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Experimental Models of Cardiovascular Diseases: Overview

Jae Gyun Oh and Kiyotake Ishikawa

Abstract

Cardiovascular disease is one of the most common causes of deaths in clinics. Experimental models of
cardiovascular diseases are essential to understand disease mechanism, to provide accurate diagnoses, and to
develop new therapies. Large numbers of experimental models have been proposed and replicated by many
laboratories in the past. Models with significant advantages are chosen and became more popular. Particu-
larly, feasibility, reproducibility, and human disease resemblance are the common key factors for frequently
used cardiovascular disease models. In this chapter, we provide a brief overview of these experimental
models used for in vitro, in vivo, and in silico studies of cardiovascular diseases.
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1 Introduction

Prevalence of cardiovascular disease (CVD) has been increasing
worldwide, and the recent report from AHA (Heart Disease and
Stroke Statistics—2017 Update) [1] indicates over 90 million US
adults have at least one CVD, which is expected to increase more in
a rapid pace. Extensive research focusing on prevention, diagnosis,
and treatment of CVD has improved outcomes of patients with
CVD; however, efforts continue to improve further. Importantly,
bench science has been the driving force for this achievement and
will continue to play major roles in future research.

Various models of CVD have contributed to new therapeutic
discovery and identification of disease pathophysiology. In vitro
models allow fast, efficient, and controllable experiments using
cells or tissues. In contrast, in vivo models allow evaluation of
mechanisms and therapeutic efficacy in more complex biology sys-
tem. Recent advances in computation and software also enabled
reliable in silico modeling of CVDs. To provide an overview of
these models that aim at simulating human CVD, this chapter
concisely reviews experimental models of CVD. Detailed protocols
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to produce these models are provided in the following chapters of
the book (Experimental Models of Cardiovascular Diseases), and
the relevant chapter numbers are included as references.

2 In Silico Models

Recent advances in computing and technology now enable various
approaches to model diseases in silico. By integrating data of key
elements obtained from experiments, these models can help under-
stand complex and dynamic biology as a system, offer high-
throughput and efficient analysis, and provide novel insights into
biological mechanisms. For example, cardiomyocyte action poten-
tial has been successfully modeled by integrating data from respec-
tive ion channel properties and contributed to understanding the
impact of genetic disorders of each ion channels or effect of drugs
[2]. These data can be further applied to more complex systems
such as tissue or organ level electrophysiology (Chapter 2).
The myocardial contraction was modeled using various methods
such as finite-element analysis [3] and provided a spectrum of new
mechanistic insights. Cardiac contractility as a part of systemic
hemodynamics has been modeled using pressure–volume loop
concept [4] and is a useful approach to estimate and understand
how interventions affect these factors. Furthermore, similar to
other areas of research, computational approaches are the main
drivers of analyzing mass data and extracting important biological
information. As the technologies advance, in silico approaches are
expected to become more powerful and may replace many of
in vitro and in vivo experiments in the future.

3 In Vitro Models

The key advantages of in vitro modeling systems are the availability
of a large number of cells and precise control of experimental
conditions that provide ability to efficiently conduct signaling path-
way studies, cell-specific mechanistic studies and high-throughput
drug screenings. Primary isolated cells and immortalized cell lines
have contributed enormously in improving our understandings in
the molecular and physiological regulation of cardiovascular sys-
tem, and recently, human embryonic and induced pluripotent stem
cell (ESC and iPSC, respectively) derived cells joined these reper-
toires, offering new in vitro approaches to study cardiovascular
diseases.

3.1 Primary Isolated

Cardiomyocytes

Neonatal cardiomyocytes, which are commonly isolated from 1- to
5-day-old rats, are one of the most popular in vitro model systems
of cardiac function and disease. These cells are relatively easy to
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isolate and culture, while offering feasible manipulation of gene
expression profiles [5]. Various types of pathophysiological stimu-
lations can be applied on neonatal cardiomyocytes, all mimicking
in vivo cardiac pathology. Cardiac hypertrophy is induced by drugs
such as norepinephrine [6], angiotensin II [7], and endothelin-1
[8]. Mechanical stretch can be applied directly on cells to simulate
cardiac volume overload associated myocardial stretch [9]. In addi-
tion, ischemia–reperfusion is replicated by hypoxia–reoxygenation
[10] or oxygen-scavenging compound (e.g., Na2S2O4) treatments
[11]. These stimulations often lead to cellular responses that closely
represent cardiomyocyte changes in vivo setting, such as hypertro-
phy, apoptosis, autophagy, and fetal gene expression, rendering
them a reliable model of cardiac diseases. Notwithstanding, imma-
ture morphology [12] and some dissociation in gene expression
profiles compared to adult cardiomyocytes [13] are limitations of
this cell type.

In contrast, adult cardiomyocytes (Chapter 3) more closely
represent morphology as well as the behavior of cells in the intact
human heart. Cells can be isolated from animal hearts of different
age, sex, and species including human using enzymatic digestion
protocols. Additionally, cardiomyocyte isolation from transgenic
animals and diseased animals allow for a wide spectrum of experi-
ments focusing on gene function as well as pathological stimuli.
Most notably, thanks to the mature sarcomeric structure and ion
channels, these cells also bear sophisticated experimental
approaches such as patch-clamp [14], contractility measurements
(Chapter 7) [15], and Ca2+ imaging studies [16, 17]. Technical
difficulties in isolation procedures and culture are the limitation of
this cell type. However, above invaluable advantages motivate
researchers to continue working on these cells, and they remain
one of the most frequently used models for in vitro cardiac research.

3.2 Immortalized

Cell Lines

To overcome the limited culturing ability of primary cardiomyo-
cytes [18], efforts have been made to establish immortalized car-
diac cells. Representative cardiac immortalized cell lines include
H9c2 [19], ANT-T-antigen [20], AT-1cells [21], MC29 [22],
HL-1 [23], and AC16 [24]. These cells originate from cardiac
cells and thus retain similar gene expression profiles and phenotypic
characteristics of their origin. For example, H9c2 cells are derived
from myoblast cell line, which was isolated from embryonic BDIX
rat ventricular tissue, and AC16 cells from human ventricular tis-
sues (by fusion with SV40 transformed human fibroblasts). Cell
line-specific features and limitations need to be well recognized
when using these cells, and validation in other cardiac models is
likely necessary. Nevertheless, feasibility in culture and ability to use
cells after freeze-thaw cycles render them a useful in vitro modeling
system.
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3.3 ESC and iPSC

Derived

Cardiomyocytes

Cardiomyocyte-like cells can be induced from pluripotent stem
cells such as ESCs (Chapters 4 and 5) and iPSCs (Chapter 6).
There is a recent surge on use of these cells as tools for modeling
cardiac diseases in vitro. The key advantage is that these cells can be
obtained from patients without excising the actual heart. This
enables application of cardiac precision medicine by taking into
account the individual variability of genomic profiles. Examples
include mechanistic studies of gene disorders [25] and screening
of potentially harmful drugs that can induce QT prolongation or
cardiotoxicity [26]. Challenges remain, however, in cost and effort
extensive methods to create these cells as well as physiologically and
structurally immature cell status after induction. When these lim-
itations are addressed by new approaches, stem cell-derived cardi-
omyocytes may become the primary choice of cell type for the
majority of in vitro research.

3.4 In Vitro Models

of Vascular Disease

Vascular endothelial cells (EC)s and smooth muscle cells (SMC)
s are the two commonly studied cell types when modeling vascular
diseases in vitro. Pathological modifications of these cells in vivo
lead to atherosclerosis, restenosis, hypertension, and aneurysm that
are all tightly connected to cardiovascular deaths. Key signaling
pathways that contribute to these diseases are sought, and at the
same time, methods to enhance angiogenesis are studied using ECs
and SMCs. Primary cells can be obtained by enzymatic digestion of
the vascular tissues from the variety of animals including human.
Unlike cardiomyocytes, they easily proliferate on a culture dish and
well tolerate freeze-thaw cycles, thus offer easier use of primary
cells. Similar to cardiac cell models, ESC and iPSC derived ECs
[27], as well as SMCs [28] have also been developed to model
vascular diseases. Commonly performed mechanistic studies using
these cells include proliferation, migration, contraction, secretion,
and angiogenesis assays. To more closely reflect in vitro setting,
cells are sometimes cultured in flow conditions or cultured together
with other cell types to address cell interactions.

4 Ex Vivo Tissue Models

Although cell-based models offer efficient and fine-tuned experi-
ments focusing on respective cell types, they usually lack in three-
dimensional structure and interactions with other cell types. Ex vivo
models of CVD can be used to overcome this limitation while
maintaining fine-tuned experimental conditions. Majority of previ-
ously proposed ex vivo models use fresh organs explanted from
animals or humans. Whole-heart perfusion using Langendorff sys-
tem (Chapter 8) [29] or inter-animal cross-circulation (Chapter 9)
[30] allows for precisely controlled physiological studies at the
organ level. These approaches played pivotal roles in establishing
the basis of our current understandings in cardiac physiology by
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studying pressure–volume relationships, cardiac work, and myocar-
dial oxygen consumption. Sophisticated studies on cardiac electro-
physiology are also available using Langendorff system
[31]. Optical mapping of Ca2+ sensitive fluorescence probes allows
for detection of cardiac electric activities with high spatial and
temporal resolution in the whole heart as well as in a piece of tissue
that can be artificially perfused (Chapter 10). By changing the
composition of perfusate, tailored experiments with different cir-
culating concentrations of ions or drugs can be examined [32]. In
addition, the impact of ischemia, as well as reperfusion injury may
be studied in these ex vivo hearts by temporally or permanently
ligating the coronary arteries. One limitation of these freshly
explanted organ/tissues is difficulties in maintaining their integri-
ties for long-term. Therefore, these models are mainly used for
acute experiments. In contrast, bioengineering approaches allow
for a chronic culture of tissues for long-term experiments using
tissue engineering techniques from cultured cells [33]. Three-
dimensional structure offers better replication of in vivo physiology
compared to cell cultures. In addition, incorporation of human
iPSC-induced cardiomyocytes allows for experiments on patient-
specific disorders (Chapter 11). Continued efforts on improving
the technique will likely lead to the development of the engineered
whole heart in future.

Similar to the heart, protocols for ex vivo perfusion of vascu-
latures have also been developed [34]. Serial imaging with high
spatial resolution is available using this approach, and may lead to
new discoveries in atherosclerosis research. Atherosclerotic plaque
rupture and thrombosis cause sudden onset disease and can be fatal,
requiring efficient preventive approaches. For evaluating the risk of
thrombosis events and to test the efficacies of antithrombotic drugs
in specific patient, an ex vivo thrombosis model has been developed
(Chapter 12).

5 In Vivo Models

Cardiac function and biology in vivo are meticulously regulated by
interplays of various stimuli from outside the heart, such as hemo-
dynamic, neurohormonal, and inflammatory signalings [35]. These
signals are activated to maintain body homeostasis; however, sus-
tained activation of these signals provokes cardiac pathophysiologi-
cal responses. Importantly, cardiac dysfunction induces activation
of pathological signaling, while these signals deteriorate cardiac
function, thus forming a positive feedback loop in both acute and
chronic settings. To understand the cardiac disease pathophysiol-
ogy and effect of therapeutics in the complex biological system,
in vivo models are essential. A variety of animal models have been
proposed, and we will briefly review commonly used in vivo experi-
mental models in the following sections.
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5.1 Small Animal

Models

Rodent models play pivotal roles in vivo cardiovascular research for
several reasons [36]. These include anatomical similarity to human
heart (four chambers) and vasculatures, easy housing and reason-
able cost, fast gestation and short lifespan, and less ethical concerns
compared to more advanced species. Owing to the established gene
manipulation techniques and feasibility, mouse models offer
in-depth analysis of gene function and disease mechanisms. High
similarity in many genes between mice and human [37], together
with established research tools for detecting gene and protein
expressions in mice render them the most popular in vivo model
system for cardiovascular research. Rat models, on the other hand,
have larger heart and vessel sizes that offer easier surgical manipu-
lation to induce diseases and provide a larger amount of tissues
compared to mouse models. Rats are also physiologically closer to
the human compared to mice.

Apart from transgenic CVD models, the model induction
methods are mostly similar in mice and rats. Surgical manipulation
is more challenging in mice due to its smaller size. However, once
the researchers have become familiar with the necessary skills,
higher throughput research is available in mice. Cardiac ischemia
models include permanent coronary ligation and ischemic–reperfu-
sion, both using similar techniques (Chapter 13). Location and the
length of ligation determine the size of injury as well as survival
after model induction. At the chronic stage, the heart remodels
with systolic dysfunction similar to human after MI [38]. It also
seems that the infarct healing processes are faster in mice than more
advanced species [39]. Another popular method to induce heart
failure is pressure overload using surgical banding of the aorta
(Chapters 14 and 15). In mice, the heart initially becomes hyper-
trophic followed by cardiac dilation and systolic dysfunction at the
later stage [40]. The speed of disease progression depends on the
location of the banding (ascending or transverse) and the degree of
the stenosis. In contrast, latter changes are not always observed in
rats after aortic banding [41]. Drug-induced cardiac disease models
are also commonly employed. Osmotic pumps are used to contin-
uously infuse angiotensin or isoproterenol (Chapter 16) [42], while
cardiotoxicity drugs such as doxorubicin are injected systemically
(Chapter 17) [43]. Injection of monocrotaline can easily induce
pulmonary hypertension in rats (Chapter 18) [44]. In contrast, the
effect of monocrotaline in mice is not very reliable and hypoxia-
induced pulmonary hypertension is more commonly used when
using mice (Chapter 19).

For inducing vascular remodeling, wire injury method
(Chapter 20) [45], as well as balloon inflation methods [46], are
commonly employed. Disruption of endothelium and stretching of
the vasculature with high cholesterol diets induce vascular legions
at the chronic stage. Artery to venous fistula model is also a useful
tool to study venous remodeling (Chapter 21) [47].
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5.2 Large Animal

Models

Key advantages of large animal models are the similarities in size,
anatomy, and physiology to the human heart. These features enable
research using clinically applicable imaging devices as well as clinical
sized therapeutic devices including the endovascular catheters. Sim-
ilar physiology and more complex immune system compared to
rodents make it easier to predict human responses to new thera-
peutic approaches. A large amount of tissue samples is available at
necropsy and different assays can be conducted in the identical
animal, which is sometimes difficult in small rodent hearts. Limita-
tions of large animal experiments include difficulty in enrolling
a large number of animals due to the cost and space limitations,
higher ethical concerns, and limited research resources such as
antibody and primers. Nevertheless, their important roles in bridg-
ing the bench science to clinical practice for drug development,
testing clinical devices, and evaluating cardiac imaging modalities
make them an essential step before clinical application of these
approaches.

Variety of large animal models have been proposed using dif-
ferent species including pigs, dogs, sheep, rabbits, and nonhuman
primates. To examine any therapeutic or diagnostic approaches in
clinically relevant setting, large animal models should exhibit simi-
lar disease phenotype as the targeted clinical population. Among
the cardiac diseases, ischemia-induced disease models are most
commonly used. Myocardial infarction can be induced by both
catheter-based (Chapter 22) [48] and surgical (Chapter 23) [49]
approaches and provide a reproducible and controllable degree of
systolic dysfunction. Acute studies focusing on reducing the initial
myocardial injury associated with ischemia and subsequent reper-
fusion injury, as well as chronic studies focusing on preventing or
reversing the progressive cardiac dysfunction and remodeling can
be designed using these models. Other ischemic models include
coronary embolization models that develop diffuse cardiac dys-
function (Chapter 27) [50], and chronic ischemia models with
hibernating myocardium [51]. Presence of mitral regurgitation in
post-MI heart is a risk factor for adverse events, and animal models
of this condition have been developed in pigs [52] and sheep
(Chapter 23) [53, 54].

Nonischemic cardiac disease models can be induced by continu-
ous tachypacing (tachycardia-inducedmyopathy) (Chapter 24) [55],
volume overload by valvular regurgitation (Chapter 25) [56] or
artery to venous shunt [57], pressure overload by aortic banding
(Chapter 26) [58] or renal wrapping [59], and cardiac toxic drug
injection [60]. Pressure overload-induced models somewhat resem-
ble clinically common heart failure phenotype; heart failure with
preserved ejection fraction, but the lack of obesity and metabolic
diseases, as well as difficulty in using aged animals, make it challeng-
ing to replicate clinical phenotype completely. Right heart failure
without accompanying pulmonary hypertension can be induced by
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pulmonary artery constriction [61]. Pulmonary embolism model
mimics clinical pulmonary hypertension patients with chronic
thromboembolic pulmonary hypertension (Chapter 28) [62]. Our
group has recently established a post-capillary pulmonary hyperten-
sion model that accompanies right ventricular dysfunction
(Chapter 29) [63]. Together, these models offer options for choos-
ing appropriate pulmonary hypertension models for experiments in
large animals.

A rabbit model of atherosclerosis is a popular vascular disease
model for studying imaging and therapeutics for atherosclerosis
(Chapter 30) [64]. Combination of high-fat diet and balloon injury
to induce vascular lesions are also employed in other species. Aortic
dissection and aortic aneurysm models have also been developed in
large animals [65].

6 Conclusion

All models described above have their own advantages and limita-
tions. It is important for the researchers to design the experiments
based on their solid hypothesis and use appropriate models to
answer their hypothesis. Detailed protocols described in each chap-
ter for creating these models in this book should allow for success-
ful and reproducible experiments.
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