partition E1, . . . , Ek of E(G) such that no two edges in Ei are nested with respect to
v1, . . . , vn for each i ∈ [1, k]. Here edges vavb and vcvd are nested if a < c < d < b. The
queue-number of a graph G is the minimum integer k for which G has a k-queue layout. A
graph is a k-queue graph if it has a k-queue layout. Dujmović and Wood [50] showed that
the maximum chromatic number of k-queue graphs is in the range [2k + 1, 4k].

Consider clustered colourings of k-stack and k-queue graphs. Wood [155] noted the
clustered chromatic number of the class of k-stack graphs is in [k+ 2, 2k+ 2], and that the
clustered chromatic number of the class of k-queue graphs is in [k+1, 4k]. The lower bounds
come from standard examples, and the upper bounds hold since every k-stack graph has
maximum average degree less than 2k+ 2, and every k-queue graph has maximum average
degree less than 4k. Theorems 26 to 28 thus imply the following improved upper bounds:

Theorem 57. Every k-stack graph is:

� b3k+4
2
c-choosable with defect 1, and thus with clustering 2.

� b7k+11
5
c-choosable with clustering 9.
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� b4k+6
3
c-choosable with clustering at most 76k + 53.

Theorem 58. Every k-queue graph is:

� 3k-choosable with defect 1, and thus with clustering 2.

� b14k+4
5
c-choosable with clustering 9.

� b8k+2
3
c-choosable with clustering at most 152k − 13.

4.8 Open Problem

We conclude with the natural open problem that arises from this research. Theorem 28
says that the clustered chromatic number of the class of graphs with maximum average
degree m is at most b2m

3
c+ 1. The best known lower bound is bm

2
c+ 1; see [155]. Closing

this gap is an intriguing open problem.
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Chapter 5

Gonality

In this chapter, we focus on graph gonality. In Section 1.7, we defined gonality in terms
of a simple chip firing game. We now provide a more formal definition, and show that the
two definitions are equivalent.

5.1 Preliminaries

A divisor of a graph G is a vector in ZV (G). Let Div(G) denote the set of divisors of G and
for D ∈ Div(G) and v ∈ V (G), let D(v) denote the value of D in position v. The support
supp(D) of D is the set {v ∈ V (G) : D(v) 6= 0}. For every subgraph H ⊆ G, the restriction
D|H of D to H is the divisor in Div(H) with D|H(v) := D(v) for all v ∈ V (H). A divisor of
G is effective if each entry is non-negative. Let Div+(G) denote the set of effective divisors
of G. The degree of a divisor D is given by

deg(D) :=
∑

v∈V (G)

D(v).

Let M(G) denote the set of integer valued functions on V (G). The Laplacian operator
∆ : M(G)→ Div(G) of G is given by

(∆(f))(v) =
∑

w∈N(v)

(f(v)− f(w)).

Two divisors D and D′ are equivalent, written D ∼ D′, if there is some S ∈M(G) such
that D′ = D −∆(S).

Note that deg(∆(S)) = 0 for every S ∈ M(G), and hence every pair of equivalent
divisors have the same degree. The rank r(D) of a divisor D is the maximum value of k
such that for every effective divisor D′ of degree k, there is some effective divisor equivalent
to D − D′. Note that r(D) > 1 if and only if for every vertex v ∈ V (G) there is some
effective divisor D′ equivalent to D with D′(v) > 1. The gonality of a graph, denoted
gon(G), is the minimum degree of a divisor D of G with r(D) > 1.

In Section 1.7, we defined gonality in terms of a chip firing game. We now show that this
definition is equivalent. There is a natural correspondence between initial configurations and
vector in Div+(G). Suppose that G has chip configuration corresponding to D ∈ Div+(G),
and a move is made by selecting a set A ⊆ V (G). Define 1A ∈ M(G) to be the function
satisfying supp(1A) := A and 1A(v) := 1 for all v ∈ A. By the definition of ∆, the new
configuration corresponds to the divisor D′ = D − ∆(1A). It follows that every winning
configuration corresponds to a divisor of rank at least 1.

The following is well known. A simple proof of it can be found for example in [151].
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Lemma 59. If D and D′ are equivalent effective divisors of G, then there is a unique chain
of non-empty sets A1, A2, . . . , At and corresponding sequence of divisors D0, D1, . . . , Dt such
that

� ∅ ( A1 ⊆ A2 ⊆ · · · ⊆ At ( V (G),

� D0 = D and Dt = D′ and

� for all i ∈ [t], Di is effective and Di = Di−1 −∆(1Ai
).

Now suppose D is a divisor with r(D) > 1. We may assume that D is effective,
since it follows from the fact that r(D) > 0 that there is some effective divisor in the
equivalence class containing D. Consider the initial configuration for G corresponding to
D. Since r(D) > 1, for every vertex v there is some effective divisor D′ ∼ D such that
D′(v) > 1. Now Lemma 59 gives a chain of legal moves taking the chip configuration
corresponding to D to the chip configuration corresponding to D′. Thus, the gonality of a
graph can alternatively be defined as the minimum number of chips required for a winning
chip configuration.

For several interesting families of graphs, the gonality has been precisely determined
by van Dobben de Bruyn and Gijswijt [151]. In Sections 5.2 and 5.3, we make use of the
following result.

Theorem 60 ([151]). If n and m are positive integers with n > m and G is the n × m
rectangular grid graph, then gon(G) = tw(G) = m.

5.2 Treewidth and Graphs with a Universal Vertex

In this section, we present a formula for the gonality of graphs with a universal vertex. Using
this formula, we calculate the gonality of the family of graphs known as fans, consequently
proving Theorem 34 and answering Question 2. We also show that the answer to Question
3 is “yes” in the special case where the subgraph H of G has a universal vertex.

In Section 1.7, we claimed that Theorem 34 was best possible. To see this, first note that
the claim fails for k = 1, since every 1-connected graph of treewidth 1 is a tree, and hence
has gonality 1. Further, the following elementary result (see [107] for a proof) immediately
implies that a k-connected graph has treewidth at least k.

Lemma 61. For every graph G, tw(G) > δ(G).

Due to Lemma 59, we can focus our analysis on pairs {D,D′} of effective divisors such
that D′ = D −∆(1A) for some set A. For this reason, for a graph G, an effective divisor
D ∈ Div+(G) and a vertex v ∈ V (G), we are interested in the following set. We define the
clump clump(D, v) of an effective divisor D ∈ Div+(G) centred at v to be the intersection
of all subsets S ⊆ V (G) such that v ∈ S and D(w) > |N(w) ∩ S| for every vertex w not in
S (or equivalently v ∈ S and D−∆(1SC ) ∈ Div+(G)). This set can equivalently be defined
as the smallest set S such that v ∈ S and D −∆(1SC ) ∈ Div+(G). To see this, note that
if D −∆(1A) ∈ Div+(G) and D −∆(1B) ∈ Div+(G), then D −∆(1A∪B) ∈ Div+(G). This
fact and the following Lemma motivate our interest in this set.

Lemma 62. If D is an effective divisor of a graph G and A ⊆ V (G) is such that D−∆(1A)
is also an effective divisor, then for every subgraph H of G and every vertex w ∈ V (H)\A,
we have

clump(D|H , w) ⊆ V (H) \ A.
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5.2. TREEWIDTH AND GRAPHS WITH A UNIVERSAL VERTEX

Proof. Let w′ be a vertex in V (H) ∩ A. Since (D − ∆(1A))(w′) > 0, we have D(w′) >
|N(w′) \ A|, so D|H(w′) > |NH(w′) \ A|. Let S := V (H) \ A. Then S is a subset of V (H)
such that w ∈ S and for every vertex w′ ∈ V (H) \ S, we have D|H(w′) > |NH(w′) ∩
S|. By definition, clump(D|H , w) is the intersection of all sets with these properties, so
clump(D|H , w) ⊆ V (H) \ A.

Let G be an arbitrary graph. We define the clump width, clw(D), of an effective divisor
D ∈ Div+(G) to be 0 if supp(D) = V (G) and otherwise to be the maximum size of a clump
centred at a vertex not in supp(D). Formally,

clw(D) := max{0, | clump(D,w)| : D(w) = 0}.

Lemma 63. Let H be a graph with a universal vertex v and at least one other vertex,
let H ′ := H − v and let D ∈ Div+(H ′). If E ∈ Div+(H) is such that E|H′ = D and
E(v) > clw(D), then r(E) > 1.

Proof. If V (H ′) ⊆ supp(E), then E ′ := E − ∆H(1V (H′)) is an effective divisor of H with
E ′(v) > 1. If V (H ′) 6⊆ supp(E), then let w0 ∈ V (H ′) be such that E(w0) = 0. Now
E(v) > | clump(E|H′ , w0)| and w0 ∈ clump(E|H′ , w0), so E(v) > 1. Let A := V (H) \
clump(E|H′ , w0), and consider the divisor E ′ := E − ∆H(1A). We have E ′(v) = E(v) −
| clump(E|H′ , w0)| > 0 and for all w′ ∈ clump(E|H′ , w0), we have E ′(w′) > E(w′) + 1 > 1
since v ∈ N(w′) ∩ A. Suppose w′ ∈ A \ {v}. By the definition of clump(E|H′ , w0), there
is some set S ⊆ V (H ′) such that w′ /∈ S, w0 ∈ S and for every vertex w′′ ∈ V (H ′) \ S,
we have E(w′′) > |N(w′′) ∩ S|. Since w′ /∈ S, we have E(w′) > |N(w′) ∩ S|, and since
clump(E|H′ , w0) ⊆ S, we have E(w′) > |N(w′) ∩ clump(E|H′ , w0)|. Hence E ′(w′) > 0.
Therefore, E ′ is an effective divisor equivalent to E such that E ′(w0) > 1.

An effective divisorD of a graphG is v-reduced if there is no non-empty subset A ⊆ V (G)
such that v /∈ A and D − ∆(1A) is an effective divisor. In the chip-firing game discussed
in Section 5.1, every legal move from the chip configuration corresponding to a v-reduced
effective divisor must contain v. The following result is due to Baker and Norine [14].

Lemma 64. If G is a connected graph and D is an effective divisor of G, then for every
vertex v ∈ V (G), there exists a unique v-reduced effective divisor D′ ∼ D.

The following lemma is our main tool for answering Questions 1 and 2.

Lemma 65. Let H be a graph with a universal vertex v and let H ′ := H − v and let. If
V (H ′) 6= ∅, then

gon(H) = min{deg(D) + clw(D) : D ∈ Div+(H ′), supp(D) 6= V (H ′)}.

Proof. Let D be a v-reduced effective divisor of H such that r(D) > 1 and deg(D) =
gon(H). Since D is v-reduced, (D −∆H(1V (H′))) /∈ Div+(H), so supp(D|H′) 6= V (H ′).

Let w0 be a vertex of H ′ with D(w0) = 0 and | clump(D|H′ , w0)| = clw(D). Since
r(D) > 1, there exists D′ ∈ Div+(H) such that D′ ∼ D and D′(w0) > 1. Let A1, A2, . . . , At
and D0, D1, . . . , Dt be defined as in Lemma 59, with D0 := D and Dt := D′. Since D0 is
v-reduced, v ∈ A1. Since Dt(w0) > D0(w0), there is some i ∈ [t] such that w0 /∈ Ai. By
definition A1 ⊆ Ai, so w0 /∈ A1. By Lemma 62 with A := A1, we have clump(D|H′ , w0) ⊆
V (H ′) \ A1. Now,

0 6 D1(v) = D0(v)−∆H(1A1)(v) = D(v)− |N(v) \ A1| 6 D(v)− |V (H ′) \ A1|,
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soD(v) > | clump(D|H′ , w0)| and deg(D) > deg(D|H′)+| clump(D|H′ , w0)|. Since gon(H) =
deg(D) and D|H′ ∈ Div+(H ′), we have

gon(H) > min{deg(D) + clw(D) : D ∈ Div+(H ′), supp(D) 6= V (H ′)}.

The result now follows from Lemma 63.

Recall that Question 3 asks whether the gonality of a subgraph of a graph G is at most
the gonality of G. We now show that the answer to Question 3 is “yes” when restricted to
subgraphs with a universal vertex. This is useful for proving Theorem 34.

Lemma 66. Let G be a connected graph, and let H be a subgraph of G. If H has a universal
vertex v, then gon(G) > gon(H).

Proof. Let D be an effective divisor of G such that deg(D) = gon(G) and r(D) > 1 and
let H ′ := H − v. By Lemma 64, we may assume D is v-reduced. Hence, D(v) > 1, since
r(D) > 1. Now if V (H ′) ⊆ supp(D), then r(D|H) > 1 trivially, and so gon(G) > gon(H).

If V (H ′) 6⊆ supp(D), then let w0 be a vertex of H ′ with | clump(D|H′ , w0)| = clw(D|H′)
and D(w0) = 0. Since r(D) > 1, there exists D′ ∈ Div+(G) such that D′ ∼ D and
D′(w0) > 1. LetA1, A2, . . . , At andD0, D1, . . . , Dt be defined as in Lemma 59, withD0 := D
and Dt := D′. Since D0 is v-reduced, v ∈ A1. Since Dt(w0) > D0(w0), there is some i ∈ [t]
such that w0 /∈ Ai. By definition A1 ⊆ Ai, so w0 /∈ A1. By Lemma 62 with A := A1, we
have clump(D|H′ , w0) ⊆ V (H ′) \ A1. Now,

0 6 D1(v) = D0(v)−∆G(1A1)(v) = D(v)− |N(v) \ A1| 6 D(v)− |V (H ′) \ A1|,

so D(v) > | clump(D|H′ , w0)| and deg(D) > deg(D|H′) + clw(D|H′). Hence, by Lemma 65,
gon(G) > gon(H).

The fan on n vertices is the n-vertex graph with a universal vertex v such that G − v
is a path. It is well-known that fans have treewidth 2. Lemma 66 provides a method for
determining the gonality of a fan. The following lemma is the final tool we need.

Lemma 67. Let G be a graph and let D be an effective divisor of G. If v ∈ V (G) and
H := G[{v} ∪ {w ∈ V (G) : D(w) = 0}], then the vertex set of the component of H that
contains v is a subset of clump(D, v).

Proof. By definition, v ∈ clump(D, v). Let t be a non-negative integer, and suppose for
induction that every vertex at distance exactly t from v in H is in clump(D, v), and suppose
w0 is at distance exactly t + 1 from v in H. Since w0 ∈ V (H − v), we have D(w0) = 0,
and since w0 is at distance t+ 1 from v in H, w0 has some neighbour w1 in H at distance
exactly t from v in H. By our inductive hypothesis, w1 ∈ clump(D, v). Hence, for every
subset S ⊆ V (G) such that v ∈ S and D(w) > |N(w) ∩ S| for every vertex w not in S,
we have |N(w0) ∩ S| > |{w1}| > D(w0), so w0 ∈ S. Therefore w0 ∈ clump(D, v), and by
induction every vertex in the component of H that contains v is in clump(D, v).

Theorem 68. If G is the fan of n vertices, then gon(G) = t+ d(n− 1− t)/(t+ 1)e, where
t = b(

√
4n+ 1− 1)/2c.

Proof. Let v be the universal vertex in G, and let G− v = p1p2 · · · pn−1. For every integer
t > 0, define

f(t) := min{clw(D) : D ∈ Div+(G− v), deg(D) = t, supp(D) 6= V (G− v)}.

67



5.2. TREEWIDTH AND GRAPHS WITH A UNIVERSAL VERTEX

By Lemma 65, gon(G) = min{t+f(t) : t ∈ Z, t > 0}. Let D be an effective divisor of G−v,
let H(D) := G[{w ∈ N(v) : D(w) = 0}], and let w0 be a vertex of H(D). By Lemma 67, the
vertex set of the component subpath P of H(D) containing w0 is a subset of clump(D,w0).
Every neighbour w′ of P in G − v satisfies D(w′) > 1, since P is a component of H(D).
Since G − v is a path, |N(w′) ∩ P | 6 1. Hence, w0 ∈ V (P ) and D(w′) > |N(w′) ∩ V (P )|
for every vertex w′ ∈ N(v), so clump(D,w0) = V (P ) by the definition of clump(D,w0).
Hence, f(t) = min{max{|V (P )| : P is a component of H(D)} : D ∈ Div+(G − v)}. Since
H(D) is entirely determined by supp(D), we may restrict ourselves to divisors such that
deg(D) = | supp(D)|. In particular, gon(G) = min{t+ f(t) : t ∈ {0, 1, . . . , n− 1}}. For all
t ∈ {0, 1, . . . , n − 1} and all D ∈ Div+(G − v) with deg(D) = t, the graph H(D) has at
most t+ 1 components and at least n− 1− t vertices, so f(t) > d(n− 1− t)/(t+ 1)e. Let
At := {pk : k/(d(n−1−t)/(t+1)e+1) ∈ [t]} and let supp(D) := At. Then D ∈ Div+(G−v),
deg(D) = t and

max{|V (P )| : P is a component of H(D)} = d(n− 1− t)/(t+ 1)e.

Hence, f(t) = d(n − 1 − t)/(t + 1)e. Consider the function g on the domain (−1,∞)
given by g(x) := x + (n − 1 − x)/(x + 1), and note that for t ∈ {0, 1, . . . , n − 1}, we have
t + f(t) = dg(t)e. Now for x ∈ (0, (

√
4n+ 1 − 1)/2] we have g(x) − g(x − 1) 6 0 and for

x > (
√

4n+ 1− 1)/2 we have g(x)− g(x− 1) > 0. It follows that g(t) and hence t + f(t)
is minimised for t ∈ {0, 1, . . . , n− 1} at t = b(

√
4n+ 1− 1)/2c.

Recall that Question 1 asks whether there is some function f such that for every con-
nected graph G, gon(G) 6 f(tw(G)). We now prove Theorem 34 and answer Question 1 in
the negative.

Theorem 34. For all integers k > 2 and l > k, there exists a k-connected graph G with
tw(G) = k and gon(G) > l.

Proof. Let n := (l2 + l), and let G be the graph formed by adding k − 1 universal vertices
v1, v2, . . . , vk−1 to the path P := p1p2 · · · pn−1. Let T := P − pn−1, and let f be the
function from V (T ) to the set of subsets of V (G) such that f(pi) = {pi, pi+1, v1, v2, . . . , vk−1}
for i ∈ [n − 2]. It is quick to check that T and f form a tree-decomposition of G of
width k, so tw(G) 6 k. Since δ(G) = k, we have tw(G) = k by Lemma 61. Let H :=
G − {v2, v3, . . . , vk−1}, and note that H is the fan on n vertices with universal vertex v1.
By Lemma 66, we have gon(G) > gon(H). Now, b(

√
4n+ 1−1)/2c = l, so by Theorem 68,

gon(H) = l + d(n− 1− l)/(l + 1)e > l.

Recall that Question 2 asks whether gon(H) 6 gon(G) for every connected graph G and
every connected minor H of G. The following corollary answers Question 2 in the negative.

Corollary 69. For every integer l > 0 there exist connected graphs G and H such that H
is a minor of G, gon(G) = 2 and gon(H) > l.

Proof. Let n := (l2 + l), let G be the 2× (n− 1) rectangular grid and let H be the fan on
n vertices. Then H can be obtained from G by contracting one of the rows of G to a single
vertex, so H is a minor of G, and gon(G) = 2 by Theorem 60. By Theorem 68, we have
gon(H) > l (as in the previous proof).
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5.3 High Gonality Subgraphs

In this section we show that the answer to Question 3 is “no”. In doing this, we provide
an alternative proof that the answer to Questions 1 and 2 is “no”.

Theorem 70. For every positive integer g, there are connected graphs H and G such that
gon(H) > g, gon(G) = 2 and H ⊆ G.

Proof. Let h := g + 1 and let k = 2g2 + 4g + 1. Let V (H) := [k] × Z2h, and let E(H) :=
{((i, z), (i, z + 1)) : i ∈ [k], z ∈ Z2h}∪{((i,h− 1), (i+1,0)) : i ∈ [k−1]}. Let f map V (H)
to Zk2h so that

f((s, z))(i) =


0 if i < s,

z if i = s,

h− 1 if i > s.

Now two vertices v and w are adjacent if and only if f(v) = f(w) or f(v) differs from f(w)
in exactly one coordinate and differs by exactly 1 in this coordinate. Let G be the 2× hk
rectangular grid. We find H ⊆ G by letting {(i, z) ∈ V (H) : i ∈ [k], z ∈ {0,1, . . . ,h− 1}}
form the bottom row of G and the remaining vertices form the top row. By Theorem 60,
gon(G) = 2 . We now show that gon(H) > g.

If D is a divisor of H, let σ(D) be given by

σ(D) :=
∑

v∈V (H)

D(v)f(v).

Note that for v ∈ V (H), there are exactly two neighbours u and w of v such that f(v) 6= f(u)
and f(v) 6= f(w). Furthermore, f(u) + f(w) = 2f(v). Hence, if D and D′ are divisors of
H such that D′ := D − ∆(1{v}), then σ(D) = σ(D′). Every function S ∈ M(H) can be
expressed as a sum of integer multiples of functions in {1{w} : w ∈ V (H)}, so if D0 and D1

are divisors of H and D0 ∼ D1, then σ(D0) = σ(D1).
Suppose for contradiction that D is an effective divisor of H with deg(D) 6 g and

r(D) > 1. Let I ⊆ [k] be the set of numbers i ∈ [k] such that D((i, z)) = 0 for all z ∈ Z2h,
and note that |I| > k−g. In particular, there exist s ∈ [k] such that I ′ := {s, s+1, . . . , s+2g}
is an interval of integers in I, since (k − g)/(g + 1) = 2g + 1. For all i, i′ ∈ I, with i < i′,

σ(D)(i′)− σ(D)(i) =
∑
z∈Z2h

(D((i′, z))z−D((i, z))z) +
i′−1∑
j=i+1

∑
z∈Z2h

D((j, z))(h− 1)

=
i′−1∑
j=i+1

∑
z∈Z2h

D((j, z))(h− 1).

Hence, for all i, i′ ∈ I ′, with i < i′,

σ(D)(i′)− σ(D)(i) =
i′−1∑
j=i+1

∑
z∈Z2h

D((j, z))(h− 1) = 0.

Since r(D) > 1, there exists D′ ∈ Div+(H) such that D′((s + g,0)) > 1 and D′ ∼ D.
Since deg(D′) − D′((s + g,0)) 6 g − 1, there is some i1 ∈ I ′ ∩ [s + g − 1] and some
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i2 ∈ I ′ \ [s + g] such that D′((i1, z)) = D((i2, z)) = 0 for all z ∈ Z2h. Since D′ ∼ D, we
have σ(D′)(i2)− σ(D′)(i1) = σ(D)(i2)− σ(D)(i1) = 0. We also have

σ(D′)(i2)− σ(D′)(i1) =

i2−1∑
i=i1+1

∑
z∈Z2h

D′((i, z))(h− 1) = deg(D′|H[X])(h− 1),

where X := {(j, z) ∈ V (H) : i1 +1 6 j 6 i2−1}. Since D′((s+g,0)) > 1 and deg(D′) 6 g,
deg(D′|H[X]) ∈ [d]. However 0 /∈ {d(h− 1) : d ∈ [g]}, a contradiction.
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